Skip to main content

Advertisement

Log in

The Evolving Therapeutic Landscape for Malignant Pleural Mesothelioma

  • Lung Cancer (H Borghaei, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

For patients with malignant pleural mesothelioma, prognosis is poor with extremely low 5-year survival rates and limited therapeutic options. Here, we review the current treatment landscape for mesothelioma and highlight promising future therapeutic directions.

Recent Findings

Evolving frontline therapeutic options for mesothelioma include VEGF inhibition in combination with chemotherapy and dual immune checkpoint inhibition, with synergisms between the therapies and response prediction via biomarkers also being explored. Evolving experimental treatments for mesothelioma include PARP and ALK inhibitors, dendritic and CAR T-cell therapies, anti-mesothelin vaccines, and oncolytic viral therapies, representing timely advances in the field.

Summary

The therapeutic landscape for malignant pleural mesothelioma is evolving and preferred treatment in the frontline and later settings will likely evolve with it. However, this does not preclude the evidence for including multi-modal therapies spanning angiogenesis and immune checkpoint inhibitors, and biomarker utilization, in current clinical trials and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Milano MT, Zhang H. Malignant pleural mesothelioma: a population-based study of survival. J Thorac Oncol. 2010;5:1841–8.

    Article  PubMed  Google Scholar 

  2. van Zandwijk N, Clarke C, Henderson D, Musk AW, Fong K, Nowak A, et al. Guidelines for the diagnosis and treatment of malignant pleural mesothelioma. J Thorac Dis. 2013;5:E254-307.

    PubMed  PubMed Central  Google Scholar 

  3. Beckett P, Edwards J, Fennell D, Hubbard R, Woolhouse I, Peake MD. Demographics, management and survival of patients with malignant pleural mesothelioma in the National Lung Cancer Audit in England and Wales. Lung Cancer. 2015;88:344–8.

    Article  CAS  PubMed  Google Scholar 

  4. Fennell DA, Parmar A, Shamash J, Evans MT, Sheaff MT, Sylvester R, et al. Statistical validation of the EORTC prognostic model for malignant pleural mesothelioma based on three consecutive phase II trials. J Clin Oncol. 2005;23:184–9.

    Article  PubMed  Google Scholar 

  5. Dalton LE, Clarke HJ, Knight J, Lawson MH, Wason J, Lomas DA, et al. The endoplasmic reticulum stress marker CHOP predicts survival in malignant mesothelioma. Br J Cancer. 2013;108:1340–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chia PL, Russell P, Asadi K, Thapa B, Gebski V, Murone C, et al. Analysis of angiogenic and stromal biomarkers in a large malignant mesothelioma cohort. Lung Cancer. 2020;150:1–8.

    Article  PubMed  Google Scholar 

  7. Dell’Anno I, Barone E, Mutti L, Rassl DM, Marciniak SJ, Silvestri R, et al. Tissue expression of lactate transporters (MCT1 and MCT4) and prognosis of malignant pleural mesothelioma (brief report). J Transl Med. 2020;18:341.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schramm A, Opitz I, Thies S, Seifert B, Moch H, Weder W, et al. Prognostic significance of epithelial-mesenchymal transition in malignant pleural mesothelioma. Eur J Cardiothorac Surg. 2010;37:566–72.

    Article  PubMed  Google Scholar 

  9. Mansfield AS, Roden AC, Peikert T, Sheinin YM, Harrington SM, Krco CJ, et al. B7–H1 expression in malignant pleural mesothelioma is associated with sarcomatoid histology and poor prognosis. J Thorac Oncol. 2014;9:1036–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harris EJA, Kao S, McCaughan B, Nakano T, Kondo N, Hyland R, et al. Prediction modelling using routine clinical parameters to stratify survival in Malignant Pleural Mesothelioma patients undergoing cytoreductive surgery. J Thorac Oncol. 2019;14:288–93.

    Article  PubMed  Google Scholar 

  11. Yeap BY, Rienzo AD, Gill RR, Oster ME, Dao MN, Dao NT, et al. Mesothelioma risk score: a new prognostic pretreatment, clinical-molecular algorithm for malignant pleural mesothelioma. J Thorac Oncol. 2021;16:1925–35.

    Article  CAS  PubMed  Google Scholar 

  12. Parker C, Neville E. Lung cancer * 8: management of malignant mesothelioma. Thorax. 2003;58:809–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wolf AS, Flores RM. Updates in staging and management of malignant pleural mesothelioma. Surg Oncol Clin N Am. 2020;29:603–12.

    Article  PubMed  Google Scholar 

  14. Gelzinis TA. The 2019 ERS/ESTS/EACTS/ESTRO guidelines on the management of patients with malignant pleural mesothelioma. J Cardiothorac Vasc Anesth. 2021;35:378–88.

    Article  PubMed  Google Scholar 

  15. Sugarbaker DJ, Richards WG, Bueno R. Extrapleural pneumonectomy in the treatment of epithelioid malignant pleural mesothelioma. Ann Surg. 2014;260:577–82.

    Article  PubMed  Google Scholar 

  16. Treasure T, Lang-Lazdunski L, Waller D, Bliss JM, Tan C, Entwisle J, et al. Extra-pleural pneumonectomy versus no extra-pleural pneumonectomy for patients with malignant pleural mesothelioma: clinical outcomes of the Mesothelioma and Radical Surgery (MARS) randomised feasibility study. Lancet Oncol. 2011;12:763–72.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Janes SM, Alrifai D, Fennell DA. Perspectives on the treatment of malignant pleural mesothelioma. N Engl J Med. 2021;385:1207–18.

    Article  CAS  PubMed  Google Scholar 

  18. Rintoul RC, Ritchie AJ, Edwards JG, Waller DA, Coonar AS, Bennett M, et al. Efficacy and cost of video-assisted thoracoscopic partial pleurectomy versus talc pleurodesis in patients with malignant pleural mesothelioma (MesoVATS): an open-label, randomised, controlled trial. Lancet. 2014;384:1118–27.

    Article  PubMed  Google Scholar 

  19. ••Lim E, Darlison L, Edwards J, Elliott D, Fennell DA, Popat S, et al. Mesothelioma and Radical Surgery 2 (MARS 2): protocol for a multicentre randomised trial comparing (extended) pleurectomy decortication versus no (extended) pleurectomy decortication for patients with malignant pleural mesothelioma. BMJ Open. 2020;10:e038892. This study will be the first randomized trial to compare surgery in MPM, namely EPD vs. no EPD, with respect to overall survival, cost-effectiveness, and quality of life. Patients will be followed up at regular intervals for two years and the trial is currently recruiting. The study will also include an optional “informational study” focusing on the patient decision process to take part in research or not, with the aim of improving recruitment to clinical trials..

  20. Stahel RA, Riesterer O, Xyrafas A, Opitz I, Beyeler M, Ochsenbein A, et al. Neoadjuvant chemotherapy and extrapleural pneumonectomy of malignant pleural mesothelioma with or without hemithoracic radiotherapy (SAKK 17/04): a randomised, international, multicentre phase II trial. Lancet Oncol. 2015;16:1651–8.

    Article  PubMed  Google Scholar 

  21. Bayman N, Appel W, Ashcroft L, Baldwin DR, Bates A, Darlison L, et al. Prophylactic irradiation of tracts in patients with malignant pleural mesothelioma: an open-label, multicenter, phase III randomized trial. J Clin Oncol. 2019;37:1200–8.

    Article  CAS  PubMed  Google Scholar 

  22. Clive AO, Taylor H, Dobson L, Wilson P, de Winton E, Panakis N, et al. Prophylactic radiotherapy for the prevention of procedure-tract metastases after surgical and large-bore pleural procedures in malignant pleural mesothelioma (SMART): a multicentre, open-label, phase III, randomised controlled trial. Lancet Oncol. 2016;17:1094–104.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rimner A, Hu C, Rusch VW, Gill RR, Ii CBS, Zauderer M, et al. A phase III randomized trial of pleurectomy/decortication plus chemotherapy with or without adjuvant hemithoracic intensity-modulated pleural radiation therapy (IMPRINT) for Malignant pleural mesothelioma (MPM) (NRG LU-006). Int J Radiat Oncol Biol Phys. 2021;111:e463–4.

    Article  Google Scholar 

  24. Ashton M, O’Rourke N, Macleod N, Laird B, Stobo J, Kelly C, et al. SYSTEMS-2: a randomised phase II study of radiotherapy dose escalation for pain control in malignant pleural mesothelioma. Clin Transl Radiat Oncol. 2017;8:45–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol. 2003;21:2636–44.

    Article  CAS  PubMed  Google Scholar 

  26. van Meerbeeck JP, Gaafar R, Manegold C, Van Klaveren RJ, Van Marck EA, Vincent M, et al. Randomized phase III study of cisplatin with or without raltitrexed in patients with malignant pleural mesothelioma: an intergroup study of the European Organisation for Research and Treatment of Cancer Lung Cancer Group and the National Cancer Institute of Canada. J Clin Oncol. 2005;23:6881–9.

    Article  PubMed  Google Scholar 

  27. Kindler HL, Millard F, Herndon JE, Vogelzang NJ, Suzuki Y, Green MR. Gemcitabine for malignant mesothelioma: a phase II trial by the Cancer and Leukemia Group B. Lung Cancer. 2001;31:311–7.

    Article  CAS  PubMed  Google Scholar 

  28. Dudek AZ, Wang X, Gu L, Duong S, Stinchcombe TE, Kratzke R, et al. Randomized study of maintenance pemetrexed versus observation for treatment of malignant pleural mesothelioma: CALGB 30901. Clin Lung Cancer. 2020;21:553-561.e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wedge SR, Kendrew J, Hennequin LF, Valentine PJ, Barry ST, Brave SR, et al. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res. 2005;65:4389–400.

    Article  CAS  PubMed  Google Scholar 

  30. Garland LL, Chansky K, Wozniak AJ, Tsao AS, Gadgeel SM, Verschraegen CF, et al. Phase II study of cediranib in patients with malignant pleural mesothelioma: SWOG S0509. J Thorac Oncol. 2011;6:1938–45.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tsao AS, Miao J, Wistuba II, Vogelzang NJ, Heymach JV, Fossella FV, et al. Phase II trial of cediranib in combination with cisplatin and pemetrexed in chemotherapy-naïve patients with unresectable malignant pleural mesothelioma (SWOG S0905). J Clin Oncol. 2019;37:2537–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grosso F, Steele N, Novello S, Nowak AK, Popat S, Greillier L, et al. Nintedanib plus pemetrexed/cisplatin in patients with malignant pleural mesothelioma: phase II results from the randomized, placebo-controlled LUME-meso trial. J Clin Oncol. 2017;35:3591–600.

    Article  CAS  PubMed  Google Scholar 

  33. Zalcman G, Mazieres J, Margery J, Greillier L, Audigier-Valette C, Moro-Sibilot D, et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet. 2016;387:1405–14.

    Article  CAS  PubMed  Google Scholar 

  34. ••Pinto C, Zucali PA, Pagano M, Grosso F, Pasello G, Garassino MC, et al. Gemcitabine with or without ramucirumab as second-line treatment for malignant pleural mesothelioma (RAMES): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2021;22:1438–47 This multi-center, randomized, double-blind, placebo-controlled phase II trial in Italy showed that gemcitabine plus ramucirumab resulted in significantly increased overall survival compared to gemcitabine plus placebo for patients with MPM that progressed on first-line treatment, with an acceptable safety profile (no treatment-related deaths; the most common serious adverse event was thromboembolism in 4% of the ramucirumab group vs. 2% of the placebo group)..

  35. •Popat S, Curioni-Fontecedro A, Dafni U, Shah R, O’Brien M, Pope A, et al. A multicentre randomised phase III trial comparing pembrolizumab versus single-agent chemotherapy for advanced pre-treated malignant pleural mesothelioma: the European Thoracic Oncology Platform (ETOP 9–15) PROMISE-meso trial. Ann Oncol. 2020;31:1734–45. This multi-center, randomized, open label phase III trial in Spain, Switzerland, and the U.K. was the first randomized trial to evaluate pembrolizumab (anti-PD1 agent) in MPM patients who progressed on frontline chemotherapy. The trial showed that pembrolizumab led to higher objective response rate (22% versus 6%, p=0.004) but did not ultimately improve PFS or OS compared to institutional choice single-agent chemotherapy (gemcitabine or vinorelbine) in relapsed MPM patients with progression after/on previous platinum-based chemotherapy..

  36. •Fennell DA, Ewings S, Ottensmeier C, Califano R, Hanna GG, Hill K, et al. Nivolumab versus placebo in patients with relapsed malignant mesothelioma (CONFIRM): a multicentre, double-blind, randomised, phase 3 trial. Lancet Oncol. 2021;22:1530–40. This multi-center, randomized, double-blind, placebo-controlled phase III trial in the U.K. investigated the efficacy of nivolumab (anti-PD1 agent) after progression on frontline chemotherapy. The trial showed that PFS and OS were both improved in the nivolumab group compared to the placebo group (3 months versus 1.8 months, and 10.2 versus 6.9 months, respectively; both p-values< 0.01). With these results, CONFIRM became the first phase 3 trial to show improved survival for patients with pleural or peritoneal malignant mesothelioma who have progressed following platinum-based chemotherapy..

  37. ••Baas P, Scherpereel A, Nowak AK, Fujimoto N, Peters S, Tsao AS, et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial. Lancet. 2021;397:375–86. This multi-center, randomized, open-label phase III trial across 21 countries investigated the use of first line nivolumab plus ipilimumab (PD-1 plus CTLA-4 inhibition) versus standard first line platinum plus pemetrexed chemotherapy and found that nivolumab plus ipilimumab significantly extended overall survival (median OS 18.1 months versus 14.1 months; p=0.0020). These notable results led to approval of this first-in-class regimen in the USA as of October 2020, for previously untreated unresectable MPM..

  38. •Nowak A, Kok P, Lesterhuis W, Hughes B, Brown C, Kao S, et al. OA08.02 DREAM - a phase 2 trial of durvalumab with first line chemotherapy in mesothelioma: final result. Journal of Thoracic Oncology. 2018;13:S338-9. This multi-center, open-label phase II trial in Australia examined the effect of durvalumab (anti-PD-L1 agent), given during and after first-line chemotherapy with cisplatin and pemetrexed in patients with advanced MPM. 57% of patients were alive and progression free at 6 months, prompting a randomized phase III trial DREAM3R..

  39. ••PrECOG, LLC. DREAM3R: DuRvalumab (MEDI4736) With chemotherapy as first line treatment in advanced pleural mesothelioma - a phase 3 randomised trial [Internet]. clinicaltrials.gov; 2022 Mar. Report No.: NCT04334759. Available from: . https://clinicaltrials.gov/ct2/show/NCT04334759This multi-center, randomized, open-label phase III trial in the U.S., Australia, and New Zealand builds on the DREAM trial and will explore durvalumab (anti-PD-L1 agent) with standard chemotherapy followed by maintenance durvalumab versus standard chemotherapy followed by observation, in the frontline setting for advanced MPM. The study is currently recruiting and estimated to reach completion December 2025.

  40. Forde PM, Anagnostou V, Sun Z, Dahlberg SE, Kindler HL, Niknafs N, et al. Durvalumab with platinum-pemetrexed for unresectable pleural mesothelioma: survival, genomic and immunologic analyses from the phase 2 PrE0505 trial. Nat Med. 2021;27:1910–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. ••Canadian Cancer Trials Group. A phase II/III randomized study of pembrolizumab in patients with advanced malignant pleural mesothelioma [Internet]. clinicaltrials.gov; 2022 Jan. Report No.: NCT02784171. Available from: https://clinicaltrials.gov/ct2/show/NCT02784171.This multi-center, randomized, open-label phase II/III trial in Canada, France, and Italy is investigating pembrolizumab (anti-PD1 agent) in combination with frontline chemotherapy and as single agent maintenance therapy versus frontline chemotherapy alone. The study is active but not recruiting, and estimated completion is December 2022.

  42. Horn L, Mansfield AS, Szczęsna A, Havel L, Krzakowski M, Hochmair MJ, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. New England Journal of Medicine [Internet]. 2018 [cited 2022 Mar 23]; Available from: https://www.nejm.org/doi/https://doi.org/10.1056/nejmoa1809064

  43. Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N Engl J Med. 2018;378:2078–92.

    Article  CAS  PubMed  Google Scholar 

  44. ••European Thoracic Oncology Platform. A multicentre randomised phase III trial comparing atezolizumab plus bevacizumab and standard chemotherapy versus bevacizumab and standard chemotherapy as first-line treatment for advanced malignant pleural mesothelioma [Internet]. clinicaltrials.gov; 2021 Apr. Report No.: NCT03762018. Available from:https://clinicaltrials.gov/ct2/show/NCT03762018. This multi-center, randomized, open-label phase III trial in Belgium, France, Italy, Spain, Switzerland, and the U.K. is studying atezolizumab (anti-PD-L1 agent) with bevacizumab (anti-VEGF-A) plus chemotherapy versus bevacizumab plus chemotherapy without immune checkpoint inhibitor therapy in the frontline setting for advanced MPM. The study is currently recruiting and estimated to reach completion in January 2024.

  45. Bueno R, Stawiski EW, Goldstein LD, Durinck S, De Rienzo A, Modrusan Z, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48:407–16.

    Article  CAS  PubMed  Google Scholar 

  46. Hmeljak J, Sanchez-Vega F, Hoadley KA, Shih J, Stewart C, Heiman D, et al. Integrative molecular characterization of malignant pleural mesothelioma. Cancer Discov. 2018;8:1548–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mansfield AS, Peikert T, Smadbeck J, Udell J, Garcia-Rivera E, Elsbernd L, et al. Neoantigenic potential of complex chromosomal rearrangements in mesothelioma. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer [Internet]. 2019 [cited 2022 Mar 23];14. Available from: https://pubmed.ncbi.nlm.nih.gov/30316012/

  48. •Kosari F, Disselhorst M, Yin J, Peikert T, Udell J, Johnson S, et al. Tumor junction burden and antigen presentation as predictors of survival in mesothelioma treated with immune checkpoint inhibitors. J Thorac Oncol. 2022;17:446–54. This study performed genomic analysis on pleural biopsies of mesothelioma after at least one of line of therapy (n=44) before treatment with single agent nivolumab (anti-PD1 agent) or together with ipilimumab (anti-CTLA-4 agent). They identified junctions resulting from chromosomal rearrangements and antigen processing and presentation gene set expression and estimated associations with OS using Cox models. They found that tumor junction burdens were not predictive of OS, but the “regulation of antigen processing and presentation of peptide antigen” gene set revealed an interaction with tumor junction burden and was predictive of OS. However, this interaction was not predictive of OS in a different cohort of MPM patients who did not receive immune checkpoint inhibitor (ICI) therapy. These results suggest that genomic analysis represents a tool for stratification and prognostication in MPM patients being considered for ICI therapy..

  49. Park, J.H, Geyer M.B., et al. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date | Blood | American Society of Hematology [Internet]. [cited 2022 Mar 9]. Available from: https://ashpublications.org/blood/article/127/26/3312/35352/CD19-targeted-CAR-T-cell-therapeutics-for

  50. Ordóñez NG. Value of mesothelin immunostaining in the diagnosis of mesothelioma. Mod Pathol. 2003;16:192–7.

    Article  PubMed  Google Scholar 

  51. Maus MV, Haas AR, Beatty GL, Albelda SM, Levine BL, Liu X, et al. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res. 2013;1:26–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Klampatsa A, Haas AR, Moon EK, Albelda SM. Chimeric antigen receptor (CAR) T cell therapy for malignant pleural mesothelioma (MPM). Cancers (Basel). 2017;9.

  53. Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res. 2014;2:112–20.

    Article  CAS  PubMed  Google Scholar 

  54. Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest. 2016;126:3130–44.

    Article  PubMed  PubMed Central  Google Scholar 

  55. •Adusumilli PS, Zauderer MG, Rivière I, Solomon SB, Rusch VW, O’Cearbhaill RE, et al. A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti–PD-1 agent pembrolizumab regional CAR T-cell therapy for mesothelioma. Cancer Discov. 2021;11:2748–63. This single-center, open-label, dose-escalating, first-in-human, phase I trial of interpleural delivery of mesothelin-targeted CAR T cells in combination with pembrolizumab (anti-PD1 agent) in patients with previously treated MPM and showed median OS 23.9 months with acceptable safety profile. These findings support the continued investigation of combination immunotherapy with ICI and CAR T cell therapies..

  56. Hegmans JP, Veltman JD, Lambers ME, de Vries IJM, Figdor CG, Hendriks RW, et al. Consolidative dendritic cell-based immunotherapy elicits cytotoxicity against malignant mesothelioma. Am J Respir Crit Care Med. 2010;181:1383–90.

    Article  CAS  PubMed  Google Scholar 

  57. Aerts JGJV, de Goeje PL, Cornelissen R, Kaijen-Lambers MEH, Bezemer K, van der Leest CH, et al. Autologous dendritic cells pulsed with allogeneic tumor cell lysate in mesothelioma: from mouse to human. Clin Cancer Res. 2018;24:766–76.

    Article  CAS  PubMed  Google Scholar 

  58. Cornelissen R, Hegmans JPJJ, Maat APWM, Kaijen-Lambers MEH, Bezemer K, Hendriks RW, et al. Extended tumor control after dendritic cell vaccination with low-dose cyclophosphamide as adjuvant treatment in patients with malignant pleural mesothelioma. Am J Respir Crit Care Med. 2016;193:1023–31.

    Article  CAS  PubMed  Google Scholar 

  59. Belderbos RA, Baas P, Berardi R, Cornelissen R, Fennell DA, van Meerbeeck JP, et al. A multicenter, randomized, phase II/III study of dendritic cells loaded with allogeneic tumor cell lysate (MesoPher) in subjects with mesothelioma as maintenance therapy after chemotherapy: DENdritic cell Immunotherapy for Mesothelioma (DENIM) trial. Transl Lung Cancer Res. 2019;8:280–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Smythe WR, Kaiser LR, Hwang HC, Amin KM, Pilewski JM, Eck SJ, et al. Successful adenovirus-mediated gene transfer in an in vivo model of human malignant mesothelioma. Ann Thorac Surg. 1994;57:1395–401.

    Article  CAS  PubMed  Google Scholar 

  61. Kuryk L, Haavisto E, Garofalo M, Capasso C, Hirvinen M, Pesonen S, et al. Synergistic anti-tumor efficacy of immunogenic adenovirus ONCOS-102 (Ad5/3-D24-GM-CSF) and standard of care chemotherapy in preclinical mesothelioma model. Int J Cancer. 2016;139:1883–93.

    Article  CAS  PubMed  Google Scholar 

  62. University of Pennsylvania. A phase I clinical trial of repeated dose intrapleural adenoviral-mediated interferon-beta (BG00001, Ad.hIFN-β for pleural malignancies [Internet]. clinicaltrials.gov; 2020 Mar. Report No.: NCT00299962. Available from: https://clinicaltrials.gov/ct2/show/NCT00299962

  63. Abramson Cancer Center of the University of Pennsylvania. A pilot study of repeated dose intrapleural adenoviral-mediated interferon-alpha (SCH 721015, Ad.hIFN-a2b) gene transfer for malignant pleural mesothelioma [Internet]. clinicaltrials.gov; 2015 Sep. Report No.: NCT01212367. Available from: https://clinicaltrials.gov/ct2/show/NCT01212367

  64. Targovax Oy. A randomised phase II open-label study with a phase Ib safety lead-in Cohort of ONCOS-102, an immune-priming GM-CSF coding oncolytic adenovirus, and pemetrexed/cisplatin in patients with unresectable malignant pleural mesothelioma [Internet]. clinicaltrials.gov; 2020 Oct. Report No.: NCT02879669. Available from: https://clinicaltrials.gov/ct2/show/NCT02879669

  65. Trizell Ltd. A phase 3, open-label, randomized, parallel group study to evaluate the efficacy and safety of intrapleural administration of adenovirus-delivered interferon alpha-2b (rAd-IFN) in combination with celecoxib and gemcitabine in patients with malignant pleural mesothelioma [Internet]. clinicaltrials.gov; 2021 Oct. Report No.: NCT03710876. Available from: https://clinicaltrials.gov/ct2/show/NCT03710876

  66. Abramson Cancer Center of the University of Pennsylvania. A pilot and feasibility trial evaluating two different chemotherapy regimens in combination with intrapleural adenoviral-mediated interferon-alpha gene transfer for malignant pleural mesothelioma [Internet]. clinicaltrials.gov; 2020 Mar. Report No.: NCT01119664. Available from: https://clinicaltrials.gov/ct2/show/NCT01119664

  67. Momotaro-Gene Inc. A phase 2, open-label, single-center study of MTG201 in combination with nivolumab in patients with relapsed malignant pleural mesothelioma [Internet]. clinicaltrials.gov; 2019 Oct. Report No.: NCT04013334. Available from: https://clinicaltrials.gov/ct2/show/NCT04013334

  68. Adusumilli PS, Stiles BM, Chan M-K, Mullerad M, Eisenberg DP, Ben-Porat L, et al. Imaging and therapy of malignant pleural mesothelioma using replication-competent herpes simplex viruses. J Gene Med. 2006;8:603–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li H, Peng K-W, Dingli D, Kratzke RA, Russell SJ. Oncolytic measles viruses encoding interferon beta and the thyroidal sodium iodide symporter gene for mesothelioma virotherapy. Cancer Gene Ther. 2010;17:550–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kelly KJ, Woo Y, Brader P, Yu Z, Riedl C, Lin S-F, et al. Novel oncolytic agent GLV-1h68 is effective against malignant pleural mesothelioma. Hum Gene Ther. 2008;19:774–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Silberhumer GR, Brader P, Wong J, Serganova IS, Gönen M, Gonzalez SJ, et al. Genetically engineered oncolytic Newcastle disease virus effectively induces sustained remission of malignant pleural mesothelioma. Mol Cancer Ther. 2010;9:2761–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kawasaki Y, Tamamoto A, Takagi-Kimura M, Maeyama Y, Yamaoka N, Terada N, et al. Replication-competent retrovirus vector-mediated prodrug activator gene therapy in experimental models of human malignant mesothelioma. Cancer Gene Ther. 2011;18:571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Comins C, Spicer J, Protheroe A, Roulstone V, Twigger K, White CM, et al. REO-10: a phase I study of intravenous reovirus and docetaxel in patients with advanced cancer. Clin Cancer Res. 2010;16:5564–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Memorial Sloan Kettering Cancer Center. Phase I study of intra-pleural administration of GL-ONC1, a genetically modified vaccinia virus, in patients with malignant pleural effusion: primary, metastases and mesothelioma [Internet]. clinicaltrials.gov; 2022 Feb. Report No.: NCT01766739. Available from: https://clinicaltrials.gov/ct2/show/NCT01766739

  75. Kelly K. An Open Label, Non-randomized phase 1b study to investigate the safety and effect of the oncolytic virus GL-ONC1 administered intravenously prior to surgery to patients with solid organ cancers undergoing surgery for curative-intent or palliative resection [Internet]. clinicaltrials.gov; 2020 Mar. Report No.: NCT02714374. Available from: https://clinicaltrials.gov/ct2/show/NCT02714374

  76. Wales Cancer Trials Unit. A phase II trial to assess the safety, immunological activity of TroVax® plus pemetrexed/cisplatin in patients with malignant pleural mesothelioma [Internet]. clinicaltrials.gov; 2013 Mar. Report No.: NCT01569919. Available from: https://clinicaltrials.gov/ct2/show/NCT01569919

  77. Jensen DE, Proctor M, Marquis ST, Gardner HP, Ha SI, Chodosh LA, et al. BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene. 1998;16:1097–112.

    Article  CAS  PubMed  Google Scholar 

  78. Nishikawa H, Wu W, Koike A, Kojima R, Gomi H, Fukuda M, et al. BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Res. 2009;69:111–9.

    Article  CAS  PubMed  Google Scholar 

  79. Hauri S, Comoglio F, Seimiya M, Gerstung M, Glatter T, Hansen K, et al. A high-density map for navigating the human polycomb complexome. Cell Rep. 2016;17:583–95.

    Article  CAS  PubMed  Google Scholar 

  80. Carbone M, Harbour JW, Brugarolas J, Bononi A, Pagano I, Dey A, et al. Biological mechanisms and clinical significance of BAP1 mutations in human cancer. Cancer Discov. 2020;10:1103–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Carbone M, Yang H, Pass HI, Krausz T, Testa JR, Gaudino G. BAP1 and cancer. Nat Rev Cancer. 2013;13:153–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Carbone M, Adusumilli PS, Alexander HR, Baas P, Bardelli F, Bononi A, et al. Mesothelioma: scientific clues for prevention, diagnosis, and therapy. CA Cancer J Clin. 2019;69:402–29.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Testa JR, Cheung M, Pei J, Below JE, Tan Y, Sementino E, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43:1022–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Carbone M, Ferris LK, Baumann F, Napolitano A, Lum CA, Flores EG, et al. BAP1 cancer syndrome: malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs. J Transl Med. 2012;10:179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Haugh AM, Njauw C-N, Bubley JA, Verzì AE, Zhang B, Kudalkar E, et al. Genotypic and phenotypic features of BAP1 cancer syndrome: a report of 8 new families and review of cases in the literature. JAMA Dermatol. 2017;153:999–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pastorino S, Yoshikawa Y, Pass HI, Emi M, Nasu M, Pagano I, et al. A subset of mesotheliomas with improved survival occurring in carriers of BAP1 and other germline mutations. JCO. 2018;36:3485–94.

    Article  CAS  Google Scholar 

  87. Baumann F, Flores E, Napolitano A, Kanodia S, Taioli E, Pass H, et al. Mesothelioma patients with germline BAP1 mutations have 7-fold improved long-term survival. Carcinogenesis. 2015;36:76–81.

    Article  CAS  PubMed  Google Scholar 

  88. •Fennell DA, King A, Mohammed S, Branson A, Brookes C, Darlison L, et al. Rucaparib in patients with BAP1-deficient or BRCA1-deficient mesothelioma (MiST1): an open-label, single-arm, phase 2a clinical trial. Lancet Respir Med. 2021;9:593–600. This single-center, open-label, phase II trial in the U.K. investigated the use of rucaparib (PARP inhibition) in patients with cytoplasmic-BAP1-deficient or BRCA1-deficient mesothelioma (pleural or peritoneal or other primary localization), after at least one course of systemic therapy. Disease control rate at 12 weeks was 58%, at 24 weeks was 23%, and toxicities were manageable. This data supports further investigation of PARP inhibition in mesothelioma.

  89. Ghafoor A, Mian I, Wagner C, Mallory Y, Agra MG, Morrow B, et al. Phase 2 study of olaparib in malignant mesothelioma and correlation of efficacy with germline or somatic mutations in BAP1 gene. JTO Clin Res Rep. 2021;2: 100231.

    PubMed  PubMed Central  Google Scholar 

  90. Zauderer MG, Szlosarek P, Le Moulec S, Popat S, Taylor P, Planchard D, et al. Phase 2, multicenter study of the EZH2 inhibitor tazemetostat as monotherapy in adults with relapsed or refractory (R/R) malignant mesothelioma (MM) with BAP1 inactivation. JCO. 2018;36:8515–8515.

    Article  Google Scholar 

  91. Sato T, Sekido Y. NF2/merlin inactivation and potential therapeutic targets in mesothelioma. Int J Mol Sci. 2018;19.

  92. Bueno R, Stawiski EW, Goldstein LD, Durinck S, De Rienzo A, Modrusan Z, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48:407–16.

    Article  CAS  PubMed  Google Scholar 

  93. Miyanaga A, Masuda M, et al. Hippo pathway gene mutations in malignant mesothelioma: revealed by RNA and targeted exon sequencing. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer [Internet]. 2015 [cited 2022 Mar 10];10. Available from: https://pubmed.ncbi.nlm.nih.gov/25902174/

  94. Zhang W-Q, Dai Y-Y, Hsu P-C, Wang H, Cheng L, Yang Y-L, et al. Targeting YAP in malignant pleural mesothelioma. J Cell Mol Med. 2017;21:2663–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Illei PB, Rusch VW, Zakowski MF, Ladanyi M. Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas. Clin Cancer Res. 2003;9:2108–13.

    CAS  PubMed  Google Scholar 

  96. Sherr CJ. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol. 2001;2:731–7.

    Article  CAS  PubMed  Google Scholar 

  97. Guo G, Chmielecki J, Goparaju C, Heguy A, Dolgalev I, Carbone M, et al. Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma. Cancer Res. 2015;75:264–9.

    Article  CAS  PubMed  Google Scholar 

  98. Bonelli M, Digiacomo G, Fumarola C, et al. Combined inhibition of CDK4/6 and PI3K/AKT/mTOR pathways induces a synergistic anti-tumor effect in malignant pleural mesothelioma cells. Neoplasia (New York, NY) [Internet]. 2017 [cited 2022 Mar 10];19. Available from: https://pubmed.ncbi.nlm.nih.gov/28704762/

  99. Fennell DA, King A, Mohammed S, Greystoke A, Anthony S, Poile C, et al. Abemaciclib in patients with p16ink4A-deficient mesothelioma (MiST2): a single-arm, open-label, phase 2 trial. Lancet Oncol. 2022;23:374–81.

    Article  CAS  PubMed  Google Scholar 

  100. Panagopoulos I, Thorsen J, Gorunova L, Micci F, Haugom L, Davidson B, et al. RNA sequencing identifies fusion of the EWSR1 and YY1 genes in mesothelioma with t(14;22)(q32;q12). Genes Chromosomes Cancer. 2013;52:733–40.

    Article  CAS  PubMed  Google Scholar 

  101. Desmeules P, Joubert P, Zhang L, Al-Ahmadie HA, Fletcher CD, Vakiani E, et al. A subset of malignant mesotheliomas in young adults are associated with recurrent EWSR1/FUS-ATF1 fusions. Am J Surg Pathol. 2017;41:980–8.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Loharamtaweethong K, Puripat N, Aoonjai N, Sutepvarnon A, Bandidwattanawong C. Anaplastic lymphoma kinase (ALK) translocation in paediatric malignant peritoneal mesothelioma: a case report of novel ALK-related tumour spectrum. Histopathology. 2016;68:603–7.

    Article  PubMed  Google Scholar 

  103. Hung YP, Dong F, Watkins JC, Nardi V, Bueno R, Dal Cin P, et al. Identification of ALK rearrangements in malignant peritoneal mesothelioma. JAMA Oncol. 2018;4:235–8.

    Article  PubMed  Google Scholar 

  104. Awad DMM, Shaw DAT. ALK inhibitors in non–small cell lung cancer: crizotinib and beyond. Clin Adv Hematol Oncol. 2014;12:429.

    PubMed  PubMed Central  Google Scholar 

  105. Mansfield AS, Wei Z, Mehra R, Shaw AT, Lieu CH, Forde PM, et al. Crizotinib in patients with tumors harboring ALK or ROS1 rearrangements in the NCI-MATCH trial. NPJ Precis Oncol. 2022;6:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hassan R, Cohen SJ, Phillips M, Pastan I, Sharon E, Kelly RJ, et al. Phase I clinical trial of the chimeric anti-mesothelin monoclonal antibody MORAb-009 in patients with mesothelin-expressing cancers. Clin Cancer Res. 2010;16:6132–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hassan R, Kindler HL, Jahan T, Bazhenova L, Reck M, Thomas A, et al. Phase II clinical trial of amatuximab, a chimeric antimesothelin antibody with pemetrexed and cisplatin in advanced unresectable pleural mesothelioma. Clin Cancer Res. 2014;20:5927–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Le DT, Brockstedt DG, Nir-Paz R, Hampl J, Mathur S, Nemunaitis J, et al. A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction. Clin Cancer Res. 2012;18:858–68.

    Article  CAS  PubMed  Google Scholar 

  109. Hassan R, Bullock S, Premkumar A, Kreitman RJ, Kindler H, Willingham MC, et al. Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus I.V. infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers. Clin Cancer Res. 2007;13:5144–9.

    Article  CAS  PubMed  Google Scholar 

  110. Hassan R, Alley E, Kindler H, Antonia S, Jahan T, Honarmand S, et al. Clinical Response of live-attenuated, Listeria monocytogenes expressing mesothelin (CRS-207) with chemotherapy in patients with malignant pleural mesothelioma. Clin Cancer Res. 2019;25:5787–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hassan R, Miller AC, Sharon E, Thomas A, Reynolds JC, Ling A, et al. Major cancer regressions in mesothelioma after treatment with an anti-mesothelin immunotoxin and immune suppression. Sci Transl Med. 2013;5:208ra147.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Krug LM, Tsao AS, Kass S, Rusch VW, Travis WD, Panageas K, et al. Randomized, double-blinded, phase II trial of a WT1 peptide vaccine as adjuvant therapy in patients with malignant pleural mesothelioma (MPM). JCO. 2011;29:TPS139.

    Article  Google Scholar 

  113. Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Molecular Cancer [Internet]. 2021 [cited 2022 Mar 24];20. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905014/

  114. Lee BY, Timpson P, Horvath LG, Daly RJ. FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther. 2015;146:132–49.

    Article  CAS  PubMed  Google Scholar 

  115. Poulikakos PI, Xiao G-H, Gallagher R, Jablonski S, Jhanwar SC, Testa JR. Re-expression of the tumor suppressor NF2/merlin inhibits invasiveness in mesothelioma cells and negatively regulates FAK. Oncogene. 2006;25:5960–8.

    Article  CAS  PubMed  Google Scholar 

  116. Soria JC, Gan HK, Blagden SP, Plummer R, Arkenau HT, Ranson M, et al. A phase I, pharmacokinetic and pharmacodynamic study of GSK2256098, a focal adhesion kinase inhibitor, in patients with advanced solid tumors. Ann Oncol. 2016;27:2268–74.

    Article  CAS  PubMed  Google Scholar 

  117. Mak G, Soria J-C, Blagden SP, Plummer R, Fleming RA, Nebot N, et al. A phase Ib dose-finding, pharmacokinetic study of the focal adhesion kinase inhibitor GSK2256098 and trametinib in patients with advanced solid tumours. Br J Cancer. 2019;120:975–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jagadeeswaran R, Ma PC, Seiwert TY, Jagadeeswaran S, Zumba O, Nallasura V, et al. Functional analysis of c-Met/hepatocyte growth factor pathway in malignant pleural mesothelioma. Cancer Res. 2006;66:352–61.

    Article  CAS  PubMed  Google Scholar 

  119. Bois MC, Mansfield AS, Sukov WR, Jenkins SM, Moser JC, Sattler CA, et al. c-Met expression and MET amplification in malignant pleural mesothelioma. Ann Diagn Pathol. 2016;23:1–7.

    Article  PubMed  Google Scholar 

  120. Kanteti R, Dhanasingh I, Kawada I, Lennon FE, Arif Q, Bueno R, et al. MET and PI3K/mTOR as a potential combinatorial therapeutic target in malignant pleural mesothelioma. PLoS ONE. 2014;9: e105919.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Santoro A. Phase I-Ib study of the combination of tivantinib plus pemetrexed and carboplatin as first-line therapy in patients with advanced or metastatic cancer suitable for a carboplatin and pemetrexed regimen as part of their specific therapy [Internet]. clinicaltrials.gov; 2021 Jan. Report No.: NCT02049060. Available from: https://clinicaltrials.gov/ct2/show/NCT02049060

  122. Frank AL, Joshi TK. The global spread of asbestos. Ann Glob Health. 2014;80:257–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron S. Mansfield.

Ethics declarations

Conflict of Interest

Nirosha D. Perera declares no conflict of interest. A.S.Mansfield reports grants and other support from the NCI, DoD, the Mark Foundation, Bristol-Myers Squibb, Novartis, and Verily; other support to his institution from Rising Tide, TRIPTYCH Health Partners Expert Think Tank, Janssen, BeiGene, Chugai Pharmaceutical (Roche), Ideology Health, Miami Int’l Mesothelioma Symposium Presenter, AXIS Medical Education CME Presentation, Johnson & Johnson Global Services, Intellisphere CME Presentation, Answers In CME, Roche, AbbVie Advisory Board, AstraZeneca Advisory Board, Bristol-Myers Squibb Advisory Board; personal fees from Antoni van Leeuwenhoek Kanker Instituutt–CME Presenter; and Genentech/Roche Advisory Board outside the submitted work; and is a Mesothelioma Applied Research Foundation–Non-remunerated Director.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Lung Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perera, N.D., Mansfield, A.S. The Evolving Therapeutic Landscape for Malignant Pleural Mesothelioma. Curr Oncol Rep 24, 1413–1423 (2022). https://doi.org/10.1007/s11912-022-01302-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-022-01302-3

Keywords

Navigation