Early life factors in the pathogenesis of osteoporosis

  • Chivon Winsloe
  • Susie Earl
  • Elaine M. Dennison
  • Cyrus Cooper
  • Nicholas C. HarveyEmail author


Osteoporosis is a major public health burden through associated fragility fractures. Bone mass, a composite of bone size and volumetric density, increases through early life and childhood to a peak in early adulthood. The peak bone mass attained is a strong predictor of future risk of osteoporosis. Evidence is accruing that environmental factors in utero and in early infancy may permanently modify the postnatal pattern of skeletal growth to peak and thus influence risk of osteoporosis in later life. This article describes the latest data in this exciting area of research, including novel epigenetic and translation work, which should help to elucidate the underlying mechanisms and give rise to potential public health interventions to reduce the burden of osteoporotic fracture in future generations.


Bone Mineral Content Maternal Vitamin Early Life Factor Prenatal Ethanol Exposure Hertfordshire Cohort Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Recommended Reading

  1. 1.
    Oliver H, Jameson KA, Sayer AA, et al.: Growth in early life predicts bone strength in late adulthood: the Hertfordshire Cohort Study. Bone 2007, 41:400–405.CrossRefPubMedGoogle Scholar
  2. 2.
    Javaid MK, Lekamwasam S, Clark J, et al.: Infant growth influences proximal femoral geometry in adulthood. J Bone Miner Res 2006, 21:508–512.CrossRefPubMedGoogle Scholar
  3. 3.
    Javaid MK, Crozier SR, Harvey NC, et al.: Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet 2006, 367:36–43.CrossRefPubMedGoogle Scholar
  4. 4.
    Harvey NC, Javaid MK, Poole JR, et al.: Paternal skeletal size predicts intrauterine bone mineral accrual. J Clin Endocrinol Metab 2008, 93:1676–1681.CrossRefPubMedGoogle Scholar
  5. 5.
    Sayers A, Tobias JH: Estimated maternal ultraviolet B exposure levels in pregnancy influence skeletal development of the child. J Clin Endocrin Metab 2009, 94:765–771.CrossRefGoogle Scholar
  6. 6.
    Tobias JH, Steer CD, Emmett PM, et al.: Bone mass in childhood is related to maternal diet in pregnancy. Osteoporos Int 2005, 16:1731–1741.CrossRefPubMedGoogle Scholar
  7. 7.
    Cole Z, Gale C, Javaid M, et al.: Maternal dietary patterns during pregnancy and childhood bone mass: a longitudinal study. J Bone Miner Res 2009, 24:663–668.CrossRefPubMedGoogle Scholar
  8. 8.
    Martin R, Harvey NC, Crozier ST, et al.: Placental calcium transporter (PMCA3) gene expression predicts intrauterine bone mineral accrual. Bone 2007, 40:1203–1208.CrossRefPubMedGoogle Scholar
  9. 9.
    Gale CR, Robinson NC, Javaid MK, et al.: Maternal vitamin D status during pregnancy and child outcomes. Eur J Clin Nutr 2008, 62:68–77.CrossRefPubMedGoogle Scholar
  10. 10.
    Harvey NC, Poole JR, Javaid MK, et al.: Parental determinants of neonatal body composition. J Clin Endocrinol Metab 2007, 92:523–526.CrossRefPubMedGoogle Scholar
  11. 11.
    Mehta G, Roach HI, Langley-Evans S, et al.: Intrauterine exposure to a maternal low protein diet reduces adult bone mass and alters growth plate morphology in rats. Calcif Tissue Int 2002, 71:493–498.CrossRefPubMedGoogle Scholar
  12. 12.
    Oreffo RO, Lashbrooke B, Roach HI, et al.: Maternal protein deficiency affects mesenchymal stem cell activity in the developing offspring. Bone 2003, 33:100–107.CrossRefPubMedGoogle Scholar
  13. 13.
    Lanham SA, Roberts C, Cooper C, Oreffo RO: Intrauterine programming of bone. Part 1: Alteration of the osteogenic environment. Osteoporos Int 2008, 19:147–156.CrossRefPubMedGoogle Scholar
  14. 14.
    Lanham SA, Roberts C, Perry MJ, et al.: Intrauterine programming of bone. Part 2: Alteration of skeletal structure. Osteoporos Int 2008, 19:157–167.CrossRefPubMedGoogle Scholar
  15. 15.
    Fetoui H, Mahjoubi-Samet A, Guermazi F, Zeghal N: Maternal low-protein diet affects bone mass and mineral metabolism in suckling rats. J Anim Physiol Anim Nutr 2008, 92:448–455.CrossRefGoogle Scholar
  16. 16.
    Snow ME, Keiver K: Prenatal ethanol exposure disrupts the histological stages of fetal bone development. Bone 2007, 41:181–187.CrossRefPubMedGoogle Scholar
  17. 17.
    Harvey N, Dennison E, Cooper C: Early life determinants of osteoporotic fracture risk. Osteoporos Rev 2004, 12:1–4.Google Scholar
  18. 18.
    Reik W, Dean W, Walter J: Epigenetic reprogramming in mammalian development. Science 2001, 293:1089–1093.CrossRefPubMedGoogle Scholar
  19. 19.
    Gluckman PD, Hanson MA, Cooper C, Thornburg KL: Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 2008, 359:61–73.CrossRefPubMedGoogle Scholar
  20. 20.
    Lillycrop KA, Phillips ES, Torrens C, et al.: Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPARalpha promoter of the offspring. Br J Nutr 2008, 100:278–282.CrossRefPubMedGoogle Scholar
  21. 21.
    Lillycrop KA, Slater-Jefferies JL, Hanson MA, et al.: Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 2007, 97:1064–1073.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chivon Winsloe
  • Susie Earl
  • Elaine M. Dennison
  • Cyrus Cooper
  • Nicholas C. Harvey
    • 1
    Email author
  1. 1.Medical Research Council Epidemiology Resource CentreUniversity of Southampton, School of Medicine, Southampton General HospitalSouthamptonUK

Personalised recommendations