Skip to main content

Advertisement

Log in

Number Crunching: How and When Will Numerical Models Be Used in the Clinical Setting?

  • INVITED COMMENTARY
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kanis JA, Oden A, Johansson H, et al.: FRAX and its applications to clinical practice. Bone 2009, 44: 734–743.

    Article  PubMed  Google Scholar 

  2. Viceconti M, Olsen S, Nolte LP, et al.: Extracting clinically relevant data from finite element simulations. Clinical Biomechanics 2005, 20: 451–454.

    Article  PubMed  Google Scholar 

  3. Snyder SM, Schneider E: Estimation of mechanical properties of cortical bone by computed tomography. Journal of Orthopaedic Research 1991, 9: 422–431.

    Article  CAS  PubMed  Google Scholar 

  4. Rho JY, Hobatho MC, Ashman, RB: Relations of mechanical properties to density and CT numbers in human bone. Medical Engineering & Physics 1995, 17: 347–355.

    Article  CAS  Google Scholar 

  5. Lotz JC, Gerhart TN, Hayes WC: Mechanical properties of trabecular bone from the proximal femur: A quantitative CT study. Journal of Computer Assisted Tomography 1990, 14: 107–114.

    Article  CAS  PubMed  Google Scholar 

  6. Troy KL, Grabiner MD: Off-axis loads cause failure of the distal radius at lower magnitudes than axial loads: A finite element analysis. Journal of Biomechanics 2007, 40: 1670–1675.

    Article  PubMed  Google Scholar 

  7. Keyak JH, Rossi SA, Jones KA, et al.: Prediction of femoral fracture load using automated finite element modeling. Journal of Biomechanics 1998, 31: 125–133.

    Article  CAS  PubMed  Google Scholar 

  8. Crawford RP, Cann CE, Keaveny TM: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 2003, 33: 744–750.

    Article  PubMed  Google Scholar 

  9. Cody DD, Gross GJ, Hou FJ, et al.: Femoral strength is better predicted by finite element models than QCT and DXA. Journal of Biomechanics 1999, 32: 1013–1020.

    Article  CAS  PubMed  Google Scholar 

  10. Keaveny TM, Hoffmann PF, Singh M, et al.: Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. Journal of Bone and Mineral Research 2008, 23: 1974–1982.

    Article  CAS  PubMed  Google Scholar 

  11. Keyak JH, Rossi SA: Prediction of femoral fracture load using finite element models: An examination of stress- and strain-based failure theories. Journal of Biomechanics 2000, 33: 209–214.

    Article  CAS  PubMed  Google Scholar 

  12. Homminga J, Mccreadie BR, Weinans H, et al.: The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric. Journal of Biomechanics 2003, 36: 1461–1467.

    Article  PubMed  Google Scholar 

  13. Tabor Z, Rokita E: Quantifying anisotropy of trabecular bone from gray-level images. Bone 2007, 40: 966–972.

    Article  PubMed  Google Scholar 

  14. Nalla RK, Kinney JH, Ritchie RO: Mechanistic fracture criteria for the failure of human cortical bone. Nature Materials 2003, 2: 164–168.

    Article  CAS  PubMed  Google Scholar 

  15. Fenech CM, Keaveny TM: A cellular solid criterion for predicting the axial-shear failure properties of bovine trabecular bone. Journal of Biomechanical Engineering 1999, 121: 414–422.

    Article  CAS  PubMed  Google Scholar 

  16. Edwards WB, Taylor D, Rudolphi TJ, et al.: Effects of stride length and running mileage on a probabilistic stress fracture model. Medicine and Science in Sports and Exercise 2009, 41: 2177–2184.

    Article  PubMed  Google Scholar 

  17. Laz PJ, Stowe JQ, Baldwin MA, et al.: Incorporating uncertainty in mechanical properties for finite element-based evaluation of bone mechanics. Journal of Biomechanics 2007, 40: 2831–2836.

    Article  PubMed  Google Scholar 

  18. Huiskes R, Weinans H, Grootenboer HJ, et al.: Adaptive bone-remodeling theory applied to prosthetic-design analysis. Journal of Biomechanics 1987, 20: 1135–1150.

    Article  CAS  PubMed  Google Scholar 

  19. Hazelwood SJ, Castillo AB: Simulated effects of marathon training on bone density, remodeling, and microdamage accumulation of the femur. International Journal of Fatigue 2007, 29: 1057–1064.

    Article  CAS  Google Scholar 

  20. Henninger HB, Reese SP, Anderson AE, et al.: Validation of computational models in biomechanics. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine 2009, 224: 801–812.

    Article  Google Scholar 

Download references

Conflicts of interest

W.B. Edwards: has received grant support from the Department of Defense (SC090010); K.L. Troy: is a consultant for Biomedical Forensics; has received grant support from National Institute on Disability and Rehabilitation Research (H133E070029) and the Department of Defense (SC090010); has received honoraria for an invited lecture from Rush University Medical Center and for an invited workshop from Dartmouth Medical School; and has received a travel award from the International Bone and Mineral Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen L. Troy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, W.B., Troy, K.L. Number Crunching: How and When Will Numerical Models Be Used in the Clinical Setting?. Curr Osteoporos Rep 9, 1–3 (2011). https://doi.org/10.1007/s11914-010-0038-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-010-0038-8

Keywords

Navigation