Skip to main content

Advertisement

Log in

HIV and Bone Loss

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

The use of antiretroviral therapy has significantly reduced the number of deaths due to HIV/AIDS. However, no current therapy can suppress the virus completely, and as the HIV-infected population continues to live longer new complications are emerging from the persistence of the virus and use of antiretroviral therapy. This review summarizes the clinical evidence linking HIV-associated osteoporosis to direct infection and antiretroviral therapy (ART) use. The purported molecular mechanisms involved in bone loss are also reviewed. Additionally, recommendations regarding the pharmacologic management of HIV/ART-related osteoporosis are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, ••Of major importance

  1. NIH Osteoporosis and Related Bone Diseases National Resource Center: Osteoporosis. Available at http://www.niams.nih.gov/Health_Info/Bone/Osteoporosis/default.asp#c. Accessed August 2010.

  2. UNAIDS: North America, Western and Central Europe. AIDS epidemic update Regional Summary. Available at http://data.unaids.org/pub/Report/2008/jc1532_epibriefs_namerica_europe_en.pdf. Accessed March 20, 2010.

  3. Cazanave C, Dupon M, Lavignolle-Aurillac V, et al.: Reduced bone mineral density in HIV-infected patients: prevalence and associated factors. AIDS 2008, 22:395–402.

    Article  PubMed  Google Scholar 

  4. Arnsten JH, Freeman R, Howard AA, et al.: Decreased bone mineral density and increased fracture risk in aging men with or at risk for HIV infection. AIDS 2007, 21:617–623.

    Article  PubMed  Google Scholar 

  5. Dolan SE, Kanter JR, Grinspoon S: Longitudinal analysis of bone density in human immunodeficiency virus-infected women. J Clin Endocrinol Metab 2006, 91:2938–2945.

    Article  CAS  PubMed  Google Scholar 

  6. Brown TT, Ruppe MD, Kassner R, et al.: Reduced bone mineral density in human immunodeficiency virus-infected patients and its association with increased central adiposity and postload hyperglycemia. J Clin Endocrinol Metab 2004, 89:1200–1206.

    Article  CAS  PubMed  Google Scholar 

  7. Brown TT, Qaqish RB: Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS 2006, 20:2165–2174.

    Article  PubMed  Google Scholar 

  8. Martin JL, Brown CE, Matthews-Davis N, Reardon JE: Effects of antiviral nucleoside analogs on human DNA polymerases and mitochondrial DNA synthesis. Antimicrob Agents Chemother 1994, 38:2743–2749.

    CAS  PubMed  Google Scholar 

  9. Lewis W, Dalakas MC: Mitochondrial toxicity of antiviral drugs. Nat Med 1995, 1:417–422.

    Article  CAS  PubMed  Google Scholar 

  10. Moyle GJ, Datta D, Mandalia S, et al.: Hyperlactataemia and lactic acidosis during antiretroviral therapy: relevance, reproducibility and possible risk factors. AIDS 2002, 16:1341–1349.

    Article  PubMed  Google Scholar 

  11. Carr A, Miller J, Eisman JA, Cooper DA: Osteopenia in HIV-infected men: association with asymptomatic lactic acidemia and lower weight pre-antiretroviral therapy. AIDS 2001, 15:703–709.

    Article  CAS  PubMed  Google Scholar 

  12. Pan G, Wu X, McKenna MA, et al.: AZT enhances osteoclastogenesis and bone loss. AIDS Res Hum Retroviruses 2004, 20:608–620.

    Article  CAS  PubMed  Google Scholar 

  13. Gupta SK, Eustace JA, Winston JA, et al.: Guidelines for the management of chronic kidney disease in HIV-infected patients: recommendations of the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis 2005, 40:1559–1585.

    Article  PubMed  Google Scholar 

  14. Labarga P, Barreiro P, Martin-Carbonero L, et al.: Kidney tubular abnormalities in the absence of impaired glomerular function in HIV patients treated with tenofovir. AIDS 2009, 23:689–696.

    Article  CAS  PubMed  Google Scholar 

  15. Holick MF: Resurrection of vitamin D deficiency and rickets. J Clin Invest 2006, 116:2062–2072.

    Article  CAS  PubMed  Google Scholar 

  16. Brim NM, Cu-Uvin S, Hu SL, O’Bell JW: Bone disease and pathologic fractures in a patient with tenofovir-induced Fanconi syndrome. AIDS Read 2007, 17:322–328.

    PubMed  Google Scholar 

  17. Jones S, Restrepo D, Kasowitz A, et al.: Risk factors for decreased bone density and effects of HIV on bone in the elderly. Osteoporos Int 2008, 19:913–918.

    Article  CAS  PubMed  Google Scholar 

  18. Guillemi S, Ng F, Zhang W, et al.: Risk factors for reduced bone mineral density in HIV-infected individuals in the modern HAART era [abstract poster #969]. Presented at the Proceedings of the 15th Conference on Retroviruses and Opportunistic Infections. Boston, MA; February 3–6, 2008.

  19. Buchacz K, Brooks JT, Tong T, et al.: Evaluation of hypophosphataemia in tenofovir disoproxil fumarate (TDF)-exposed and TDF-unexposed HIV infected out-patients receiving highly active antiretroviral therapy. HIV Med 2006, 7:451–456.

    Article  CAS  PubMed  Google Scholar 

  20. Schooley RT, Ruane P, Myers RA, et al.: Tenofovir DF in antiretroviral-experienced patients: results from a 48-week, randomized, double-blind study. AIDS 2002, 16:1257–1263.

    Article  CAS  PubMed  Google Scholar 

  21. Squires K, Pozniak AL, Pierone G Jr, et al.: Tenofovir disoproxil fumarate in nucleoside- resistant HIV-1 infection: a randomized trial. Ann Intern Med 2003, 139:313–320.

    CAS  PubMed  Google Scholar 

  22. Gallant JE, Staszewski S, Pozniak AL, et al.: Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. JAMA 2004, 292:191–201.

    Article  CAS  PubMed  Google Scholar 

  23. Izzedine H, Isnard-Bagnis C, Hulot JS, et al.: Renal safety of tenofovir in HIV treatment experienced patients. AIDS 2004, 18:1074–1076.

    Article  CAS  PubMed  Google Scholar 

  24. Mouly S, Lown KS, Kornhauser D, et al.: Hepatic but not intestinal CYP3A4 displays dose-dependent induction by efavirenz in humans. Clin Pharmacol Ther 2002, 72:1–9.

    Article  CAS  PubMed  Google Scholar 

  25. Brown TT, McComsey GA: Association between initiation of antiretroviral therapy with efavirenz and decreases in 25-hydroxyvitamin D. Antivir Ther 2010, 15:425–429.

    Article  CAS  PubMed  Google Scholar 

  26. McComsey G, Kitch D, Daar E, et al.: Bone and limb fat outcomes of ACTG A5224s, a substudy of ACTG A5202: a prospective, randomized, partially blinded phase III trial of ABC/3TC or TDF/FTC with EFV or ATV/r for initial treatment of HIV-1 infection [abstract 106LB]. Presented at the Proceedings of the 17th Conference on Retroviruses and Opportunistic Infections. San Francisco; February 16–19, 2010. http://www.natap.org/2010/CROI/croi_20.htm.

  27. Von Moltke LL, Greenblatt DJ, Grassi JM, et al.: Protease inhibitors as inhibitors of human cytochromes P450: high risk associated with ritonavir. J Clin Pharmacol 1998, 38:106–111.

    Google Scholar 

  28. Zaidi M: Skeletal remodeling in health and disease. Nat Med 2007, 13:791–801.

    Article  CAS  PubMed  Google Scholar 

  29. Modarresi R, Xiang Z, Yin M, Laurence J: WNT/beta-catenin signaling is involved in regulation of osteoclast differentiation by human immunodeficiency virus protease inhibitor ritonavir: relationship to human immunodeficiency virus-linked bone mineral loss. Am J Pathol 2009, 174:123–135.

    Article  CAS  PubMed  Google Scholar 

  30. Jain RG, Lenhard JM: Select HIV protease inhibitors alter bone and fat metabolism ex vivo. J Biol Chem 2002, 277:19247–19250.

    Article  CAS  PubMed  Google Scholar 

  31. Schroeder TM, Jensen ED, Westendorf JJ: Runx2: a master organizer of gene transcription in developing and maturing osteoblasts. Birth Defects Res C Embryo Today 2005, 75:213–225.

    Article  CAS  PubMed  Google Scholar 

  32. Cotter EJ, Mallon PW, Doran PP: Is PPARgamma a prospective player in HIV-1-associated bone disease? PPAR Res 2009, 2009:421376.

    PubMed  Google Scholar 

  33. Cotter EJ, Ip HS, Powderly WG, Doran PP: Mechanism of HIV protein induced modulation of mesenchymal stem cell osteogenic differentiation. BMC Musculoskelet Disord 2008, 9:33.

    Article  PubMed  Google Scholar 

  34. Luo Q, Kang Q, Si W, et al.: Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. J Biol Chem 2004, 279:55958–55968.

    Article  CAS  PubMed  Google Scholar 

  35. Nacher M, Serrano S, González A, et al.: Osteoblasts in HIV-infected patients: HIV-1 infection and cell function. AIDS 2001, 15:2239–2243.

    Article  CAS  PubMed  Google Scholar 

  36. Wang L, Mondal D, La Russa VF, Agrawal KC: Suppression of clonogenic potential of human bone marrow mesenchymal stem cells by HIV type 1: putative role of HIV type 1 tat protein and inflammatory cytokines. AIDS Res Hum Retroviruses 2002, 18:917–931.

    Article  CAS  PubMed  Google Scholar 

  37. Gibellini D, De Crignis E, Ponti C, et al.: HIV-1 triggers apoptosis in primary osteoblasts and HOBIT cells through TNFalpha activation. J Med Virol 2008, 80:1507–1514.

    Article  CAS  PubMed  Google Scholar 

  38. Wang MW, Wei S, Faccio R, et al.: The HIV protease inhibitor ritonavir blocks osteoclastogenesis and function by impairing RANKL-induced signaling. J Clin Invest 2004, 114:206–213.

    CAS  PubMed  Google Scholar 

  39. • Duvivier C, Kolta S, Assoumou L, et al.: Greater decrease in bone mineral density with protease inhibitor regimens compared with nonnucleoside reverse transcriptase inhibitor regimens in HIV-1 infected naive patients. AIDS 2009, 23:817–824. This is a clinical study demonstrating that after 1 year, the decrease in lumbar spine BMD is more pronounced in patients on a PI compared to regimens with only NNRTIs and NRTIs.

    Article  PubMed  Google Scholar 

  40. Fakruddin JM, Laurence J: HIV envelope gp120-mediated regulation of osteoclastogenesis via receptor activator of nuclear factor kappa B ligand (RANKL) secretion and its modulation by certain HIV protease inhibitors through interferon-gamma/RANKL cross-talk. J Biol Chem 2003, 278:48251–48258.

    Article  CAS  PubMed  Google Scholar 

  41. Gruber MF, Weih KA, Boone EJ, et al.: Endogenous macrophage CSF production is associated with viral replication in HIV-1-infected human monocyte-derived macrophages. J Immunol 1995, 154:5528–5535.

    CAS  PubMed  Google Scholar 

  42. Haine V, Fischer-Smith T, Rappaport J: Macrophage colony-stimulating factor in the pathogenesis of HIV infection: potential target for therapeutical intervention. J Neuroimmune Pharmacol 2006, 1:32–40.

    Article  PubMed  Google Scholar 

  43. Yamada N, Tsujimura T, Ueda H, et al.: Down-regulation of osteoprotegerin production in bone marrow macrophages by macrophage colony-stimulating factor. Cytokine 2005, 31:288–297.

    Article  CAS  PubMed  Google Scholar 

  44. •• Triant VA, Brown TT, Lee H, Grinspoon SK: Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab 2008, 93:3499–3504. This is a clinical study demonstrating fracture risk in HIV-infected individuals. This study finds that HIV-infected females have a higher prevalence of vertebral and wrist, but not hip, fractures, whereas HIV-infected males have an increased prevalence of vertebral, hip fractures, and wrist fractures.

    Article  CAS  PubMed  Google Scholar 

  45. Prior J, Burdge D, Maan E, et al.: Fragility fractures and bone mineral density in HIV positive women: a case-control population-based study. Osteoporos Int 2007, 18:1345–1353.

    Article  CAS  PubMed  Google Scholar 

  46. Borderi M, Gibellini D, Vescini F, et al.: Metabolic bone disease in HIV infection. AIDS 2009, 23:1297–1310.

    Article  PubMed  Google Scholar 

  47. U.S. Preventive Services Task Force: Screening for osteoporosis in postmenopausal women: recommendations and rationale. Ann Intern Med 2002, 137:526–528.

    Google Scholar 

  48. National Osteoporosis Foundation: The Clinician's Guide to Prevention and Treatment of Osteoporosis. Available at http://www.nof.org/professionals/pdfs/NOF_ClinicianGuide2009_v7.pdf. Accessed August 2010.

  49. The International Society for Clinical Densitometry: Official Positions. Available at http://www.iscd.org/Visitors/positions/OfficialPositionsText.cfm. Accessed August 2010.

  50. • McComsey GA, Lo Re V 3 rd, O'Riordan M, et al.: Effect of reducing the dose of stavudine on body composition, bone density, and markers of mitochondrial toxicity in HIV-infected subjects: a randomized, controlled study. Clin Infect Dis 2008, 46:1290–1296. This is a clinical study demonstrating that the significant loss of BMD seen in patients on standard-dose stavudine can be prevented by switching to a lower dose.

  51. • Bolland MJ, Grey AB, Horne AM, et al.: Annual zoledronate increases bone density in highly active antiretroviral therapy-treated human immunodeficiency virus-infected men: a randomized controlled trial. J Clin Endocrinol Metab 2007, 92:1283–1288. This is a clinical study demonstrating that annual administration of zoledronate can prevent HIV-associated bone loss in men.

    Article  CAS  PubMed  Google Scholar 

  52. Grey A, Bolland MJ, Wattie D, et al.: The antiresorptive effects of a single dose of zoledronate persist for two years: a randomized, placebo-controlled trial in osteopenic postmenopausal women. J Clin Endocrinol Metab 2009, 94:538–544.

    Article  CAS  PubMed  Google Scholar 

  53. Silver DS: Denosumab reduces the incidence of new vertebral fractures in men with prostate cancer. Curr Osteoporos Rep 2010, 8:1–3.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Shitij Arora would like to thank Yousif Barzani (Medical Student, Wyckoff Heights Medical Center) for developing the figures and editing the manuscript.

Drs. Mone Zaidi and Li Sun acknowledge the National Institutes of Health for support (AG 23176, DK70526, and DK80459). Drs. Manasi Agrawal and Jameel Iqbal acknowledge prior support from the American Federation for Aging Research.

Disclosure

Dr. Zaidi consults for Genentech, Amgen, and Warner Chilcott. Dr. Zaidi is also a named inventor of a pending patent application related to osteoclastic bone resorption filed by the Mount Sinai School of Medicine (MSSM). In the event the pending or issued patent is licensed, he would be entitled to a share of any proceeds MSSM receives from the licensee. No other potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jameel Iqbal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, S., Agrawal, M., Sun, L. et al. HIV and Bone Loss. Curr Osteoporos Rep 8, 219–226 (2010). https://doi.org/10.1007/s11914-010-0036-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-010-0036-x

Keywords

Navigation