Skip to main content
Log in

Prolymphocytic Leukaemia: an Update on Biology and Treatment

  • Review
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarises the recent advances in knowledge regarding the biology and treatment of prolymphocytic leukaemias.

Recent Findings

Both B-PLL and T-PLL are genetically complex, and the molecular landscape of these diseases has been well characterised recently. Diagnostic criteria for T-PLL have been refined with the publication of the first international consensus criteria, whereas the diagnosis of B-PLL has been thrown into question by the most recent WHO classification. Treatment advances in B-PLL have relied heavily on the advances seen in CLL that have then been extrapolated to B-PLL with just a few case reports to support the use of these targeted inhibitors. Despite increased knowledge of the biology of T-PLL and some elegant pre-clinical models to identify potential treatments, unfortunately, no improvements have been made in the treatment of T-PLL.

Summary

Unmet need is a term oft used for many diseases, but this is particularly true for patients with prolymphocytic leukaemias. Ongoing improvements in our understanding of these diseases will hopefully lead to improved therapies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data Availability

No datasets were generated or analysed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Catovsky D, Galetto J, Okos A, Galton DA, Wiltshaw E, Stathopoulos G. Prolymphocytic leukemia of B and T cell type. Lancet. 1973;2(7823):232–4. https://doi.org/10.1016/s0140-6736(73)93135-8.

    Article  CAS  PubMed  Google Scholar 

  2. Harris NL, Jaffe ES, Stein H, Banks PM, Chan JK, Cleary ML, et al. A revised European-American classification of lymphoid neoplasms: A proposal from the International Lymphoma Study Group. Blood. 1994;84(5):1361–92.

    Article  CAS  PubMed  Google Scholar 

  3. Jaffe ES, World Health O. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. World Health Organisation classification of tumors. Lyon. Oxford: IARC Press. Oxford University Press (distributor); 2001.

    Google Scholar 

  4. Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD. Araujo IBdO, Berti E, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: Lymphoid neoplasms. Leukemia. 2022;36(7):1720–48. https://doi.org/10.1038/s41375-022-01620-2.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Campo E, Jaffe ES, Cook JR, Quintanilla-Martinez L, Swerdlow SH, Anderson KC, et al. The international consensus classification of mature lymphoid neoplasms: a report from the Clinical Advisory Committee. Blood. 2022;140(11):1229–1253. https://doi.org/10.1182/blood.2022015851.

  6. •• Chapiro E, Pramil E, Diop M, Roos-Weil D, Dillard C, Gabillaud C, et al. Genetic characterization of B-cell prolymphocytic leukemia: A prognostic model involving MYC and TP53. Blood. 2019;134(21):1821–31. https://doi.org/10.1182/blood.2019001187. This details the genetic landscape of 34 cases of B-PLL and characterises them fully, to help improve differentiating B-PLL from other B-LPD and for prognostic marker identification.

    Article  CAS  PubMed  Google Scholar 

  7. •• Algrin C, Perol L, Chapiro E, Baseggio L, Maloum K, Settegrana C, et al. Retrospective analysis of a cohort of 41 de novo B-cell prolymphocytic leukemia patients: Impact of genetics and targeted therapies (a FILO study). Haematologica. 2023;108(6):1691–6. https://doi.org/10.3324/haematol.2022.282162. The largest case series of B-PLL to date, with outcomes of 41 patients with this disease, including some patients who had targeted therapies.

    Article  CAS  PubMed  Google Scholar 

  8. Lens D, De Schouwer PJ, Hamoudi RA, Abdul-Rauf M, Farahat N, Matutes E, et al. p53 abnormalities in B-cell prolymphocytic leukemia. Blood. 1997;89(6):2015–23.

    Article  CAS  PubMed  Google Scholar 

  9. Flatley E, Chen AI, Zhao X, Jaffe ES, Dunlap JB, Pittaluga S, et al. Aberrations of MYC are a common event in B-cell prolymphocytic leukemia. Am J Clin Pathol. 2014;142(3):347–54. https://doi.org/10.1309/AJCPUBHM8U7ZFLOB.

    Article  PubMed  Google Scholar 

  10. Del Giudice I, Davis Z, Matutes E, Osuji N, Parry-Jones N, Morilla A, et al. IgVH genes mutation and usage, ZAP-70 and CD38 expression provide new insights on B-cell prolymphocytic leukemia (B-PLL). Leukemia. 2006;20(7):1231–7. https://doi.org/10.1038/sj.leu.2404238.

    Article  CAS  PubMed  Google Scholar 

  11. Del Giudice I, Osuji N, Dexter T, Brito-Babapulle V, Parry-Jones N, Chiaretti S, et al. B-cell prolymphocytic leukemia and chronic lymphocytic leukemia have distinctive gene expression signatures. Leukemia. 2009;23(11):2160–7. https://doi.org/10.1038/leu.2009.137.

    Article  PubMed  Google Scholar 

  12. Charalampopoulou S, Chapiro E, Nadeu F, Zenz T, Beà S, Roos-Weil D, et al. P600: DNA methylation analysis of B-cell prolymphocytic leukemia reveals two epigenetic subtypes with distinct biological and clinical features. Hemasphere. 2023:7(Suppl). https://doi.org/10.1097/01.HS9.0000969304.87988.d2.

  13. Wang A, Guo W, Damiani D, Sumbly V, Goyal G, Du Z, et al. B-cell prolymphocytic leukemia with P53 abnormalities successfully treated with bendamustine and rituximab: A report of three cases. Transl Cancer Res. 2023;12(7):1873–82. https://doi.org/10.21037/tcr-23-828.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Eyre TA, Fox CP, Boden A, Bloor A, Dungawalla M, Shankara P, et al. Idelalisib-rituximab induces durable remissions in TP53 disrupted B-PLL but results in significant toxicity: Updated results of the UK-wide compassionate use programme. Br J Haematol. 2019;184(4):667–71. https://doi.org/10.1111/bjh.15151.

    Article  PubMed  Google Scholar 

  15. Xing L, He Q, Xie L, Wang H, Li Z. Zanubrutinib, rituximab and lenalidomide induces deep and durable remission in TP53-mutated B-cell prolymphocytic leukemia: A case report and literature review. Haematologica. 2022;107(5):1226–8. https://doi.org/10.3324/haematol.2021.280259.

    Article  PubMed  Google Scholar 

  16. Damlaj M, Al Balwi M, Al Mugairi AM. Ibrutinib therapy is effective in B-cell prolymphocytic leukemia exhibiting MYC aberrations. Leuk Lymphoma. 2018;59(3):739–42. https://doi.org/10.1080/10428194.2017.1347653.

    Article  PubMed  Google Scholar 

  17. Gordon MJ, Raess PW, Young K, Spurgeon SEF, Danilov AV. Ibrutinib is an effective treatment for B-cell prolymphocytic leukemia. Br J Haematol. 2017;179(3):501–3. https://doi.org/10.1111/bjh.14224.

    Article  PubMed  Google Scholar 

  18. Moore J, Baran AM, Meacham PJ, Evans AG, Barr PM, Zent CS. Initial treatment of B-cell prolymphocytic leukemia with ibrutinib. Am J Hematol. 2020;95(5):E108–E10. https://doi.org/10.1002/ajh.25733.

    Article  PubMed  Google Scholar 

  19. Oka S, Ono K, Nohgawa M. Effective upfront treatment with low-dose ibrutinib for a patient with B cell prolymphocytic leukemia. Invest New Drugs. 2020;38(5):1598–600. https://doi.org/10.1007/s10637-020-00902-9.

    Article  CAS  PubMed  Google Scholar 

  20. Chen LY, Eyre TA. Venetoclax induces deep and durable minimal residual disease-negative remission in high-risk TP53 disrupted B prolymphocytic leukemia. Eur J Haematol. 2022;109(5):590–2. https://doi.org/10.1111/ejh.13837.

    Article  CAS  PubMed  Google Scholar 

  21. Patil N, Went RG. Venetoclax is an option in B-cell prolymphocytic leukemia following progression on B-cell receptor pathway inhibitors. Br J Haematol. 2019;186(4):e80–e2. https://doi.org/10.1111/bjh.15912.

    Article  PubMed  Google Scholar 

  22. Siddiqui MT, Price A, Ferrajoli A, Borthakur G. Sustained MRD negative remission in del17p and TP53 mutated B cell prolymphocytic leukemia with ibrutinib and venetoclax. Leuk Res Rep. 2021;16:100266. https://doi.org/10.1016/j.lrr.2021.100266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bindra BS, Kaur H, Portillo S, Emiloju O, Garcia de de Jesus K. B-cell prolymphocytic leukemia: Case report and challenges on a diagnostic and therapeutic forefront. Cureus. 2019;11(9):e5629. https://doi.org/10.7759/cureus.5629.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Castagna L, Sarina B, Todisco E, Mazza R, Santoro A. Allogeneic peripheral stem-cell transplantation with reduced-intensity conditioning regimen in refractory primary B-cell prolymphocytic leukemia: A long-term follow-up. Bone Marrow Transplant. 2005;35(12):1225. https://doi.org/10.1038/sj.bmt.1704991.

    Article  CAS  PubMed  Google Scholar 

  25. Ermann DA, Vardell VA, Fitzgerald LA, Shah H, Hu B, Stephens DM. Treatment and overall survival outcomes of patients with B-cell prolymphocytic leukemia. Blood. 2022;140(Supplement 1):6668–9. https://doi.org/10.1182/blood-2022-170666.

    Article  Google Scholar 

  26. •• Staber PB, Herling M, Bellido M, Jacobsen ED, Davids MS, Kadia TM, et al. Consensus criteria for diagnosis, staging, and treatment response assessment of T-cell prolymphocytic leukemia. Blood. 2019;134(14):1132–43. https://doi.org/10.1182/blood.2019000402. First international consensus criteria for T-PLL established.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nahmod KA, Thakral B, Aakash FNU, Iyer SP, Medeiros LJ, Quesada AE. From the archives of MD Anderson cancer center: Aleukemic T-prolymphocytic leukemia, a rare presentation and review of the literature. Ann Diagn Pathol. 2023;62:152077. https://doi.org/10.1016/j.anndiagpath.2022.152077.

    Article  PubMed  Google Scholar 

  28. Patil P, Cieslak A, Bernhart SH, Toprak UH, Wagener R, Lopez C, et al. Reconstruction of rearranged T-cell receptor loci by whole genome and transcriptome sequencing gives insights into the initial steps of T-cell prolymphocytic leukemia. Genes Chromosomes Cancer. 2019; https://doi.org/10.1002/gcc.22821.

  29. Fang H, Beird HC, Wang SA, Ibrahim AF, Tang Z, Tang G, et al. T-prolymphocytic leukemia: TCL1 or MTCP1 rearrangement is not mandatory to establish diagnosis. Leukemia. 2023;37(9):1919–21. https://doi.org/10.1038/s41375-023-01956-3.

    Article  PubMed  Google Scholar 

  30. Herling M, Patel KA, Teitell MA, Konopleva M, Ravandi F, Kobayashi R, et al. High TCL1 expression and intact T-cell receptor signaling define a hyperproliferative subset of T-cell prolymphocytic leukemia. Blood. 2008;111(1):328–37. https://doi.org/10.1182/blood-2007-07-101519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stachelscheid J, Jiang Q, Herling M. The modes of dysregulation of the proto-oncogene T-cell leukemia/lymphoma 1A. Cancers (Basel). 2021;13(21) https://doi.org/10.3390/cancers13215455.

  32. Oberbeck S, Schrader A, Warner K, Jungherz D, Crispatzu G, von Jan J, et al. Noncanonical effector functions of the T-memory-like T-PLL cell are shaped by cooperative TCL1A and TCR signaling. Blood. 2020;136(24):2786–802. https://doi.org/10.1182/blood.2019003348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. • Schrader A, Crispatzu G, Oberbeck S, Mayer P, Putzer S, von Jan J, et al. Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL. Nat Commun. 2018;9(1):697. https://doi.org/10.1038/s41467-017-02688-6. Series of experiments helping us understand the pathogenesis of T-PLL.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Braun T, Stachelscheid J, Bley N, Oberbeck S, Otte M, Muller TA, et al. Noncanonical function of AGO2 augments T-cell receptor signaling in T-cell prolymphocytic leukemia. Cancer Res. 2022;82(9):1818–31. https://doi.org/10.1158/0008-5472.CAN-21-1908.

    Article  CAS  PubMed  Google Scholar 

  35. Kiel MJ, Velusamy T, Rolland D, Sahasrabuddhe AA, Chung F, Bailey NG, et al. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia. Blood. 2014;124(9):1460–72. https://doi.org/10.1182/blood-2014-03-559542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Greenplate A, Wang K, Tripathi RM, Palma N, Ali SM, Stephens PJ, et al. Genomic profiling of T-cell neoplasms reveals frequent JAK1 and JAK3 mutations with clonal evasion from targeted therapies. JCO Precis Oncol. 2018;2018 https://doi.org/10.1200/PO.17.00019.

  37. Bergmann AK, Schneppenheim S, Seifert M, Betts MJ, Haake A, Lopez C, et al. Recurrent mutation of JAK3 in T-cell prolymphocytic leukemia. Genes Chromosomes Cancer. 2014;53(4):309–16. https://doi.org/10.1002/gcc.22141.

    Article  CAS  PubMed  Google Scholar 

  38. Lopez C, Bergmann AK, Paul U, Murga Penas EM, Nagel I, Betts MJ, et al. Genes encoding members of the JAK-STAT pathway or epigenetic regulators are recurrently mutated in T-cell prolymphocytic leukemia. Br J Haematol. 2016;173(2):265–73. https://doi.org/10.1111/bjh.13952.

    Article  CAS  PubMed  Google Scholar 

  39. Stengel A, Kern W, Zenger M, Perglerova K, Schnittger S, Haferlach T, et al. Genetic characterization of T-PLL reveals two major biologic subgroups and JAK3 mutations as prognostic marker. Genes Chromosomes Cancer. 2016;55(1):82–94. https://doi.org/10.1002/gcc.22313.

    Article  CAS  PubMed  Google Scholar 

  40. Shi Z, Yu J, Shao H, Cheng K, Zhai J, Jiang Q, et al. Exploring the molecular pathogenesis associated with T-cell prolymphocytic leukemia based on a comprehensive bioinformatics analysis. Oncol Lett. 2018;16(1):301–7. https://doi.org/10.3892/ol.2018.8615.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jain P, Aoki E, Keating M, Wierda WG, O'Brien S, Gonzalez GN, et al. Characteristics, outcomes, prognostic factors and treatment of patients with T-cell prolymphocytic leukemia (T-PLL). Ann Oncol. 2017;28(7):1554–9. https://doi.org/10.1093/annonc/mdx163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wahnschaffe L, Braun T, Timonen S, Giri AK, Schrader A, Wagle P, et al. JAK/STAT-activating genomic alterations are a hallmark of T-PLL. Cancers (Basel). 2019;11(12) https://doi.org/10.3390/cancers11121833.

  43. Johansson P, Klein-Hitpass L, Choidas A, Habenberger P, Mahboubi B, Kim B, et al. SAMHD1 is recurrently mutated in T-cell prolymphocytic leukemia. Blood Cancer J. 2018;8(1):11. https://doi.org/10.1038/s41408-017-0036-5.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Otte M, Stachelscheid J, Glass M, Wahnschaffe L, Jiang Q, Lone W, et al. The miR-141/200c-STAT4 axis contributes to leukemogenesis by enhancing cell proliferation in T-PLL. Cancers (Basel). 2023;15(9) https://doi.org/10.3390/cancers15092527.

  45. Erkeland SJ, Stavast CJ, Schilperoord-Vermeulen J, Dal Collo G, Van de Werken HJG, Leon LG, et al. The miR-200c/141-ZEB2-TGFbeta axis is aberrant in human T-cell prolymphocytic leukemia. Haematologica. 2022;107(1):143–53. https://doi.org/10.3324/haematol.2020.263756.

    Article  CAS  PubMed  Google Scholar 

  46. Braun T, Glass M, Wahnschaffe L, Otte M, Mayer P, Franitza M, et al. Micro-RNA networks in T-cell prolymphocytic leukemia reflect T-cell activation and shape DNA damage response and survival pathways. Haematologica. 2022;107(1):187–200. https://doi.org/10.3324/haematol.2020.267500.

    Article  CAS  PubMed  Google Scholar 

  47. Patil P, Hillebrecht S, Chteinberg E, Lopez C, Toprak UH, Seufert J, et al. T-cell prolymphocytic leukemia is associated with deregulation of oncogenic microRNAs on transcriptional and epigenetic level. Genes Chromosomes Cancer. 2022;61(7):432–6. https://doi.org/10.1002/gcc.23034.

    Article  CAS  PubMed  Google Scholar 

  48. Mikhaylenko N, Wahnschaffe L, Herling M, Roeder I, Seifert M. Computational gene expression analysis reveals distinct molecular subgroups of T-cell prolymphocytic leukemia. PLoS One. 2022;17(9):e0274463. https://doi.org/10.1371/journal.pone.0274463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tian S, Zhang H, Zhang P, Kalmbach M, Lee JH, Ordog T, et al. Epigenetic alteration contributes to the transcriptional reprogramming in T-cell prolymphocytic leukemia. Sci Rep. 2021;11(1):8318. https://doi.org/10.1038/s41598-021-87890-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rose A, Zhang L, Jain AG, Poovathukaran Babu A, Sokol L, Saeed H, et al. Delineation of clinical course, outcomes, and prognostic factors in patients with T-cell prolymphocytic leukemia. Am J Hematol. 2023;98(6):913–21. https://doi.org/10.1002/ajh.26918.

    Article  CAS  PubMed  Google Scholar 

  51. Cross MJ, Else M, Morilla R, Ethell ME, Potter M, El-Sharkawi D, et al. No improvement in survival for T-PLL patients over the last two decades. Blood. 2019;134(Supplement_1):1552. https://doi.org/10.1182/blood-2019-122094.

    Article  Google Scholar 

  52. Mercieca J, Matutes E, Dearden C, MacLennan K, Catovsky D. The role of pentostatin in the treatment of T-cell malignancies: Analysis of response rate in 145 patients according to disease subtype. J Clin Oncol. 1994;12(12):2588–93. https://doi.org/10.1200/JCO.1994.12.12.2588.

    Article  CAS  PubMed  Google Scholar 

  53. Dearden C. How I treat prolymphocytic leukemia. Blood. 2012;120(3):538–51. https://doi.org/10.1182/blood-2012-01-380139.

    Article  CAS  PubMed  Google Scholar 

  54. Herbaux C, Genet P, Bouabdallah K, Pignon JM, Debarri H, Guidez S, et al. Bendamustine is effective in T-cell prolymphocytic leukemia. Br J Haematol. 2015;168(6):916–9. https://doi.org/10.1111/bjh.13175.

    Article  PubMed  Google Scholar 

  55. Dearden CE, Matutes E, Cazin B, Tjonnfjord GE, Parreira A, Nomdedeu B, et al. High remission rate in T-cell prolymphocytic leukemia with CAMPATH-1H. Blood. 2001;98(6):1721–6. https://doi.org/10.1182/blood.v98.6.1721.

    Article  CAS  PubMed  Google Scholar 

  56. Krishnan B, Else M, Tjonnfjord GE, Cazin B, Carney D, Carter J, et al. Stem cell transplantation after alemtuzumab in T-cell prolymphocytic leukemia results in longer survival than after alemtuzumab alone: A multicentre retrospective study. Br J Haematol. 2010;149(6):907–10. https://doi.org/10.1111/j.1365-2141.2010.08134.x.

    Article  PubMed  Google Scholar 

  57. •• Murthy HS, Ahn KW, Estrada-Merly N, Alkhateeb HB, Bal S, Kharfan-Dabaja MA, et al. Outcomes of allogeneic hematopoietic cell transplantation in T cell prolymphocytic leukemia: A contemporary analysis from the center for international blood and marrow transplant research. Transplant Cell Ther. 2022;28(4):187 e1–e10. https://doi.org/10.1016/j.jtct.2022.01.017. Large analysis of outcomes for patients who have undergone transplant for T-PLL.

    Article  CAS  PubMed  Google Scholar 

  58. Wiktor-Jedrzejczak W, Drozd-Sokolowska J, Eikema DJ, Hoek J, Potter M, Wulf G, et al. EBMT prospective observational study on allogeneic hematopoietic stem cell transplantation in T-prolymphocytic leukemia (T-PLL). Bone Marrow Transplant. 2019; https://doi.org/10.1038/s41409-019-0448-x.

  59. Yamasaki S, Nitta H, Kondo E, Uchida N, Miyazaki T, Ishiyama K, et al. Effect of allogeneic hematopoietic cell transplantation for patients with T-prolymphocytic leukemia: A retrospective study from the Adult Lymphoma Working Group of the Japan Society for hematopoietic cell transplantation. Ann Hematol. 2019;98(9):2213–20. https://doi.org/10.1007/s00277-019-03759-y.

    Article  CAS  PubMed  Google Scholar 

  60. Shumilov E, Hasenkamp J, Szuszies CJ, Koch R, Wulf GG. Patterns of late relapse after allogeneic hematopoietic stem cell transplantation in patients with T-cell prolymphocytic leukemia. Acta Haematol. 2021;144(1):105–10. https://doi.org/10.1159/000506302.

    Article  CAS  PubMed  Google Scholar 

  61. Ianevski A, Timonen S, Kononov A, Aittokallio T, Giri AK. SynToxProfiler: An interactive analysis of drug combination synergy, toxicity and efficacy. PLoS Comput Biol. 2020;16(2):e1007604. https://doi.org/10.1371/journal.pcbi.1007604.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. He L, Tang J, Andersson EI, Timonen S, Koschmieder S, Wennerberg K, et al. Patient-customized drug combination prediction and testing for T-cell prolymphocytic leukemia patients. Cancer Res. 2018;78(9):2407–18. https://doi.org/10.1158/0008-5472.CAN-17-3644.

    Article  CAS  PubMed  Google Scholar 

  63. Andersson EI, Putzer S, Yadav B, Dufva O, Khan S, He L, et al. Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling. Leukemia. 2018;32(3):774–87. https://doi.org/10.1038/leu.2017.252.

    Article  CAS  PubMed  Google Scholar 

  64. Boidol B, Kornauth C, van der Kouwe E, Prutsch N, Kazianka L, Gultekin S, et al. First-in-human response of BCL-2 inhibitor venetoclax in T-cell prolymphocytic leukemia. Blood. 2017;130(23):2499–503. https://doi.org/10.1182/blood-2017-05-785683.

    Article  CAS  PubMed  Google Scholar 

  65. Toutah K, Nawar N, Timonen S, Sorger H, Raouf YS, Bukhari S, et al. Development of HDAC inhibitors exhibiting therapeutic potential in T-cell prolymphocytic leukemia. J Med Chem. 2021;64(12):8486–509. https://doi.org/10.1021/acs.jmedchem.1c00420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Johansson P, Dierichs L, Klein-Hitpass L, Bergmann AK, Mollmann M, Menninger S, et al. Anti-leukemic effect of CDK9 inhibition in T-cell prolymphocytic leukemia. Ther Adv Hematol. 2020;11:2040620720933761. https://doi.org/10.1177/2040620720933761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cuesta-Mateos C, Fuentes P, Schrader A, Juarez-Sanchez R, Loscertales J, Mateu-Albero T, et al. CCR7 as a novel therapeutic target in t-cell PROLYMPHOCYTIC leukemia. Biomark Res. 2020;8:54. https://doi.org/10.1186/s40364-020-00234-z.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Brothers J, Castillo DR, Jeon WJ, Joung B, Linhares Y. Partial response to venetoclax and ruxolitinib combination in a case of refractory T-prolymphocytic leukemia. Hematology. 2023;28(1):2237342. https://doi.org/10.1080/16078454.2023.2237342.

    Article  CAS  PubMed  Google Scholar 

  69. Herbaux C, Kornauth C, Poulain S, Chong SJF, Collins MC, Valentin R, et al. BH3 profiling identifies ruxolitinib as a promising partner for venetoclax to treat T-cell prolymphocytic leukemia. Blood. 2021;137(25):3495–506. https://doi.org/10.1182/blood.2020007303.

    Article  CAS  PubMed  Google Scholar 

  70. Smith VM, Lomas O, Constantine D, Palmer L, Schuh AH, Bruce D, et al. Dual dependence on BCL2 and MCL1 in T-cell prolymphocytic leukemia. Blood Adv. 2020;4(3):525–9. https://doi.org/10.1182/bloodadvances.2019000917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Alfayez M, Thakral B, Jain P, Ravandi F, Ferrajoli A, Jain N, et al. First report of clinical response to venetoclax combination with pentostatin in T-cell-prolymphocytic leukemia (T-PLL). Leuk Lymphoma. 2020;61(2):445–9. https://doi.org/10.1080/10428194.2019.1660967.

    Article  CAS  PubMed  Google Scholar 

  72. Gomez-Arteaga A, Margolskee E, Wei MT, van Besien K, Inghirami G, Horwitz S. Combined use of tofacitinib (pan-JAK inhibitor) and ruxolitinib (a JAK1/2 inhibitor) for refractory T-cell prolymphocytic leukemia (T-PLL) with a JAK3 mutation. Leuk Lymphoma. 2019;60(7):1626–31. https://doi.org/10.1080/10428194.2019.1594220.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Boddu PC, Senapati J, Ravandi-Kashani F, Jabbour EJ, Jain N, Ayres M, et al. A phase 1 study to evaluate the safety, pharmacology, and feasibility of continuous infusion nelarabine in patients with relapsed and/or refractory lymphoid malignancies. Cancer. 2023;129(4):580–9. https://doi.org/10.1002/cncr.34570.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.E. and C.D. wrote and reviewed the manuscript.

Corresponding author

Correspondence to Dima El-Sharkawi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sharkawi, D., Dearden, C. Prolymphocytic Leukaemia: an Update on Biology and Treatment. Curr Oncol Rep 26, 129–135 (2024). https://doi.org/10.1007/s11912-023-01485-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-023-01485-3

Keywords

Navigation