Vitamin D and immune function: Understanding common pathways



Vitamin D, acting through its active metabolite 1,25(OH)2D3, exerts its influence on many physiologic processes in addition to the regulation of calcium and phosphate homeostasis. These processes include the immune system. Both the adaptive and innate immune systems are affected by 1,25(OH)2D3 and its receptor, and the cells involved express not only the vitamin D receptor but also, in most cases, the enzyme CYP27B1, which produces 1,25(OH)2D3. Both the vitamin D receptor and CYP27B1 can be constitutive or induced by the ligands that activate the immune processes in these cells, providing feedback loops that help regulate the immune response. In general, 1,25(OH)2D3 suppresses most elements of the adaptive immune system while inducing most elements of the innate immune system. Thus 1,25(OH)2D3 may be protective against various autoimmune diseases and may limit graft rejection by suppressing adaptive immunity while enhancing the first line of defense against invading microorganisms via upregulation of innate immunity.

References and Recommended Reading

  1. 1.
    Chen S, Sims GP, Chen XX, et al.: Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol 2007, 179:1634–1647.PubMedGoogle Scholar
  2. 2.
    Sigmundsdottir H, Pan J, Debes GF, et al.: DCs metabolize sunlight-induced vitamin D3 to ‘program’ T cell attraction to the epidermal chemokine CCL27. Nat Immunol 2007, 8:285–293.PubMedCrossRefGoogle Scholar
  3. 3.
    Ren S, Nguyen L, Wu S, et al.: Alternative splicing of vitamin D-24-hydroxylase: a novel mechanism for the regulation of extrarenal 1,25-dihydroxyvitamin D synthesis. J Biol Chem 2005, 280:20604–20611.PubMedCrossRefGoogle Scholar
  4. 4.
    Vidal M, Ramana CV, Dusso AS: Stat1-vitamin D receptor interactions antagonize 1,25-dihydroxyvitamin D transcriptional activity and enhance stat1-mediated transcription. Mol Cell Biol 2002, 22:2777–2787.PubMedCrossRefGoogle Scholar
  5. 5.
    Bikle DD: Extrarenal synthesis of 1,25-dihydroxyvitamin D and its health implications. In Vitamin D: Physiology, Molecular Biology, and Clinical Applications, edn 2. Edited by Holick MFE. Totowa, NJ: Humana Press; 2009 (in press).Google Scholar
  6. 6.
    Lehmann B, Querings K, Reichrath J: Vitamin D and skin: new aspects for dermatology. Exp Dermatol 2004, 13(Suppl 4):11–15.PubMedCrossRefGoogle Scholar
  7. 7.
    Zasloff M: Sunlight, vitamin D, and the innate immune defenses of the human skin. J Invest Dermatol 2005, 125:xvi–xvii.PubMedCrossRefGoogle Scholar
  8. 8.
    Pryke AM, Duggan C, White CP, et al.: Tumor necrosis factor-alpha induces vitamin D-1-hydroxylase activity in normal human alveolar macrophages. J Cell Physiol 1990, 142:652–656.PubMedCrossRefGoogle Scholar
  9. 9.
    Gyetko MR, Hsu CH, Wilkinson CC, et al.: Monocyte 1 alpha-hydroxylase regulation: induction by inflammatory cytokines and suppression by dexamethasone and uremia toxin. J Leukoc Biol 1993, 54:17–22.PubMedGoogle Scholar
  10. 10.
    Stoffels K, Overbergh L, Giulietti A, et al.: Immune regulation of 25-hydroxyvitamin-D3-1alpha-hydroxylase in human monocytes. J Bone Miner Res 2006, 21:37–47.PubMedCrossRefGoogle Scholar
  11. 11.
    Bikle DD, Nemanic MK, Gee E, et al.: 1,25-Dihydroxyvitamin D3 production by human keratinocytes. Kinetics and regulation. J Clin Invest 1986, 78:557–566.PubMedCrossRefGoogle Scholar
  12. 12.
    Bikle DD, Pillai S, Gee E, et al.: Tumor necrosis factor-alpha regulation of 1,25-dihydroxyvitamin D production by human keratinocytes. Endocrinology 1991, 129:33–38.PubMedGoogle Scholar
  13. 13.
    Bikle DD, Pillai S, Gee E, et al.: Regulation of 1,25-dihydroxyvitamin D production in human keratinocytes by interferon-gamma. Endocrinology 1989, 124:655–660.PubMedCrossRefGoogle Scholar
  14. 14.
    Hansdottir S, Monick MM, Hinde SL, et al.: Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J Immunol 2008, 181:7090–7099.PubMedGoogle Scholar
  15. 15.
    van Etten E, Mathieu C: Immunoregulation by 1,25-dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol 2005, 97:93–101.PubMedCrossRefGoogle Scholar
  16. 16.
    Daniel C, Sartory NA, Zahn N, et al.: Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J Pharmacol Exp Ther 2008, 324:23–33.PubMedCrossRefGoogle Scholar
  17. 17.
    Gregori S, Casorati M, Amuchastegui S, et al.: Regulatory T cells induced by 1 alpha,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J Immunol 2001, 167:1945–1953.PubMedGoogle Scholar
  18. 18.
    Sakaguchi S, Yamaguchi T, Nomura T, et al.: Regulatory T cells and immune tolerance. Cell 2008, 133:775–787.PubMedCrossRefGoogle Scholar
  19. 19.
    Bouillon R, Carmeliet G, Verlinden L, et al.: Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 2008, 29:726–776.PubMedCrossRefGoogle Scholar
  20. 20.
    Adorini L, Penna G: Control of autoimmune diseases by the vitamin D endocrine system. Nat Clin Pract Rheumatol 2008, 4:404–412.PubMedCrossRefGoogle Scholar
  21. 21.
    Zaba LC, Cardinale I, Gilleaudeau P, et al.: Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med 2007, 204:3183–3194.PubMedCrossRefGoogle Scholar
  22. 22.
    O’Kelly J, Hisatake J, Hisatake Y, et al.: Normal myelopoiesis but abnormal T lymphocyte responses in vitamin D receptor knockout mice. J Clin Invest 2002, 109:1091–1099.PubMedGoogle Scholar
  23. 23.
    Mathieu C, Van Etten E, Gysemans C, et al.: In vitro and in vivo analysis of the immune system of vitamin D receptor knockout mice. J Bone Miner Res 2001, 16:2057–2065.PubMedCrossRefGoogle Scholar
  24. 24.
    Griffin MD, Lutz W, Phan VA, et al.: Dendritic cell modulation by 1alpha,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc Natl Acad Sci U S A 2001, 98:6800–6805.PubMedCrossRefGoogle Scholar
  25. 25.
    Baroni E, Biffi M, Benigni F, et al.: VDR-dependent regulation of mast cell maturation mediated by 1,25-dihydroxyvitamin D3. J Leukoc Biol 2007, 81:250–262.PubMedCrossRefGoogle Scholar
  26. 26.
    Froicu M, Weaver V, Wynn TA, et al.: A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases. Mol Endocrinol 2003, 17:2386–2392.PubMedCrossRefGoogle Scholar
  27. 27.
    Gysemans C, van Etten E, Overbergh L, et al.: Unaltered diabetes presentation in NOD mice lacking the vitamin D receptor. Diabetes 2008, 57:269–275.PubMedCrossRefGoogle Scholar
  28. 28.
    Topilski I, Flaishon L, Naveh Y, et al.: The anti-inflammatory effects of 1,25-dihydroxyvitamin D3 on Th2 cells in vivo are due in part to the control of integrin-mediated T lymphocyte homing. Eur J Immunol 2004, 34:1068–1076.PubMedCrossRefGoogle Scholar
  29. 29.
    Wittke A, Weaver V, Mahon BD, et al.: Vitamin D receptor-deficient mice fail to develop experimental allergic asthma. J Immunol 2004, 173:3432–3436.PubMedGoogle Scholar
  30. 30.
    Wittke A, Chang A, Froicu M, et al.: Vitamin D receptor expression by the lung micro-environment is required for maximal induction of lung inflammation. Arch Biochem Biophys 2007, 460:306–313.PubMedCrossRefGoogle Scholar
  31. 31.
    Adorini L: Intervention in autoimmunity: the potential of vitamin D receptor agonists. Cell Immunol 2005, 233:115–124.PubMedCrossRefGoogle Scholar
  32. 32.
    Ehrchen J, Helming L, Varga G, et al.: Vitamin D receptor signaling contributes to susceptibility to infection with Leishmania major. FASEB J 2007, 21:3208–3218.PubMedCrossRefGoogle Scholar
  33. 33.
    Rajapakse R, Mousli M, Pfaff AW, et al.: 1,25-Dihydroxyvitamin D3 induces splenocyte apoptosis and enhances BALB/c mice sensitivity to toxoplasmosis. J Steroid Biochem Mol Biol 2005, 96:179–185.PubMedCrossRefGoogle Scholar
  34. 34.
    Liu PT, Krutzik SR, Modlin RL: Therapeutic implications of the TLR and VDR partnership. Trends Mol Med 2007, 13:117–124.PubMedCrossRefGoogle Scholar
  35. 35.
    Schauber J, Gallo RL: The vitamin D pathway: a new target for control of the skin’s immune response? Exp Dermatol 2008, 17:633–639.PubMedCrossRefGoogle Scholar
  36. 36.
    Gombart AF, Borregaard N, Koeffler HP: Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly upregulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 2005, 19:1067–1077.PubMedCrossRefGoogle Scholar
  37. 37.
    Wang TT, Nestel FP, Bourdeau V, et al.: Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 2004, 173:2909–2912.PubMedGoogle Scholar
  38. 38.
    Schauber J, Dorschner RA, Coda AB, et al.: Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest 2007, 117:803–811.PubMedCrossRefGoogle Scholar
  39. 39.
    Liu PT, Stenger S, Li H, et al.: Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006, 311:1770–1773.PubMedCrossRefGoogle Scholar
  40. 40.
    Ong PY, Ohtake T, Brandt C, et al.: Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 2002, 347:1151–1160.PubMedCrossRefGoogle Scholar
  41. 41.
    Howell MD, Gallo RL, Boguniewicz M, et al.: Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity 2006, 24:341–348.PubMedCrossRefGoogle Scholar
  42. 42.
    Ustianowski A, Shaffer R, Collin S, et al.: Prevalence and associations of vitamin D deficiency in foreign-born persons with tuberculosis in London. J Infect 2005, 50:432–437.PubMedCrossRefGoogle Scholar
  43. 43.
    Rook GA, Steele J, Fraher L, et al.: Vitamin D3, gamma interferon, and control of proliferation of Mycobacterium tuberculosis by human monocytes. Immunology 1986, 57:159–163.PubMedGoogle Scholar
  44. 44.
    Liu PT, Stenger S, Tang DH, et al.: Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 2007, 179:2060–2063.PubMedGoogle Scholar
  45. 45.
    Sly LM, Lopez M, Nauseef WM, et al.: 1alpha,25-Dihydroxyvitamin D3-induced monocyte antimycobacterial activity is regulated by phosphatidylinositol 3-kinase and mediated by the NADPH-dependent phagocyte oxidase. J Biol Chem 2001, 276:35482–35493.PubMedCrossRefGoogle Scholar
  46. 46.
    Brightbill HD, Libraty DH, Krutzik SR, et al.: Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 1999, 285:732–736.PubMedCrossRefGoogle Scholar
  47. 47.
    Schauber J, Oda Y, Buchau AS, et al.: Histone acetylation in keratinocytes enables control of the expression of cathelicidin and CD14 by 1,25-dihydroxyvitamin D(3). J Invest Dermatol 2008, 128:816–824.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group, LLC 2009

Authors and Affiliations

  1. 1.Veterans Affairs Medical Center (111N)San FranciscoUSA

Personalised recommendations