Skip to main content

Advertisement

Log in

Blood–Brain Barrier Disruption for the Treatment of Primary Brain Tumors: Advances in the Past Half-Decade

  • REVIEW
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review relevant advances in the past half-decade in the treatment of primary brain tumors via modification of blood–brain barrier (BBB) permeability.

Recent Findings

BBB disruption is becoming increasingly common in the treatment of primary brain tumors. Use of mannitol in BBB disruption for targeted delivery of chemotherapeutics via superselective intra-arterial cerebral infusion (SIACI) is the most utilized strategy to modify the BBB. Mannitol is used in conjunction with chemotherapeutics, oligonucleotides, and other active agents. Convection-enhanced delivery has become an attractive option for therapeutic delivery while bypassing the BBB. Other technologic innovations include laser interstitial thermal therapy (LITT) and focused ultrasound (FUS) which have emerged as prime modalities to directly target tumors and cause significant local BBB disruption.

Summary

In the past 5 years, interest has significantly increased in studying modalities to disrupt the BBB in primary brain tumors to enhance treatment responses and improve clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015;7: a020412.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2:3–14.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dowden H, Munro J. Trends in clinical success rates and therapeutic focus. Nat Rev Drug Discov. 2019;18:495–6.

    Article  CAS  PubMed  Google Scholar 

  4. van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat. 2015;19:1–12.

    Article  PubMed  Google Scholar 

  5. Steeg PS. The blood-tumour barrier in cancer biology and therapy. Nat Rev Clin Oncol. 2021;18:696–714.

    Article  PubMed  Google Scholar 

  6. Whelan R, Hargaden GC, Knox AJS. Modulating the blood-brain barrier: a comprehensive review. Pharmaceutics. 2021;13(11):1980. https://doi.org/10.3390/pharmaceutics13111980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang D, Wang C, Wang L, Chen Y. A comprehensive review in improving delivery of small-molecule chemotherapeutic agents overcoming the blood-brain/brain tumor barriers for glioblastoma treatment. Drug Deliv. 2019;26:551–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Puratchikody A, Prabu SL, Umamaheswari A. Computer applications in drug discovery and development. IGI Global; 2018.

    Google Scholar 

  9. Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2:86–98.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21:193–215.

    Article  CAS  PubMed  Google Scholar 

  11. Rapoport SI, Hori M, Klatzo I. Testing of a hypothesis for osmotic opening of the blood-brain barrier. Am J Physiol. 1972;223:323–31.

    Article  CAS  PubMed  Google Scholar 

  12. Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20:26–41.

    Article  CAS  PubMed  Google Scholar 

  13. Noorani B, Bhalerao A, Raut S, Nozohouri E, Bickel U, Cucullo L. A Quasi-physiological microfluidic blood-brain barrier model for brain permeability studies. Pharmaceutics. 2021;13(9):1474. https://doi.org/10.3390/pharmaceutics13091474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Linville RM, DeStefano JG, Sklar MB, Chu C, Walczak P, Searson PC. Modeling hyperosmotic blood-brain barrier opening within human tissue-engineered in vitro brain microvessels. J Cereb Blood Flow Metab. 2020;40:1517–32.

    Article  CAS  PubMed  Google Scholar 

  15. Linville RM, DeStefano JG, Sklar MB, Xu Z, Farrell AM, Bogorad MI, et al. Human iPSC-derived blood-brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials. 2019;190–191:24–37.

    Article  PubMed  Google Scholar 

  16. Wang M, Etu J, Joshi S. Enhanced disruption of the blood brain barrier by intracarotid mannitol injection during transient cerebral hypoperfusion in rabbits. J Neurosurg Anesthesiol. 2007;19:249–56.

    Article  PubMed  Google Scholar 

  17. Kessler RM, Goble JC, Bird JH, Girton ME, Doppman JL, Rapoport SI, et al. Measurement of blood-brain barrier permeability with positron emission tomography and [68Ga]EDTA. J Cereb Blood Flow Metab. 1984;4:323–8.

    Article  CAS  PubMed  Google Scholar 

  18. Fricker G, Ott M, Mahringer A. The bloo-brain barrier (BBB). Springer; 2014.

    Book  Google Scholar 

  19. • Chu C, Jablonska A, Gao Y, Lan X, Lesniak WG, Liang Y, et al. Hyperosmolar blood-brain barrier opening using intra-arterial injection of hyperosmotic mannitol in mice under real-time MRI guidance. Nat Protoc. 2022;17:76–94. Details extensively the effects that hyperosmolar injections via modern MRI guidance has on BBB opening in an animal model.

  20. • Burks SR, Kersch CN, Witko JA, Pagel MA, Sundby M, Muldoon LL, et al. Blood-brain barrier opening by intracarotid artery hyperosmolar mannitol induces sterile inflammatory and innate immune responses. Proc Natl Acad Sci U S A. 2021;118. https://doi.org/10.1073/pnas.2021915118. Shows that intraarterial mannitol is able to induce immune response.

  21. Choi C, Kim HM, Shon J, Park J, Kim H-T, Oh S-H, et al. Additional increased effects of mannitol-temozolomide combined treatment on blood-brain barrier permeability. Biochem Biophys Res Commun. 2018;497:769–75.

    Article  CAS  PubMed  Google Scholar 

  22. D’Amico RS, Khatri D, Reichman N, Patel NV, Wong T, Fralin SR, et al. Correction to: super selective intra-arterial cerebral infusion of modern chemotherapeutics after blood-brain barrier disruption: where are we now, and where we are going. J Neurooncol. 2020;147:279.

    Article  PubMed  Google Scholar 

  23. • Kulason KO, Schneider JR, Chakraborty S, Filippi CG, Pramanik B, Wong T, et al. Superselective intraarterial cerebral infusion of cetuximab with blood brain barrier disruption combined with Stupp Protocol for newly diagnosed glioblastoma. J Exp Ther Oncol. 2018;12:223–9. Gave data that injection of cetuximab following mannitol injection in combination of Stupp protocol could be a reasonable treatment method for newly diagnosed EGFR amplified glioblastoma.

  24. Boockvar JA, Tsiouris AJ, Hofstetter CP, Kovanlikaya I, Fralin S, Kesavabhotla K, et al. Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma. Clinical article. J Neurosurg. 2011;114:624–32.

    Article  CAS  PubMed  Google Scholar 

  25. Jeon JY, Kovanlikaya I, Boockvar JA, Mao X, Shin B, Burkhardt JK, et al. Metabolic response of glioblastoma to superselective intra-arterial cerebral infusion of bevacizumab: a proton MR spectroscopic imaging study. AJNR Am J Neuroradiol. 2012;33:2095–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Galla N, Chiang G, Chakraborty S, Singh R, John Tsiouris A, Boockvar J, et al. Apparent diffusion coefficient changes predict survival after intra-arterial bevacizumab treatment in recurrent glioblastoma. Neuroradiology. 2017;59:499–505.

    Article  PubMed  Google Scholar 

  27. Riina HA, Fraser JF, Fralin S, Knopman J, Scheff RJ, Boockvar JA. Superselective intraarterial cerebral infusion of bevacizumab: a revival of interventional neuro-oncology for malignant glioma. J Exp Ther Oncol. 2009;8:145–50.

    CAS  PubMed  Google Scholar 

  28. • McCrea HJ, Ivanidze J, O’Connor A, Hersh EH, Boockvar JA, Gobin YP, et al. Intraarterial delivery of bevacizumab and cetuximab utilizing blood-brain barrier disruption in children with high-grade glioma and diffuse intrinsic pontine glioma: results of a phase I trial. J Neurosurg Pediatr. 2021;28:371–9. Showed that intraarterial mannitol and concomitant immunotherapy is safe in pediatric patients.

  29. Iorio-Morin C, Gahide G, Morin C, Vanderweyen D, Roy M-A, St-Pierre I, et al. Management of primary central nervous system lymphoma using intra-arterial chemotherapy with osmotic blood-brain barrier disruption: retrospective analysis of the sherbrooke cohort. Front Oncol. 2020;10: 543648.

    Article  PubMed  Google Scholar 

  30. Home - ClinicalTrials.gov. [cited 2023 May 10]. Available from: https://clinicaltrials.gov/. Accessed 22 Jan 2024.

  31. Sedeyn JC, Wu H, Hobbs RD, Levin EC, Nagele RG, Venkataraman V. Histamine induces Alzheimer’s disease-like blood brain barrier breach and local cellular responses in mouse brain organotypic cultures. Biomed Res Int. 2015;2015: 937148.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dahlén SE, Björk J, Hedqvist P, Arfors KE, Hammarström S, Lindgren JA, et al. Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: in vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci U S A. 1981;78:3887–91.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Wang M-L, Huang X-J, Fang S-H, Yuan Y-M, Zhang W-P, Lu Y-B, et al. Leukotriene D4 induces brain edema and enhances CysLT2 receptor-mediated aquaporin 4 expression. Biochem Biophys Res Commun. 2006;350:399–404.

    Article  CAS  PubMed  Google Scholar 

  34. Lenz QF, Arroyo DS, Temp FR, Poersch AB, Masson CJ, Jesse AC, et al. Cysteinyl leukotriene receptor (CysLT) antagonists decrease pentylenetetrazol-induced seizures and blood-brain barrier dysfunction. Neuroscience. 2014;277:859–71.

    Article  CAS  PubMed  Google Scholar 

  35. Abbott NJ. Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol. 2000;20:131–47.

    Article  CAS  PubMed  Google Scholar 

  36. Wang Z, Cai X-J, Qin J, Xie F-J, Han N, Lu H-Y. The role of histamine in opening blood-tumor barrier. Oncotarget. 2016;7:31299–310.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Towner RA, Saunders D, Lerner M, Silasi Mansat R, Yuan T, Barber D, et al. Temporary opening of the blood-brain barrier with the nitrone compound OKN-007. Am J Nucl Med Mol Imaging. 2021;11:363–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Towner RA, Hocker J, Smith N, Saunders D, Battiste J, Hanas J. OKN-007 alters protein expression profiles in high-grade gliomas: mass spectral analysis of blood sera. Brain Sci. 2022;12(1):100. https://doi.org/10.3390/brainsci12010100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sabir F, Ismail R, Csoka I. Nose-to-brain delivery of antiglioblastoma drugs embedded into lipid nanocarrier systems: status quo and outlook. Drug Discov Today. 2020;25:185–94.

    Article  CAS  PubMed  Google Scholar 

  40. Dutta L, Mukherjee B, Chakraborty T, Das MK, Mondal L, Bhattacharya S, et al. Lipid-based nanocarrier efficiently delivers highly water soluble drug across the blood-brain barrier into brain. Drug Deliv. 2018;25:504–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang W, Marín-Ramos NI, He H, Zeng S, Cho H-Y, Swenson SD, et al. NEO100 enables brain delivery of blood-brain barrier impermeable therapeutics. Neuro Oncol. 2021;23:63–75.

    Article  PubMed  Google Scholar 

  42. da Fonseca CO, Simão M, Lins IR, Caetano RO, Futuro D, Quirico-Santos T. Efficacy of monoterpene perillyl alcohol upon survival rate of patients with recurrent glioblastoma. J Cancer Res Clin Oncol. 2011;137:287–93.

    Article  PubMed  Google Scholar 

  43. Hashizume R, Ozawa T, Gryaznov SM, Bollen AW, Lamborn KR, Frey WH 2nd, et al. New therapeutic approach for brain tumors: intranasal delivery of telomerase inhibitor GRN163. Neuro Oncol. 2008;10:112–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Breitkreuz-Korff O, Tscheik C, Del Vecchio G, Dithmer S, Walther W, Orthmann A, et al. M01 as a novel drug enhancer for specifically targeting the blood-brain barrier. J Control Release. 2021;338:137–48.

    Article  CAS  PubMed  Google Scholar 

  45. Kariolis MS, Wells RC, Getz JA, Kwan W, Mahon CS, Tong R, et al. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci Transl Med. 2020;12. https://doi.org/10.1126/scitranslmed.aay1359.

  46. Stocki P, Szary J, Rasmussen CLM, Demydchuk M, Northall L, Logan DB, et al. Blood-brain barrier transport using a high affinity, brain-selective VNAR antibody targeting transferrin receptor 1. FASEB J. 2021;35: e21172.

    Article  CAS  PubMed  Google Scholar 

  47. Galstyan A, Markman JL, Shatalova ES, Chiechi A, Korman AJ, Patil R, et al. Blood-brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nat Commun. 2019;10:3850.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ye Z, Gastfriend BD, Umlauf BJ, Lynn DM, Shusta EV. Antibody-targeted liposomes for enhanced targeting of the blood-brain barrier. Pharm Res. 2022;39:1523–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Godinho BMDC, Henninger N, Bouley J, Alterman JF, Haraszti RA, Gilbert JW, et al. Transvascular delivery of hydrophobically modified sirnas: gene silencing in the rat brain upon disruption of the blood-brain barrier. Mol Ther. 2018;26:2580–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang Y, Pang J, Wang Q, Yan L, Wang L, Xing Z, et al. Delivering antisense oligonucleotides across the blood-brain barrier by tumor cell-derived small apoptotic bodies. Adv Sci. 2021;8:2004929.

    Article  CAS  Google Scholar 

  51. Zeniya S, Kuwahara H, Daizo K, Watari A, Kondoh M, Yoshida-Tanaka K, et al. Angubindin-1 opens the blood-brain barrier in vivo for delivery of antisense oligonucleotide to the central nervous system. J Control Release. 2018;283:126–34.

    Article  CAS  PubMed  Google Scholar 

  52. Kim D-G, Jang M, Choi S-H, Kim H-J, Jhun H, Kim H-C, et al. Gintonin, a ginseng-derived exogenous lysophosphatidic acid receptor ligand, enhances blood-brain barrier permeability and brain delivery. Int J Biol Macromol. 2018;114:1325–37.

    Article  CAS  PubMed  Google Scholar 

  53. Smith-Cohn MA, Burley NB, Grossman SA. Transient opening of the blood-brain barrier by vasoactive peptides to increase CNS drug delivery: reality versus wishful thinking? Curr Neuropharmacol. 2022;20:1383–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bynoe MS, Viret C, Yan A, Kim D-G. Adenosine receptor signaling: a key to opening the blood-brain door. Fluids Barriers CNS. 2015;12:20.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Carman AJ, Mills JH, Krenz A, Kim D-G, Bynoe MS. Adenosine receptor signaling modulates permeability of the blood-brain barrier. J Neurosci. Society for Neuroscience. 2011;31:13272–80.

    Article  CAS  Google Scholar 

  56. Kim D-G, Bynoe MS. A2A adenosine receptor modulates drug efflux transporter P-glycoprotein at the blood-brain barrier. J Clin Invest. American Society for Clinical Investigation; 2016;126:1717–33.

  57. Vézina A, Manglani M, Morris D, Foster B, McCord M, Song H, et al. Adenosine A2A receptor activation enhances blood-tumor barrier permeability in a rodent glioma model. Mol Cancer Res. 2021;19:2081–95.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jackson S, Weingart J, Nduom EK, Harfi TT, George RT, McAreavey D, et al. The effect of an adenosine A agonist on intra-tumoral concentrations of temozolomide in patients with recurrent glioblastoma. Fluids Barriers CNS. 2018;15:2.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jackson S, George RT, Lodge MA, Piotrowski A, Wahl RL, Gujar SK, et al. The effect of regadenoson on the integrity of the human blood-brain barrier, a pilot study. J Neurooncol. 2017;132:513–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jackson S, Anders NM, Mangraviti A, Wanjiku TM, Sankey EW, Liu A, et al. The effect of regadenoson-induced transient disruption of the blood-brain barrier on temozolomide delivery to normal rat brain. J Neurooncol. 2016;126:433–9.

    Article  CAS  PubMed  Google Scholar 

  61. Frøslev P, Franzyk H, Ozgür B, Brodin B, Kristensen M. Highly cationic cell-penetrating peptides affect the barrier integrity and facilitates mannitol permeation in a human stem cell-based blood-brain barrier model. Eur J Pharm Sci. 2022;168: 106054.

    Article  PubMed  Google Scholar 

  62. Yuan BO, Zhao Y, Dong S, Sun Y, Hao F, Xie J, et al. Cell-penetrating peptide-coated liposomes for drug delivery across the blood-brain barrier. Anticancer Res. 2019;39:237–43.

    Article  CAS  PubMed  Google Scholar 

  63. Neuhaus W, Piontek A, Protze J, Eichner M, Mahringer A, Subileau E-A, et al. Reversible opening of the blood-brain barrier by claudin-5-binding variants of Clostridium perfringens enterotoxin’s claudin-binding domain. Biomaterials. 2018;161:129–43.

    Article  CAS  PubMed  Google Scholar 

  64. Norouzi M, Yathindranath V, Thliveris JA, Miller DW. Salinomycin-loaded iron oxide nanoparticles for glioblastoma therapy. Nanomaterials (Basel). 2020;10(3):477. https://doi.org/10.3390/nano10030477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shoffstall AJ, Paiz JE, Miller DM, Rial GM, Willis MT, Menendez DM, et al. Potential for thermal damage to the blood-brain barrier during craniotomy: implications for intracortical recording microelectrodes. J Neural Eng. 2018;15: 034001.

    Article  PubMed  Google Scholar 

  66. Nian K, Harding IC, Herman IM, Ebong EE. Blood-brain barrier damage in ischemic stroke and its regulation by endothelial mechanotransduction. Front Physiol. 2020;11: 605398.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Belykh E, Shaffer KV, Lin C, Byvaltsev VA, Preul MC, Chen L. Blood-brain barrier, blood-brain tumor barrier, and fluorescence-guided neurosurgical oncology: delivering optical labels to brain tumors. Front Oncol. 2020;10:739.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kang JH, Desjardins A. Convection-enhanced delivery for high-grade glioma. Neurooncol Pract. 2022;9:24–34.

    PubMed  Google Scholar 

  69. Haar GT, Coussios C. High intensity focused ultrasound: physical principles and devices. Int J Hyperthermia. 2007;23:89–104.

    Article  PubMed  Google Scholar 

  70. Mungur R, Zheng J, Wang B, Chen X, Zhan R, Tong Y. Low-intensity focused ultrasound technique in glioblastoma multiforme treatment. Front Oncol. 2022;12: 903059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. •• Chen K-T, Chai W-Y, Lin Y-J, Lin C-J, Chen P-Y, Tsai H-C, et al. Neuronavigation-guided focused ultrasound for transcranial blood-brain barrier opening and immunostimulation in brain tumors. Sci Adv. 2021;7. https://doi.org/10.1126/sciadv.abd0772. Demonstrated duration of BBB opening after FUS.

  72. Anastasiadis P, Gandhi D, Guo Y, Ahmed A-K, Bentzen SM, Arvanitis C, et al. Localized blood-brain barrier opening in infiltrating gliomas with MRI-guided acoustic emissions-controlled focused ultrasound. Proc Natl Acad Sci U S A. 2021;118. https://doi.org/10.1073/pnas.2103280118.

  73. Mainprize T, Lipsman N, Huang Y, Meng Y, Bethune A, Ironside S, et al. Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety and feasibility study. Sci Rep. 2019;9:321.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  74. • Park SH, Kim MJ, Jung HH, Chang WS, Choi HS, Rachmilevitch I, et al. One-year outcome of multiple blood-brain barrier disruptions with temozolomide for the treatment of glioblastoma. Front Oncol. 2020;10:1663. Provides long term follow up data on patient that have had multiple FUS treatments.

  75. •• Park SH, Kim MJ, Jung HH, Chang WS, Choi HS, Rachmilevitch I, et al. Safety and feasibility of multiple blood-brain barrier disruptions for the treatment of glioblastoma in patients undergoing standard adjuvant chemotherapy. J Neurosurg. 2020;1–9. Demonstrates that repeated BBB disruption by MRgFUS is safe and feasible in patients with GBM undergoing concomitant standard adjuvant temozolomide chemotherapy.

  76. Idbaih A, Canney M, Belin L, Desseaux C, Vignot A, Bouchoux G, et al. Safety and feasibility of repeated and transient blood-brain barrier disruption by pulsed ultrasound in patients with recurrent glioblastoma. Clin Cancer Res. 2019;25:3793–801.

    Article  CAS  PubMed  Google Scholar 

  77. Hart E ’t, Odé Z, Derieppe MPP, Groenink L, Heymans MW, Otten R, et al. Blood-brain barrier permeability following conventional photon radiotherapy - a systematic review and meta-analysis of clinical and preclinical studies. Clin Transl Radiat Oncol. 2022;35:44–55.

  78. • Shin DH, Melnick KF, Tran DD, Ghiaseddin AP. In situ vaccination with laser interstitial thermal therapy augments immunotherapy in malignant gliomas. J Neurooncol. 2021;151:85–92. Shows that LITT may be work with immunotherapies by promoting in situ vaccination.

  79. Patel B, Yang PH, Kim AH. The effect of thermal therapy on the blood-brain barrier and blood-tumor barrier. Int J Hyperthermia. 2020;37:35–43.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Morris S-A, Rollo M, Rollo P, Johnson J, Grant GA, Friedman E, et al. Prolonged blood-brain barrier disruption following laser interstitial ablation in epilepsy: a case series with a case report of postablation optic neuritis. World Neurosurg. 2017;104:467–75.

    Article  PubMed  Google Scholar 

  81. • Butt OH, Zhou AY, Huang J, Leidig WA, Silberstein AE, Chheda MG, et al. A phase II study of laser interstitial thermal therapy combined with doxorubicin in patients with recurrent glioblastoma. Neurooncol Adv. 2021;3:vdab164. Clinical trial data on combination of LITT with doxorubicin showing some improvements in outcomes.

  82. •• Hormigo A, Chiu D, Hahn M, Qi J, Lee B, Mandeli J, et al. Ctim-09. Phase I study of pd-l1 inhibition with avelumab and laser interstitial thermal therapy in patients with recurrent glioblastoma. Neuro Oncol. Oxford University Press (OUP); 2021;23:vi51–vi51. Avelumab and LITT resulted in significant increase in survival.

  83. Campian J, Butt O, Ghinaseddin A, Rahman M, Chheda M, Johanns T, et al. Ctim-26. Phase I/II study of the combination of pembrolizumab (Mk-3475) and laser interstitial thermal therapy (litt) in recurrent glioblastoma. Neuro Oncol. Oxford University Press (OUP); 2021;23:vi56–vi56.

  84. Leuthardt EC, Duan C, Kim MJ, Campian JL, Kim AH, Miller-Thomas MM, et al. Hyperthermic laser ablation of recurrent glioblastoma leads to temporary disruption of the peritumoral blood brain barrier. PLoS One. 2016;11: e0148613.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Maraka S, Asmaro K, Walbert T, Lee I. Cerebral edema induced by laser interstitial thermal therapy and radiotherapy in close succession in patients with brain tumor. Lasers Surg Med. 2018;50:917–23.

    Article  PubMed  Google Scholar 

  86. Salem U, Kumar VA, Madewell JE, Schomer DF, de Almeida Bastos DC, Zinn PO, et al. Neurosurgical applications of MRI guided laser interstitial thermal therapy (LITT). Cancer Imaging. 2019;19:65.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Patel P, Patel NV, Danish SF. Intracranial MR-guided laser-induced thermal therapy: single-center experience with the Visualase thermal therapy system. J Neurosurg. 2016;125:853–60.

    Article  PubMed  Google Scholar 

  88. Ali SC, Basil GW, Diaz RJ, Komotar RJ. The safety of bevacizumab administered shortly after laser interstitial thermal therapy in glioblastoma: a case series. World Neurosurg. 2018;117:e588–94.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virtanen, P.S., Ortiz, K.J., Patel, A. et al. Blood–Brain Barrier Disruption for the Treatment of Primary Brain Tumors: Advances in the Past Half-Decade. Curr Oncol Rep 26, 236–249 (2024). https://doi.org/10.1007/s11912-024-01497-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-024-01497-7

Keywords

Navigation