Current Osteoporosis Reports

, Volume 10, Issue 1, pp 64–72 | Cite as

Sclerostin: Therapeutic Horizons Based Upon Its Actions

Future Therapeutics (P Miller, Section Editor)

Abstract

Inactivating mutations of the SOST gene cause a reduction in sclerostin levels and are associated with high bone mass. The clinical phenotypes, sclerosteosis and van Buchem’s disease, were described in 1950s. Much later, it was learned that both diseases are due to loss-of-function mutations in the SOST gene. As a regulator of an important osteoanabolic pathway, Wnt, inactivation of SOST leads to a stimulation of the pathway it regulates. The high bone mass in patients with either sclerosteosis or van Buchem’s disease is associated with unusual skeletal strength; they do not fracture. Knowledge of this molecule and its actions led rather quickly to the development of anti-sclerostin antibodies that lead to marked increases in bone mass in both animals and human subjects. Blocking sclerostin action with anti-sclerostin antibodies is a promising new therapeutic approach to osteoanabolic therapy of osteoporosis.

Keywords

Sclerostin Sclerostin antibodies Osteoporosis 

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Kanis JA, Melton 3rd LJ, Christiansen C, et al. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9:1137–41.PubMedCrossRefGoogle Scholar
  2. 2.
    NIH Consensus Development Panel on Osteoporosis Prevention. Diagnosis, and Therapy, March 7-29, 2000: highlights of the conference. South Med J. 2001;94:569–73.Google Scholar
  3. 3.
    United States. Public Health Service. Office of the Surgeon General. Bone health and osteoporosis : a report of the Surgeon General. Rockville, Md.: U.S. Dept. of Health and Human Services, Public Health Service, Office of the Surgeon General; 2004. xxxii, 404 p. p.Google Scholar
  4. 4.
    Kanis JA, Geusens P, Christiansen C. Guidelines for clinical trials in osteoporosis. A position paper of the european foundation for osteoporosis and bone disease. Osteoporos Int. 1991;1:182–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Burge R, Dawson-Hughes B, Solomon DH, et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res. 2007;22:465–75.PubMedCrossRefGoogle Scholar
  6. 6.
    Bilezikian JP, Rubin MR, Finkelstein JS. Parathyroid hormone as an anabolic therapy for women and men. J Endocrinol Invest. 2005;28:41–9.PubMedGoogle Scholar
  7. 7.
    Girotra M, Rubin MR, Bilezikian JP. The use of parathyroid hormone in the treatment of osteoporosis. Rev Endocr Metab Disord. 2006;7:113–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Orwoll ES, Scheele WH, Paul S, et al. The effect of teriparatide [human parathyroid hormone (1-34)] therapy on bone density in men with osteoporosis. J Bone Miner Res. 2003;18:9–17.PubMedCrossRefGoogle Scholar
  9. 9.
    Krause C, Korchynskyi O, de Rooij K, et al. Distinct modes of inhibition by sclerostin on bone morphogenetic protein and Wnt signaling pathways. J Biol Chem. 2010;285:41614–26.PubMedCrossRefGoogle Scholar
  10. 10.
    Li X, Zhang Y, Kang H, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280:19883–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Semenov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem. 2005;280:26770–5.PubMedCrossRefGoogle Scholar
  12. 12.
    van Bezooijen RL, Svensson JP, Eefting D, et al. Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J Bone Miner Res. 2007;22:19–28.PubMedCrossRefGoogle Scholar
  13. 13.
    Van Buchem FS, Hadders HN, Ubbens R. An uncommon familial systemic disease of the skeleton: hyperostosis corticalis generalisata familiaris. Acta Radiol. 1955;44:109–20.CrossRefGoogle Scholar
  14. 14.
    Truswell AS. Osteopetrosis with syndactyly; a morphological variant of Albers-Schonberg's disease. J Bone Joint Surg Br. 1958;40-B:209–18.PubMedGoogle Scholar
  15. 15.
    Brunkow ME, Gardner JC, Van Ness J, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 2001;68:577–89.PubMedCrossRefGoogle Scholar
  16. 16.
    Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10:537–43.PubMedCrossRefGoogle Scholar
  17. 17.
    •• Lewiecki EM. Sclerostin monoclonal antibody therapy with AMG 785: a potential treatment for osteoporosis. Expert Opin Biol Ther 2011; 11:117-27. A current and timely review on the topic.PubMedCrossRefGoogle Scholar
  18. 18.
    Kusu N, Laurikkala J, Imanishi M, et al. Sclerostin is a novel secreted osteoclast-derived bone morphogenetic protein antagonist with unique ligand specificity. J Biol Chem. 2003;278:24113–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Winkler DG, Sutherland MK, Geoghegan JC, et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22:6267–76.PubMedCrossRefGoogle Scholar
  20. 20.
    van Bezooijen RL, Roelen BA, Visser A, et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med. 2004;199:805–14.PubMedCrossRefGoogle Scholar
  21. 21.
    Johnson ML, Kamel MA. The Wnt signaling pathway and bone metabolism. Curr Opin Rheumatol. 2007;19:376–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Johnson ML, Harnish K, Nusse R, Van Hul W. LRP5 and Wnt signaling: a union made for bone. J Bone Miner Res. 2004;19:1749–57.PubMedCrossRefGoogle Scholar
  23. 23.
    Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006;116:1202–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Bennett CN, Longo KA, Wright WS, et al. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA. 2005;102:3324–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8:739–50.PubMedCrossRefGoogle Scholar
  26. 26.
    Hill TP, Spater D, Taketo MM, et al. Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell. 2005;8:727–38.PubMedCrossRefGoogle Scholar
  27. 27.
    Glass 2nd DA, Bialek P, Ahn JD, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8:751–64.PubMedCrossRefGoogle Scholar
  28. 28.
    Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone. 2005;37:148–58.PubMedCrossRefGoogle Scholar
  29. 29.
    Silvestrini G, Ballanti P, Leopizzi M, et al. Effects of intermittent parathyroid hormone (PTH) administration on SOST mRNA and protein in rat bone. J Mol Histol. 2007;38:261–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Bellido T, Ali AA, Gubrij I, et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology. 2005;146:4577–83.PubMedCrossRefGoogle Scholar
  31. 31.
    Drake MT, Srinivasan B, Modder UI, et al. Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women. J Clin Endocrinol Metab. 2010;95:5056–62.PubMedCrossRefGoogle Scholar
  32. 32.
    Kramer I, Keller H, Leupin O, Kneissel M. Does osteocytic SOST suppression mediate PTH bone anabolism? Trends Endocrinol Metab. 2010;21:237–44.PubMedCrossRefGoogle Scholar
  33. 33.
    van Lierop AH, Witteveen JE, Hamdy NA, Papapoulos SE. Patients with primary hyperparathyroidism have lower circulating sclerostin levels than euparathyroid controls. Eur J Endocrinol. 2010;163:833–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Mirza FS, Padhi ID, Raisz LG, Lorenzo JA. Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J Clin Endocrinol Metab. 2010;95:1991–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Gaudio A, Pennisi P, Bratengeier C, et al. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab. 2010;95:2248–53.PubMedCrossRefGoogle Scholar
  36. 36.
    Costa AG, Cremers S, Rubin MR et al. Circulating Sclerostin in Disorders of Parathyroid Gland Function. J Clin Endocrinol Metab 2011. doi:10.1210/jc.2011-0566.
  37. 37.
    Modder UI, Clowes JA, Hoey K, et al. Regulation of circulating sclerostin levels by sex steroids in women and in men. J Bone Miner Res. 2011;26:27–34.PubMedCrossRefGoogle Scholar
  38. 38.
    Modder UI, Hoey KA, Amin S, et al. Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res. 2011;26:373–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Kaji H, Imanishi Y, Sugimoto T, Seino S. Comparisons of serum sclerostin levels among patients with postmenopausal osteoporosis, primary hyperparathyroidism and osteomalacia. Exp Clin Endocrinol Diabetes. 2011;119:440–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Robling AG, Bellido T, Turner CH. Mechanical stimulation in vivo reduces osteocyte expression of sclerostin. J Musculoskelet Neuronal Interact. 2006;6:354.PubMedGoogle Scholar
  41. 41.
    Lin C, Jiang X, Dai Z, et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res. 2009;24:1651–61.PubMedCrossRefGoogle Scholar
  42. 42.
    Beighton P, Barnard A, Hamersma H, van der Wouden A. The syndromic status of sclerosteosis and van Buchem disease. Clin Genet. 1984;25:175–81.PubMedCrossRefGoogle Scholar
  43. 43.
    Hamersma H, Gardner J, Beighton P. The natural history of sclerosteosis. Clin Genet. 2003;63:192–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Bueno M, Olivan G, Jimenez A, et al. Sclerosteosis in a Spanish male: first report in a person of Mediterranean origin. J Med Genet. 1994;31:976–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Stein SA, Witkop C, Hill S, et al. Sclerosteosis: neurogenetic and pathophysiologic analysis of an American kinship. Neurology. 1983;33:267–77.PubMedGoogle Scholar
  46. 46.
    Tacconi P, Ferrigno P, Cocco L, et al. Sclerosteosis: report of a case in a black African man. Clin Genet. 1998;53:497–501.PubMedCrossRefGoogle Scholar
  47. 47.
    Paes-Alves AF, Rubin JLC, Cardoso J, Rabelo MM. Sclerosteosis: a marker of Dutch ancestry. Rev Bras Genet. 1982;4:825–34.Google Scholar
  48. 48.
    Kim CA, Honjo R, Bertola D, et al. A known SOST gene mutation causes sclerosteosis in a familial and an isolated case from Brazilian origin. Genet Test. 2008;12:475–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Sugiura Y, Yasuhara T. Sclerosteosis. A case report. J Bone Joint Surg Am. 1975;57:273–7.PubMedGoogle Scholar
  50. 50.
    Staehling-Hampton K, Proll S, Paeper BW, et al. A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet. 2002;110:144–52.PubMedCrossRefGoogle Scholar
  51. 51.
    Balemans W, Patel N, Ebeling M, et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. 2002;39:91–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Beighton P. Sclerosteosis. J Med Genet. 1988;25:200–3.PubMedCrossRefGoogle Scholar
  53. 53.
    Beighton P, Davidson J, Durr L, Hamersma H. Sclerosteosis - an autosomal recessive disorder. Clin Genet. 1977;11:1–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Gardner JC, van Bezooijen RL, Mervis B, et al. Bone mineral density in sclerosteosis; affected individuals and gene carriers. J Clin Endocrinol Metab. 2005;90:6392–5.PubMedCrossRefGoogle Scholar
  55. 55.
    van Lierop AH, Hamdy NA, Hamersma H et al. Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. J Bone Miner Res 2011. doi:10.1002/jbmr.474.
  56. 56.
    Wergedal JE, Veskovic K, Hellan M, et al. Patients with Van Buchem disease, an osteosclerotic genetic disease, have elevated bone formation markers, higher bone density, and greater derived polar moment of inertia than normal. J Clin Endocrinol Metab. 2003;88:5778–83.PubMedCrossRefGoogle Scholar
  57. 57.
    Li X, Ominsky MS, Niu QT, et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008;23:860–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Li C, Ominsky MS, Tan HL et al. Increased callus mass and enhanced strength during fracture healing in mice lacking the sclerostin gene. Bone 2011, doi:10.1016/j.bone.2011.08.012.
  59. 59.
    Veverka V, Henry AJ, Slocombe PM, et al. Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. J Biol Chem. 2009;284:10890–900.PubMedCrossRefGoogle Scholar
  60. 60.
    •• Li X, Ominsky MS, Warmington KS et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 2009; 24:578-88. An important study of Scl-Ab in a postmenopausal rat model showing short-term improvements in bone mass and bone strength.PubMedCrossRefGoogle Scholar
  61. 61.
    •• Li X, Warmington KS, Niu QT et al. Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats. J Bone Miner Res 2010; 25:2647-56. In a male osteoporosis model, this study demonstrates changes in microarchitecture and bone strength resulting from Scl-Ab administration.PubMedCrossRefGoogle Scholar
  62. 62.
    •• Marenzana M, Greenslade K, Eddleston A et al. Sclerostin antibody treatment enhances bone strength but does not prevent growth retardation in young mice treated with dexamethasone. Arthritis Rheum 2011; 63:2385-95. A preclinical study showing positive skeletal results with Scl-Ab in glucocorticoid-induced bone loss.PubMedCrossRefGoogle Scholar
  63. 63.
    Tian X, Jee WS, Li X, et al. Sclerostin antibody increases bone mass by stimulating bone formation and inhibiting bone resorption in a hindlimb-immobilization rat model. Bone. 2011;48:197–201.PubMedCrossRefGoogle Scholar
  64. 64.
    •• Ominsky MS, Vlasseros F, Jolette J et al. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res 2010; 25:948-59. In this study, an anabolic effect on trabecular and cortical bone was demonstrated after only two doses of Scl-Ab in eugonadal female monkeys.PubMedCrossRefGoogle Scholar
  65. 65.
    •• Li X, Ominsky MS, Warmington KS et al. Increased bone formation and bone mass induced by sclerostin antibody is not affected by pretreatment or cotreatment with alendronate in osteopenic, ovariectomized rats. Endocrinology 2011; 152:3312-22. This article demonstrates efficacy of Scl-Ab at the level of bone mass in a postmenopausal rat model that is independent of recent or current use of bisphosphonate.PubMedCrossRefGoogle Scholar
  66. 66.
    •• Agholme F, Li X, Isaksson H et al. Sclerostin antibody treatment enhances metaphyseal bone healing in rats. J Bone Miner Res 2010; 25:2412-8. A fracture-healing study that demonstrates the potential of Scl-Ab to be beneficial.PubMedCrossRefGoogle Scholar
  67. 67.
    Mazziotti G, Angeli A, Bilezikian JP, et al. Glucocorticoid-induced osteoporosis: an update. Trends Endocrinol Metab. 2006;17:144–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18:1319–28.PubMedCrossRefGoogle Scholar
  69. 69.
    Eddleston A, Marenzana M, Moore AR, et al. A short treatment with an antibody to sclerostin can inhibit bone loss in an ongoing model of colitis. J Bone Miner Res. 2009;24:1662–71.PubMedCrossRefGoogle Scholar
  70. 70.
    Compston JE, Judd D, Crawley EO, et al. Osteoporosis in patients with inflammatory bowel disease. Gut. 1987;28:410–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Ominsky MS, Li C, Li X et al. Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of non-fractured bones. J Bone Miner Res 2010; doi:10.1002/jbmr.307.
  72. 72.
    •• Padhi D, Jang G, Stouch B et al. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 2011; 26:19-26. This pivotal phase 1 clinical trial shows results of Scl-Ab in increasing bone mass.PubMedCrossRefGoogle Scholar
  73. 73.
  74. 74.
    htp://clinicaltrials.gov/ct2/show/NCT00907296?term=amg+785&rank=1. In: acessed on 09/09/2011.Google Scholar
  75. 75.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Medicine, Division of Endocrinology, Metabolic Bone Diseases Unit, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA
  2. 2.Department of Medicine, Division of EndocrinologySão Paulo Federal UniversitySão PauloBrazil

Personalised recommendations