FoxOs: Unifying Links Between Oxidative Stress and Skeletal Homeostasis

Article

Abstract

Several mechanisms contribute to the decline of all physiologic functions during aging. As a consequence, disease incidence increases with age. Central to this multifactorial process is the increase in oxidative stress levels, which correlates with age-related disease pathogenesis in animal models and in humans. Accordingly, skeletal aging and aging-related bone diseases are also associated with accumulation of reactive oxygen species. In a variety of organs, including the skeleton, mutations in components of antioxidant defense pathways have been found to lead to progressive degenerative diseases. The molecules involved are highly conserved, can sense and respond to increases in oxidative stress levels, alterations in energy status, DNA and protein damage, and they all have a common transcriptional target, the FoxO family of Forkhead transcription factors. Oxidative stress promotes both the transcriptional activity and protein stability of FoxOs. In turn, activated FoxOs promote antioxidant defense by controlling the expression of genes involved in the oxidative stress response, DNA repair, cell cycle, and apoptosis. Among the FoxO isoforms, FoxO1 in osteoblasts uses a previously unrecognized mechanism to preserve redox balance by promoting protein synthesis and subsequently inhibiting cell cycle arrest. This evidence indicates that FoxO1 integrates and orchestrates responses to different stress signals to maintain bone cell function and preserve skeletal homeostasis.

Keywords

FoxOs Oxidative stress Skeleton Osteoblasts Osteoclasts Proliferation Survival Aging 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Bishop NA, Lu T, Yankner BA. Neural mechanisms of ageing and cognitive decline. Nature. 2010;464(7288):529–35.PubMedCrossRefGoogle Scholar
  2. 2.
    Yankner BA, Lu T, Loerch P. The aging brain. Annu Rev Pathol. 2008;3:41–66.PubMedCrossRefGoogle Scholar
  3. 3.
    Finkel T. Radical medicine: treating ageing to cure disease. Nat Rev Mol Cell Biol. 2005;6(12):971–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Haigis MC, Yankner BA. The aging stress response. Mol Cell. 2010;40(2):333–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Wanagat J, Dai DF, Rabinovitch P. Mitochondrial oxidative stress and mammalian healthspan. Mech Ageing Dev. 2010;131(7–8):527–35.PubMedCrossRefGoogle Scholar
  6. 6.
    Uranga RM, Bruce-Keller AJ, Morrison CD, Fernandez-Kim SO, Ebenezer PJ, Zhang L, et al. Intersection between metabolic dysfunction, high fat diet consumption, and brain aging. J Neurochem. 2010;114(2):344–61.PubMedGoogle Scholar
  7. 7.
    Dai DF, Rabinovitch PS. Cardiac aging in mice and humans: the role of mitochondrial oxidative stress. Trends Cardiovasc Med. 2009;19(7):213–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol. 2005;25(1):29–38.PubMedGoogle Scholar
  9. 9.
    Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):59–62.PubMedCrossRefGoogle Scholar
  10. 10.
    Mlakar SJ, Osredkar J, Prezelj J, Marc J. The antioxidant enzyme GPX1 gene polymorphisms are associated with low BMD and increased bone turnover markers. Dis Markers. 2010;29(2):71–80.PubMedGoogle Scholar
  11. 11.
    Baek KH, Oh KW, Lee WY, Lee SS, Kim MK, Kwon HS, et al. Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int. 2010;87(3):226–35.PubMedCrossRefGoogle Scholar
  12. 12.
    Mackinnon ES, Rao AV, Josse RG, Rao LG. Supplementation with the antioxidant lycopene significantly decreases oxidative stress parameters and the bone resorption marker N-telopeptide of type I collagen in postmenopausal women. Osteoporos Int. 2010;22(4):1091–101.Google Scholar
  13. 13.
    Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell. 2005;120(4):449–60.PubMedCrossRefGoogle Scholar
  14. 14.
    Quarrie JK, Riabowol KT. Murine models of life span extension. Sci Aging Knowledge Environ. 2004;2004(31):re5.PubMedCrossRefGoogle Scholar
  15. 15.
    Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–47.PubMedCrossRefGoogle Scholar
  16. 16.
    Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature. 1999;402(6759):309–13.PubMedCrossRefGoogle Scholar
  17. 17.
    Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA. 2004;101(45):15998–6003.PubMedCrossRefGoogle Scholar
  18. 18.
    Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001;410(6825):227–30.PubMedCrossRefGoogle Scholar
  19. 19.
    Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305(5682):390–2.PubMedCrossRefGoogle Scholar
  20. 20.
    Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–42.PubMedCrossRefGoogle Scholar
  21. 21.
    • Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, et al. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem. 2007;282 37:27285–97. This study shows that progressive, age-related bone loss correlates with increased oxidative stress in osteoblasts or osteoclasts.PubMedCrossRefGoogle Scholar
  22. 22.
    Ristow M, Zarse K. How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol. 2010;45(6):410–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Kenyon CJ. The genetics of ageing. Nature. 2010;464(7288):504–12.PubMedCrossRefGoogle Scholar
  24. 24.
    Salih DA, Brunet A. FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol. 2008;20(2):126–36.PubMedCrossRefGoogle Scholar
  25. 25.
    de Keizer PL, Burgering BM, Dansen TB. Forkhead box o as a sensor, mediator, and regulator of redox signaling. Antioxid Redox Signal. 2011;14(6):1093–106.PubMedCrossRefGoogle Scholar
  26. 26.
    Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004;117(4):421–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Riggs BL, Melton III LJ, Robb RA, Camp JJ, Atkinson EJ, Oberg AL, et al. Population-based analysis of the relationship of whole bone strength indices and fall-related loads to age- and sex-specific patterns of hip and wrist fractures. J Bone Miner Res. 2006;21(2):315–23.PubMedCrossRefGoogle Scholar
  28. 28.
    Bouxsein ML, Melton III LJ, Riggs BL, Muller J, Atkinson EJ, Oberg AL, et al. Age- and sex-specific differences in the factor of risk for vertebral fracture: a population-based study using QCT. J Bone MinerRes. 2006;21(9):1475–82.CrossRefGoogle Scholar
  29. 29.
    Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest. 1990;85(3):632–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Levasseur R, Barrios R, Elefteriou F, Glass DA, Lieberman MW, Karsenty G. Reversible skeletal abnormalities in gamma-glutamyl transpeptidase-deficient mice. Endocrinology. 2003;144(7):2761–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, et al. Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem. 2005;280(17):17497–506.Google Scholar
  32. 32.
    Lean JM, Jagger CJ, Kirstein B, Fuller K, Chambers TJ. Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation. Endocrinology. 2005;146(2):728–35.PubMedCrossRefGoogle Scholar
  33. 33.
    Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, et al. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun. 2004;314(1):197–207.PubMedCrossRefGoogle Scholar
  34. 34.
    Basu S, Michaelsson K, Olofsson H, Johansson S, Melhus H. Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun. 2001;288(1):275–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, et al. p53 mutant mice that display early ageing-associated phenotypes. Nature. 2002;415(6867):45–53.PubMedCrossRefGoogle Scholar
  36. 36.
    De Boer J, Andressoo JO, de Wit J, Huijmans J, Beems RB, van Steeg H, et al. Premature aging in mice deficient in DNA repair and transcription. Science. 2002;296(5571):1276–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Smietana MJ, Arruda EM, Faulkner JA, Brooks SV, Larkin LM. Reactive oxygen species on bone mineral density and mechanics in Cu, Zn superoxide dismutase (Sod1) knockout mice. Biochem Biophys Res Commun. 2010;403(1):149–53.PubMedCrossRefGoogle Scholar
  38. 38.
    Almeida M, Ambrogini E, Han L, Manolagas SC, Jilka RL. Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem. 2009;284(40):27438–48.PubMedCrossRefGoogle Scholar
  39. 39.
    Klein BY, Rojansky N, Ben-Yehuda A, Bou-Atta I, Abedat S, Friedman G. Cell death in cultured human Saos2 osteoblasts exposed to low-density lipoprotein. J Cell Biochem. 2003;90(1):42–58.PubMedCrossRefGoogle Scholar
  40. 40.
    Huang MS, Morony S, Lu J, Zhang Z, Bezouglaia O, Tseng W, et al. Atherogenic phospholipids attenuate osteogenic signaling by BMP-2 and parathyroid hormone in osteoblasts. J Biol Chem. 2007;282(29):21237–43.PubMedCrossRefGoogle Scholar
  41. 41.
    Lean JM, Davies JT, Fuller K, Jagger CJ, Kirstein B, Partington GA, et al. A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Invest. 2003;112(6):915–23.PubMedGoogle Scholar
  42. 42.
    Almeida M, Han L, Ambrogini E, Bartell SM, Manolagas SC. Oxidative stress stimulates apoptosis and activates NF-kappaB in osteoblastic cells via a PKCbeta/p66shc signaling cascade: counter regulation by estrogens or androgens. Mol Endocrinol. 2010;24(10):2030–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005;24(50):7410–25.PubMedCrossRefGoogle Scholar
  44. 44.
    Arden KC. Multiple roles of FOXO transcription factors in mammalian cells point to multiple roles in cancer. Exp Gerontol. 2006;41(8):709–17.PubMedCrossRefGoogle Scholar
  45. 45.
    Murakami S. Stress resistance in long-lived mouse models. Exp Gerontol. 2006;41(10):1014–9.PubMedCrossRefGoogle Scholar
  46. 46.
    • Rached MT, Kode A, Xu L, Yoshikawa Y, Paik JH, DePinho RA, et al. FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab. 2010;11 2:147–60. This study demonstrates in vivo that among the three FoxO isoforms, FoxO1 is the one required for redox balance, protein synthesis, and normal osteoblast function.PubMedCrossRefGoogle Scholar
  47. 47.
    Rached MT, Kode A, Silva BC, Jung DY, Gray S, Ong H, et al. FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J Clin Invest. 2010;120(1):357–68.PubMedCrossRefGoogle Scholar
  48. 48.
    Nakae J, Kitamura T, Kitamura Y, Biggs III WH, Arden KC, Accili D. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell. 2003;4(1):119–29.PubMedCrossRefGoogle Scholar
  49. 49.
    Hribal ML, Nakae J, Kitamura T, Shutter JR, Accili D. Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. J Cell Biol. 2003;162(4):535–41.PubMedCrossRefGoogle Scholar
  50. 50.
    Kitamura T, Nakae J, Kitamura Y, Kido Y, Biggs III WH, Wright CV, et al. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest. 2002;110(12):1839–47.PubMedGoogle Scholar
  51. 51.
    Leenders H, Whiffield S, Benoist C, Mathis D. Role of the forkhead transcription family member, FKHR, in thymocyte differentiation. Eur J Immunol. 2000;30(10):2980–90.PubMedCrossRefGoogle Scholar
  52. 52.
    Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117(3):399–412.PubMedCrossRefGoogle Scholar
  53. 53.
    Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004;14(3):395–403.PubMedCrossRefGoogle Scholar
  54. 54.
    Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell. 2007;128(2):309–23.PubMedCrossRefGoogle Scholar
  55. 55.
    Liu JW, Chandra D, Rudd MD, Butler AP, Pallotta V, Brown D, et al. Induction of prosurvival molecules by apoptotic stimuli: involvement of FOXO3a and ROS. Oncogene. 2005;24(12):2020–31.PubMedCrossRefGoogle Scholar
  56. 56.
    Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell. 2006;125(5):987–1001.PubMedCrossRefGoogle Scholar
  57. 57.
    Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, et al. Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem. 2005;280(45):38029–34.PubMedCrossRefGoogle Scholar
  58. 58.
    van der Heide LP, Smidt MP. Regulation of FoxO activity by CBP/p300-mediated acetylation. Trends Biochem Sci. 2005;30(2):81–6.PubMedCrossRefGoogle Scholar
  59. 59.
    • Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell. 2007;128 2:325–39. This study shows that FoxOs mediate hematopoietic stem cell resistance to physiologic levels of oxidative stress.PubMedCrossRefGoogle Scholar
  60. 60.
    Martin FM, Friedman JS. Ticking fast or ticking slow, through Shc must you go? Sci Aging Knowledge Environ. 2004;2004(32):e32.CrossRefGoogle Scholar
  61. 61.
    Trinei M, Giorgio M, Cicalese A, Barozzi S, Ventura A, Migliaccio E, et al. A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene. 2002;21(24):3872–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Nemoto S, Finkel T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science. 2002;295(5564):2450–2.PubMedCrossRefGoogle Scholar
  63. 63.
    Satyanarayana A, Rudolph KL. p16 and ARF: activation of teenage proteins in old age. J Clin Invest. 2004;114(9):1237–40.PubMedGoogle Scholar
  64. 64.
    Ambrogini E, Almeida M, Martin-Millan M, Paik JH, DePinho RA, Han L, et al. FoxO-mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell Metab. 2010;11(2):136–46.PubMedCrossRefGoogle Scholar
  65. 65.
    Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11(3):619–33.PubMedCrossRefGoogle Scholar
  66. 66.
    Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell. 2004;117(3):387–98.PubMedCrossRefGoogle Scholar
  67. 67.
    Calabrese EJ. Hormesis: from marginalization to mainstream: a case for hormesis as the default dose-response model in risk assessment. Toxicol Appl Pharmacol. 2004;197(2):125–36.PubMedCrossRefGoogle Scholar
  68. 68.
    Mattson MP, Duan W, Chan SL, Cheng A, Haughey N, Gary DS, et al. Neuroprotective and neurorestorative signal transduction mechanisms in brain aging: modification by genes, diet and behavior. Neurobiol Aging. 2002;23(5):695–705.PubMedCrossRefGoogle Scholar
  69. 69.
    Sinclair DA. Yeast aging research: recent advances and medical relevance. Cell Mol Life Sci. 1999;56(9–10):807–16.PubMedCrossRefGoogle Scholar
  70. 70.
    Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature. 2003;423(6936):181–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Turturro A, Hass BS, Hart RW. Does caloric restriction induce hormesis? Hum Exp Toxicol. 2000;19(6):320–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Jiang JC, Jaruga E, Repnevskaya MV, Jazwinski SM. An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J. 2000;14(14):2135–7.PubMedGoogle Scholar
  73. 73.
    Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000;289(5487):2126–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Medicine, Division of Endocrinology, College of Physicians & SurgeonsColumbia UniversityNew YorkUSA
  2. 2.The Russ Berrie Medical Sciences PavilionNew YorkUSA

Personalised recommendations