Skip to main content

Advertisement

Log in

Percutaneous Management of Breast Cancer: a Systematic Review

  • Interventional Oncology (DC Madoff, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Surgical treatment of breast cancer is becoming increasingly more minimally invasive. We review the development status of percutaneous management for primary breast cancer and the evidence relating to tumor size as a fundamental determinant of treatment clinical outcome.

Recent Findings

It is safe and feasible for percutaneous management to treat breast cancer. For tumor size ≤ 2 cm, percutaneous management is a promising alternative modality. For tumor size ≤ 3 cm, it is controversial whether percutaneous management can achieve similar effects to surgery, especially its long-term effects. For tumor size > 3 cm, it is still in the initial exploration stage and showed the potential in the treatment of unresectable cancer by benefitting the local control of primary cancer.

Summary

Percutaneous management of breast cancer is a valuable method for breast cancer treatment in selected patients. However, it will be necessary to provide the high level of evidence for widespread clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  2. • Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. https://doi.org/10.3322/caac.21654 Erratum in: CA Cancer J Clin. 2021;71(4):359. This article provides the latest epidemiological data on breast cancer.

    Article  PubMed  Google Scholar 

  3. Veronesi U, Cascinelli N, Mariani L, Greco M, Saccozzi R, Luini A, et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med. 2002;347(16):1227–32. https://doi.org/10.1056/NEJMoa020989.

    Article  PubMed  Google Scholar 

  4. Goh BK, Yong WS. Eighteen-year results in the treatment of early breast carcinoma with mastectomy versus breast conservation therapy. Cancer. 2004;100(8):1766; author reply 7. https://doi.org/10.1002/cncr.20173.

    Article  PubMed  Google Scholar 

  5. Litiere S, Werutsky G, Fentiman IS, Rutgers E, Christiaens MR, Van Limbergen E, et al. Breast conserving therapy versus mastectomy for stage I-II breast cancer: 20 year follow-up of the EORTC 10801 phase 3 randomised trial. Lancet Oncol. 2012;13(4):412–9. https://doi.org/10.1016/S1470-2045(12)70042-6.

    Article  PubMed  Google Scholar 

  6. Lagendijk M, van Maaren MC, Saadatmand S, Strobbe LJA, Poortmans PMP, Koppert LB, et al. Breast conserving therapy and mastectomy revisited: breast cancer-specific survival and the influence of prognostic factors in 129,692 patients. Int J Cancer. 2018;142(1):165–75. https://doi.org/10.1002/ijc.31034.

    Article  CAS  PubMed  Google Scholar 

  7. Garcia-Tejedor A, Guma A, Soler T, Valdivieso A, Petit A, Contreras N, et al. Radiofrequency ablation followed by surgical excision versus lumpectomy for early stage breast cancer: a randomized phase II clinical trial. Radiology. 2018;289(2):317–24. https://doi.org/10.1148/radiol.2018180235.

    Article  PubMed  Google Scholar 

  8. • Roknsharifi S, Wattamwar K, Fishman MDC, Ward RC, Ford K, Faintuch S, et al. Image-guided microinvasive percutaneous treatment of breast lesions: where do we stand? Radiographics. 2021;41(4):945–66. https://doi.org/10.1148/rg.2021200156. This article is a recent review of image-guided treatment of breast lesions.

    Article  PubMed  Google Scholar 

  9. Peek MCL, Douek M. Ablative techniques for the treatment of benign and malignant breast tumours. J Ther Ultrasound. 2017;5:18. https://doi.org/10.1186/s40349-017-0097-8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Webb H, Lubner MG, Hinshaw JL. Thermal ablation. Semin Roentgenol. 2011;46(2):133–41. https://doi.org/10.1053/j.ro.2010.08.002.

    Article  PubMed  Google Scholar 

  11. Zhou W, Jiang Y, Chen L, Ling L, Liang M, Pan H, et al. Image and pathological changes after microwave ablation of breast cancer: a pilot study. Eur J Radiol. 2014;83(10):1771–7. https://doi.org/10.1016/j.ejrad.2014.06.015.

    Article  PubMed  Google Scholar 

  12. Zhou W, Zha X, Liu X, Ding Q, Chen L, Ni Y, et al. US-guided percutaneous microwave coagulation of small breast cancers: a clinical study. Radiology. 2012;263(2):364–73. https://doi.org/10.1148/radiol.12111901.

    Article  PubMed  Google Scholar 

  13. • Yu J, Han ZY, Li T, Feng WZ, Yu XL, Luo YC, et al. Microwave ablation versus nipple sparing mastectomy for breast cancer </=5 cm: a pilot cohort study. Front Oncol. 2020;10:546883. https://doi.org/10.3389/fonc.2020.546883. This study compares the efficacy of microwave ablation and breast conserving surgery for patients with breast cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Simmons RM, Ballman KV, Cox C, Carp N, Sabol J, Hwang RF, et al. A phase II trial exploring the success of cryoablation therapy in the treatment of invasive breast carcinoma: results from ACOSOG (Alliance) Z1072. Ann Surg Oncol. 2016;23(8):2438–45. https://doi.org/10.1245/s10434-016-5275-3.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schwartzberg B, Lewin J, Abdelatif O, Bernard J, Bu-Ali H, Cawthorn S, et al. Phase 2 open-label trial investigating percutaneous laser ablation for treatment of early-stage breast cancer: MRI, pathology, and outcome correlations. Ann Surg Oncol. 2018;25(10):2958–64. https://doi.org/10.1245/s10434-018-6623-2.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kinoshita T, Iwamoto E, Tsuda H, Seki K. Radiofrequency ablation as local therapy for early breast carcinomas. Breast Cancer. 2011;18(1):10–7. https://doi.org/10.1007/s12282-009-0186-9.

    Article  PubMed  Google Scholar 

  17. Weigelt B, Baehner FL, Reis-Filho JS. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol. 2010;220(2):263–80. https://doi.org/10.1002/path.2648.

    Article  CAS  PubMed  Google Scholar 

  18. Burak WE Jr, Agnese DM, Povoski SP, Yanssens TL, Bloom KJ, Wakely PE, et al. Radiofrequency ablation of invasive breast carcinoma followed by delayed surgical excision. Cancer. 2003;98(7):1369–76. https://doi.org/10.1002/cncr.11642.

    Article  PubMed  Google Scholar 

  19. Fornage BD, Sneige N, Ross MI, Mirza AN, Kuerer HM, Edeiken BS, et al. Small (< or = 2-cm) breast cancer treated with US-guided radiofrequency ablation: feasibility study. Radiology. 2004;231(1):215–24. https://doi.org/10.1148/radiol.2311030651.

    Article  PubMed  Google Scholar 

  20. Noguchi M, Earashi M, Fujii H, Yokoyama K, Harada K, Tsuneyama K. Radiofrequency ablation of small breast cancer followed by surgical resection. J Surg Oncol. 2006;93(2):120–8. https://doi.org/10.1002/jso.20398.

    Article  PubMed  Google Scholar 

  21. R2009Small breast cancers in vivo percutaneous US guided radiofrequency ablation with dedicated cool-tip radiofrequency system.pdf.

  22. Kreb DL, Looij BG, Ernst MF, Rutten MJ, Jager GJ, van der Linden JC, et al. Ultrasound-guided radiofrequency ablation of early breast cancer in a resection specimen: lessons for further research. Breast. 2013;22(4):543–7. https://doi.org/10.1016/j.breast.2012.11.004.

    Article  CAS  PubMed  Google Scholar 

  23. Schassburger KU, Lofgren L, Lagerstedt U, Leifland K, Thorneman K, Sandstedt B, et al. Minimally-invasive treatment of early stage breast cancer: a feasibility study using radiofrequency ablation under local anesthesia. Breast. 2014;23(2):152–8. https://doi.org/10.1016/j.breast.2013.12.007.

    Article  PubMed  Google Scholar 

  24. Khatri VP, McGahan JP, Ramsamooj R, Griffey S, Brock J, Cronan M, et al. A phase II trial of image-guided radiofrequency ablation of small invasive breast carcinomas: use of saline-cooled tip electrode. Ann Surg Oncol. 2007;14(5):1644–52. https://doi.org/10.1245/s10434-006-9315-2.

    Article  PubMed  Google Scholar 

  25. Noguchi M, Motoyoshi A, Earashi M, Fujii H. Long-term outcome of breast cancer patients treated with radiofrequency ablation. Eur J Surg Oncol. 2012;38(11):1036–42. https://doi.org/10.1016/j.ejso.2012.08.006.

    Article  CAS  PubMed  Google Scholar 

  26. Waaijer L, Kreb DL, Fernandez Gallardo MA, Van Rossum PS, Postma EL, Koelemij R, et al. Radiofrequency ablation of small breast tumours: evaluation of a novel bipolar cool-tip application. Eur J Surg Oncol. 2014;40(10):1222–9. https://doi.org/10.1016/j.ejso.2014.07.031.

    Article  CAS  PubMed  Google Scholar 

  27. Susini T, Nori J, Olivieri S, Livi L, Bianchi S, Mangialavori G, et al. Radiofrequency ablation for minimally invasive treatment of breast carcinoma. A pilot study in elderly inoperable patients. Gynecol Oncol. 2007;104(2):304–10. https://doi.org/10.1016/j.ygyno.2006.08.049.

    Article  PubMed  Google Scholar 

  28. R2007Radiofrequency ablation therapy in patients with breast cancers two centimeters or less in size.pdf.

  29. Nagashima T, Sakakibara M, Sangai T, Kazama T, Fujimoto H, Miyazaki M. Surrounding rim formation and reduction in size after radiofrequency ablation for primary breast cancer. Jpn J Radiol. 2009;27(5):197–204. https://doi.org/10.1007/s11604-009-0322-7.

    Article  PubMed  Google Scholar 

  30. Wiksell H, Lofgren L, Schassburger KU, Grundstrom H, Janicijevic M, Lagerstedt U, et al. Feasibility study on the treatment of small breast carcinoma using percutaneous US-guided preferential radiofrequency ablation (PRFA). Breast. 2010;19(3):219–25. https://doi.org/10.1016/j.breast.2010.01.016.

    Article  PubMed  Google Scholar 

  31. Ohtani S, Kochi M, Ito M, Higaki K, Takada S, Matsuura H, et al. Radiofrequency ablation of early breast cancer followed by delayed surgical resection--a promising alternative to breast-conserving surgery. Breast. 2011;20(5):431–6. https://doi.org/10.1016/j.breast.2011.04.007.

    Article  PubMed  Google Scholar 

  32. Yamamoto N, Fujimoto H, Nakamura R, Arai M, Yoshii A, Kaji S, et al. Pilot study of radiofrequency ablation therapy without surgical excision for T1 breast cancer: evaluation with MRI and vacuum-assisted core needle biopsy and safety management. Breast Cancer. 2011;18(1):3–9. https://doi.org/10.1007/s12282-010-0197-6.

    Article  PubMed  Google Scholar 

  33. Yoshinaga Y, Enomoto Y, Fujimitsu R, Shimakura M, Nabeshima K, Iwasaki A. Image and pathological changes after radiofrequency ablation of invasive breast cancer: a pilot study of nonsurgical therapy of early breast cancer. World J Surg. 2013;37(2):356–63. https://doi.org/10.1007/s00268-012-1820-9.

    Article  PubMed  Google Scholar 

  34. Manenti G, Scarano AL, Pistolese CA, Perretta T, Bonanno E, Orlandi A, et al. Subclinical breast cancer: minimally invasive approaches. Our experience with percutaneous radiofrequency ablation vs. cryotherapy. Breast Care (Basel). 2013;8(5):356–60. https://doi.org/10.1159/000355707.

    Article  Google Scholar 

  35. Nori J, Gill MK, Meattini I, Delli Paoli C, Abdulcadir D, Vanzi E, et al. The evolving role of ultrasound guided percutaneous laser ablation in elderly unresectable breast cancer patients: a feasibility pilot study. Biomed Res Int. 2018;2018:9141746. https://doi.org/10.1155/2018/9141746.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Merckel LG, Knuttel FM, Deckers R, van Dalen T, Schubert G, Peters NH, et al. First clinical experience with a dedicated MRI-guided high-intensity focused ultrasound system for breast cancer ablation. Eur Radiol. 2016;26(11):4037–46. https://doi.org/10.1007/s00330-016-4222-9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sabel MS, Kaufman CS, Whitworth P, Chang H, Stocks LH, Simmons R, et al. Cryoablation of early-stage breast cancer: work-in-progress report of a multi-institutional trial. Ann Surg Oncol. 2004;11(5):542–9. https://doi.org/10.1245/ASO.2004.08.003.

    Article  PubMed  Google Scholar 

  38. Roubidoux MA, Sabel MS, Bailey JE, Kleer CG, Klein KA, Helvie MA. Small (< 2.0-cm) breast cancers: mammographic and US findings at US-guided cryoablation--initial experience. Radiology. 2004;233(3):857–67. https://doi.org/10.1148/radiol.2333031734.

    Article  PubMed  Google Scholar 

  39. Pfleiderer SO, Marx C, Camara O, Gajda M, Kaiser WA. Ultrasound-guided, percutaneous cryotherapy of small (< or = 15 mm) breast cancers. Investig Radiol. 2005;40(7):472–7. https://doi.org/10.1097/01.rli.0000166935.56971.ff.

    Article  Google Scholar 

  40. Pusztaszeri M, Vlastos G, Kinkel K, Pelte MF. Histopathological study of breast cancer and normal breast tissue after magnetic resonance-guided cryotherapy ablation. Cryobiology. 2007;55(1):44–51. https://doi.org/10.1016/j.cryobiol.2007.05.002.

    Article  PubMed  Google Scholar 

  41. Manenti G, Perretta T, Gaspari E, Pistolese CA, Scarano L, Cossu E, et al. Percutaneous local ablation of unifocal subclinical breast cancer: clinical experience and preliminary results of cryotherapy. Eur Radiol. 2011;21(11):2344–53. https://doi.org/10.1007/s00330-011-2179-2.

    Article  PubMed  Google Scholar 

  42. Poplack SP, Levine GM, Henry L, Wells WA, Heinemann FS, Hanna CM, et al. A pilot study of ultrasound-guided cryoablation of invasive ductal carcinomas up to 15 mm with MRI follow-up and subsequent surgical resection. AJR Am J Roentgenol. 2015;204(5):1100–8. https://doi.org/10.2214/AJR.13.12325.

    Article  PubMed  PubMed Central  Google Scholar 

  43. • Fine RE, Gilmore RC, Dietz JR, Boolbol SK, Berry MP, Han LK, et al. Cryoablation without excision for low-risk early-stage breast cancer: 3-year interim analysis of ipsilateral breast tumor recurrence in the ICE3 trial. Ann Surg Oncol. 2021;28(10):5525–34. https://doi.org/10.1245/s10434-021-10501-4. The only prospective, multi-center study of ablation for breast was performed by using the CA technique.

    Article  PubMed  Google Scholar 

  44. Machida Y, Shimauchi A, Igarashi T, Fukuma E. MRI findings after cryoablation of primary breast cancer without surgical resection. Acad Radiol. 2019;26(6):744–51. https://doi.org/10.1016/j.acra.2018.07.012.

    Article  PubMed  Google Scholar 

  45. • Habrawi Z, Melkus MW, Khan S, Henderson J, Brandi L, Chu V, et al. Cryoablation: a promising non-operative therapy for low-risk breast cancer. Am J Surg. 2021;221(1):127–33. https://doi.org/10.1016/j.amjsurg.2020.07.028. The author suggested that in tumors > 1.5 cm, two or more probes should be used to achieve larger ablation area in the CA of breast cancer.

    Article  PubMed  Google Scholar 

  46. Izzo F, Thomas R, Delrio P, Rinaldo M, Vallone P, DeChiara A, et al. Radiofrequency ablation in patients with primary breast carcinoma: a pilot study in 26 patients. Cancer. 2001;92(8):2036–44. https://doi.org/10.1002/1097-0142(20011015)92:8<2036::aid-cncr1542>3.0.co;2-w.

  47. Hayashi AH, Silver SF, van der Westhuizen NG, Donald JC, Parker C, Fraser S, et al. Treatment of invasive breast carcinoma with ultrasound-guided radiofrequency ablation. Am J Surg. 2003;185(5):429–35. https://doi.org/10.1016/s0002-9610(03)00061-8.

    Article  PubMed  Google Scholar 

  48. Earashi M, Noguchi M, Motoyoshi A, Fujii H. Radiofrequency ablation therapy for small breast cancer followed by immediate surgical resection or delayed mammotome excision. Breast Cancer. 2007;14(1):39–47. https://doi.org/10.2325/jbcs.14.39.

    Article  PubMed  Google Scholar 

  49. Imoto S, Wada N, Sakemura N, Hasebe T, Murata Y. Feasibility study on radiofrequency ablation followed by partial mastectomy for stage I breast cancer patients. Breast. 2009;18(2):130–4. https://doi.org/10.1016/j.breast.2009.02.008.

    Article  PubMed  Google Scholar 

  50. Palussière J, Henriques C, Mauriac L, Asad-Syed M, Valentin F, Brouste V, et al. Radiofrequency ablation as a substitute for surgery in elderly patients with nonresected breast cancer: pilot study with long-term outcomes. Radiology. 2012;264(2):597–605. https://doi.org/10.1148/radiol.12111303.

    Article  PubMed  Google Scholar 

  51. Marcy PY, Magne N, Castadot P, Bailet C, Namer M. Ultrasound-guided percutaneous radiofrequency ablation in elderly breast cancer patients: preliminary institutional experience. Br J Radiol. 2007;80(952):267–73. https://doi.org/10.1259/bjr/91383984.

    Article  PubMed  Google Scholar 

  52. Vargas HI, Dooley WC, Gardner RA, Gonzalez KD, Heywang-Köbrunner SH, Fenn AJ. Success of sentinel lymph node mapping after breast cancer ablation with focused microwave phased array thermotherapy. Am J Surg. 2003;186(4):330–2. https://doi.org/10.1016/s0002-9610(03)00267-8.

    Article  PubMed  Google Scholar 

  53. Dooley WC, Vargas HI, Fenn AJ, Tomaselli MB, Harness JK. Focused microwave thermotherapy for preoperative treatment of invasive breast cancer: a review of clinical studies. Ann Surg Oncol. 2010;17(4):1076–93. https://doi.org/10.1245/s10434-009-0872-z.

    Article  PubMed  Google Scholar 

  54. Bloom KJ, Dowlat K, Assad L. Pathologic changes after interstitial laser therapy of infiltrating breast carcinoma. Am J Surg. 2001;182(4):384–8. https://doi.org/10.1016/s0002-9610(01)00732-2.

    Article  CAS  PubMed  Google Scholar 

  55. Dowlatshahi K, Francescatti DS, Bloom KJ. Laser therapy for small breast cancers. Am J Surg. 2002;184(4):359–63. https://doi.org/10.1016/s0002-9610(02)00942-x.

    Article  PubMed  Google Scholar 

  56. Gianfelice D, Khiat A, Boulanger Y, Amara M, Belblidia A. Feasibility of magnetic resonance imaging-guided focused ultrasound surgery as an adjunct to tamoxifen therapy in high-risk surgical patients with breast carcinoma. J Vasc Interv Radiol. 2003;14(10):1275–82. https://doi.org/10.1097/01.rvi.0000092900.73329.a2.

    Article  PubMed  Google Scholar 

  57. Zippel DB, Papa MZ. The use of MR imaging guided focused ultrasound in breast cancer patients; a preliminary phase one study and review. Breast Cancer. 2005;12(1):32–8. https://doi.org/10.2325/jbcs.12.32.

    Article  PubMed  Google Scholar 

  58. Furusawa H, Namba K, Thomsen S, Akiyama F, Bendet A, Tanaka C, et al. Magnetic resonance-guided focused ultrasound surgery of breast cancer: reliability and effectiveness. J Am Coll Surg. 2006;203(1):54–63. https://doi.org/10.1016/j.jamcollsurg.2006.04.002.

    Article  PubMed  Google Scholar 

  59. Cazzato RL, de Lara CT, Buy X, Ferron S, Hurtevent G, Fournier M, et al. Single-centre experience with percutaneous cryoablation of breast cancer in 23 consecutive non-surgical patients. Cardiovasc Intervent Radiol. 2015;38(5):1237–43. https://doi.org/10.1007/s00270-015-1181-5.

    Article  PubMed  Google Scholar 

  60. Furusawa H, Namba K, Nakahara H, Tanaka C, Yasuda Y, Hirabara E, et al. The evolving non-surgical ablation of breast cancer: MR guided focused ultrasound (MRgFUS). Breast Cancer. 2007;14(1):55–8. https://doi.org/10.2325/jbcs.14.55.

    Article  PubMed  Google Scholar 

  61. Khiat A, Gianfelice D, Amara M, Boulanger Y. Influence of post-treatment delay on the evaluation of the response to focused ultrasound surgery of breast cancer by dynamic contrast enhanced MRI. Br J Radiol. 2006;79(940):308–14. https://doi.org/10.1259/bjr/23046051.

    Article  CAS  PubMed  Google Scholar 

  62. Beji H, Pilleul F, Picard R, Tredan O, Bouhamama A, Peix M, et al. Percutaneous cryoablation of breast tumours in patients with stable metastatic breast cancer: safety, feasibility and efficacy. Br J Radiol. 2018;91(1083):20170500. https://doi.org/10.1259/bjr.20170500.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wu F, Wang ZB, Zhu H, Chen WZ, Zou JZ, Bai J, et al. Extracorporeal high intensity focused ultrasound treatment for patients with breast cancer. Breast Cancer Res Treat. 2005;92(1):51–60. https://doi.org/10.1007/s10549-004-5778-7.

    Article  PubMed  Google Scholar 

  64. Kim SH, Jung SE, Kim HL, Hahn ST, Park GS, Park WC. The potential role of dynamic MRI in assessing the effectiveness of high-intensity focused ultrasound ablation of breast cancer. Int J Hyperth. 2010;26(6):594–603. https://doi.org/10.3109/02656736.2010.481275.

    Article  Google Scholar 

  65. Ito T, Oura S, Nagamine S, Takahashi M, Yamamoto N, Yamamichi N, et al. Radiofrequency ablation of breast cancer: a retrospective study. Clin Breast Cancer. 2018;18(4):e495–500. https://doi.org/10.1016/j.clbc.2017.09.007.

    Article  PubMed  Google Scholar 

  66. Akimov AB, Seregin VE, Rusanov KV, Tyurina EG, Glushko TA, Nevzorov VP, et al. Nd: YAG interstitial laser thermotherapy in the treatment of breast cancer. Lasers Surg Med. 1998;22(5):257–67. https://doi.org/10.1002/(sici)1096-9101(1998)22:5<257::aid-lsm1>3.0.co;2-o.

  67. Vargas HI, Dooley WC, Gardner RA, Gonzalez KD, Venegas R, Heywang-Kobrunner SH, et al. Focused microwave phased array thermotherapy for ablation of early-stage breast cancer: results of thermal dose escalation. Ann Surg Oncol. 2004;11(2):139–46. https://doi.org/10.1245/aso.2004.03.059.

    Article  PubMed  Google Scholar 

  68. Morin J, Traoré A, Dionne G, Dumont M, Fouquette B, Dufour M, et al. Magnetic resonance-guided percutaneous cryosurgery of breast carcinoma: technique and early clinical results. Can J Surg J Can Chir. 2004;47(5):347–51.

    Google Scholar 

  69. Gardner RA, Vargas HI, Block JB, Vogel CL, Fenn AJ, Kuehl GV, et al. Focused microwave phased array thermotherapy for primary breast cancer. Ann Surg Oncol. 2002;9(4):326–32. https://doi.org/10.1007/bf02573866.

    Article  PubMed  Google Scholar 

  70. Jeffrey SS, Birdwell RL, Ikeda DM, Daniel BL, Nowels KW, Dirbas FM, et al. Radiofrequency ablation of breast cancer: first report of an emerging technology. Arch Surg (Chicago, Ill : 1960). 1999;134(10):1064–8. https://doi.org/10.1001/archsurg.134.10.1064.

    Article  CAS  Google Scholar 

  71. • Pusceddu C, Melis L, Ballicu N, Meloni P, Sanna V, Porcu A, et al. Cryoablation of primary breast cancer in patients with metastatic disease: considerations arising from a single-centre data analysis. Biomed Res Int. 2017;2017:3839012. https://doi.org/10.1155/2017/3839012. This study indicated CT-guided CA is a safe and effective option for the treatment of stage IV breast cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  72. van Esser S, Stapper G, van Diest PJ, van den Bosch MA, Klaessens JH, Mali WP, et al. Ultrasound-guided laser-induced thermal therapy for small palpable invasive breast carcinomas: a feasibility study. Ann Surg Oncol. 2009;16(8):2259–63. https://doi.org/10.1245/s10434-009-0544-z.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhang W, Wang W, Chai W, Luo X, Li J, Shi J, et al. Breast tissue ablation with irreversible electroporation in rabbits: a safety and feasibility study. PLoS One. 2017;12(7):e0181555. https://doi.org/10.1371/journal.pone.0181555.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Li S, Chen F, Shen L, Zeng Q, Wu P. Percutaneous irreversible electroporation for breast tissue and breast cancer: safety, feasibility, skin effects and radiologic-pathologic correlation in an animal study. J Transl Med. 2016;14(1):238. https://doi.org/10.1186/s12967-016-0993-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Harbeck N, Gnant M. Breast cancer. Lancet (London, England). 2017;389(10074):1134–50. https://doi.org/10.1016/s0140-6736(16)31891-8.

    Article  Google Scholar 

  76. Liang S, Niu L, Xu K, Wang X, Liang Y, Zhang M, et al. Tumor cryoablation in combination with natural killer cells therapy and Herceptin in patients with HER2-overexpressing recurrent breast cancer. Mol Immunol. 2017;92:45–53. https://doi.org/10.1016/j.molimm.2017.10.003.

    Article  CAS  PubMed  Google Scholar 

  77. • Zhou W, Yu M, Pan H, Qiu W, Wang H, Qian M, et al. Microwave ablation induces Th1-type immune response with activation of ICOS pathway in early-stage breast cancer. J Immunother Cancer. 2021;9(4). https://doi.org/10.1136/jitc-2021-002343. This study explored the immune mechanism induced by microwave ablation.

  78. Galimberti V, Cole BF, Zurrida S, Viale G, Luini A, Veronesi P, et al. Axillary dissection versus no axillary dissection in patients with sentinel-node micrometastases (IBCSG 23–01): a phase 3 randomised controlled trial. Lancet Oncol. 2013;14(4):297–305. https://doi.org/10.1016/s1470-2045(13)70035-4.

    Article  PubMed  PubMed Central  Google Scholar 

  79. • Samiei S, de Mooij CM, Lobbes MBI, Keymeulen K, van Nijnatten TJA, Smidt ML. Diagnostic performance of noninvasive imaging for assessment of axillary response after neoadjuvant systemic therapy in clinically node-positive breast cancer: a systematic review and meta-analysis. Ann Surg. 2021;273(4):694–700. https://doi.org/10.1097/SLA.0000000000004356. This review compared the ability of three imaging methods to detect axillary lymph nodes.

    Article  PubMed  Google Scholar 

  80. • An C, Li X, Zhang M, Yang J, Cheng Z, Yu X, et al. 3D visualization ablation planning system assisted microwave ablation for hepatocellular carcinoma (Diameter >3): a precise clinical application. BMC Cancer. 2020;20(1):44. https://doi.org/10.1186/s12885-020-6519-y. This study reported the treatment of liver cancer assisted by 3D visualization system.

    Article  PubMed  PubMed Central  Google Scholar 

  81. • Li X, An C, Liu F, Cheng Z, Han Z, Yu X, et al. The value of 3D visualization operative planning system in ultrasound-guided percutaneous microwave ablation for large hepatic hemangiomas: a clinical comparative study. BMC Cancer. 2019;19(1):550. https://doi.org/10.1186/s12885-019-5682-5. This study reported the treatment of liver cancer assisted by 3D visualization system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu F, Liang P, Yu X, Lu T, Cheng Z, Lei C, et al. A three-dimensional visualisation preoperative treatment planning system in microwave ablation for liver cancer: a preliminary clinical application. Int J Hyperth. 2013;29(7):671–7. https://doi.org/10.3109/02656736.2013.834383.

    Article  Google Scholar 

  83. Liberale G, Bourgeois P, Larsimont D, Moreau M, Donckier V, Ishizawa T. Indocyanine green fluorescence-guided surgery after IV injection in metastatic colorectal cancer: a systematic review. Eur J Surg Oncol. 2017;43(9):1656–67. https://doi.org/10.1016/j.ejso.2017.04.015.

    Article  CAS  PubMed  Google Scholar 

  84. Veys I, Pop FC, Vankerckhove S, Barbieux R, Chintinne M, Moreau M, et al. ICG-fluorescence imaging for detection of peritoneal metastases and residual tumoral scars in locally advanced ovarian cancer: a pilot study. J Surg Oncol. 2018;117(2):228–35. https://doi.org/10.1002/jso.24807.

    Article  PubMed  Google Scholar 

  85. Veys I, Pop CF, Barbieux R, Moreau M, Noterman D, De Neubourg F, et al. ICG fluorescence imaging as a new tool for optimization of pathological evaluation in breast cancer tumors after neoadjuvant chemotherapy. PLoS One. 2018;13(5):e0197857. https://doi.org/10.1371/journal.pone.0197857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Grants 81971625, 82030047, 12126607, and 91859201, from the National Scientific Foundation Committee of China.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Yu had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Liang and Yu Jie.

Acquisition of data: Yuqing Dai

Analysis and interpretation of data: Yuqing Dai

Drafting of the manuscript: Yuqing Dai and Yu Jie

Critical revision of the manuscript for important intellectual content: Yu Jie and Yuqing Dai

Corresponding authors

Correspondence to Ping Liang or Jie Yu.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Informed Consent

Not applicable.

Guarantor

The scientific guarantor of this publication is Jie Yu, MD, and Ping Liang, MD.

Statistics and Biometry

No complex statistical methods were necessary for this paper.

Study Subjects or Cohorts Overlap

No study subjects or cohorts overlap in our previous article.

Methodology

Systematic review.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Interventional Oncology

Supplementary Information

ESM 1

(DOCX 91.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Liang, P. & Yu, J. Percutaneous Management of Breast Cancer: a Systematic Review. Curr Oncol Rep 24, 1443–1459 (2022). https://doi.org/10.1007/s11912-022-01290-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-022-01290-4

Keywords

Navigation