Skip to main content

Advertisement

Log in

The Treatment Landscape of Advanced Hepatocellular Carcinoma

  • Gastrointestinal Cancers (J Meyer, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of review

The systemic treatment of advanced hepatocellular carcinoma (HCC) has significantly evolved. Immune checkpoint inhibitors (ICIs) have demonstrated clinical efficacy and more favorable toxicity profiles compared to multikinase inhibitors. Combination therapy with ICIs may provide greater anti-tumor activity compared to ICI monotherapy. This review will discuss the current treatment landscape of advanced HCC, with a focus on recently completed and ongoing trials of ICI combinations, as well as future directions. 

Recent findings

Atezolizumab/bevacizumab has been approved as first-line therapy in patients with advanced HCC based on its superiority over sorafenib in the pivotal IMbrave150 trial. Similarly, durvalumab/tremelimumab demonstrated an improvement in overall survival compared to sorafenib in the HIMALAYA trial. Other combinations of ICIs with targeted agents and dual immune checkpoint blockade are currently being investigated in large randomized Phase 3 trials for the first-line treatment of HCC.

Summary

Results of several ICI combination trials have been reported or are anticipated in the next few years and may potentially expand the therapy options in this patient population. Further areas of exploration include the use of ICIs in earlier stages of disease, other immunotherapy approaches such as adoptive T cell therapy, and the identification of predictive biomarkers. These ongoing efforts will likely further improve patient outcomes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CANCER TODAY provides data visualization tools that present current national estimates of the incidence, mortality, and prevalence of 36 cancer types in 185 countries, by sex and age group. https://gco.iarc.fr/today/online-analysis-multibars?v=2020&mode=cancer&mode_population=countries&population=900&populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=10&group_cancer=1&include_nmsc=0&include_nmsc_other=1&type_multiple=%257B%2522inc%2522%253Atrue%252C%2522mort%2522%253Afalse%252C%2522prev%2522%253Afalse%257D&orientation=horizontal&type_sort=0&type_nb_items=%257B%2522top%2522%253Atrue%252C%2522bottom%2522%253Afalse%257D. Accessed 20 Mar 2022.

  2. Marrero JA, Kulik LM, Sirlin CB, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American association for the study of liver diseases. Hepatology. 2018;68(2):723–50. https://doi.org/10.1002/hep.29913.

    Article  PubMed  Google Scholar 

  3. Petrick JL, Kelly SP, Altekruse SF, McGlynn KA, Rosenberg PS. Future of Hepatocellular carcinoma incidence in the United States Forecast Through 2030. J Clin Oncol. 2016;34(15):1787–94. https://doi.org/10.1200/jco.2015.64.7412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crocenzi T, El-Khoueiry A, Yau T, et al. Nivolumab (nivo) in sorafenib (sor)-naive and -experienced pts with advanced hepatocellular carcinoma (HCC): CheckMate 040 study. J Clin Oncol. 2018;36(suppl):abstr 4013.

  5. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90. https://doi.org/10.1056/NEJMoa0708857.

    Article  CAS  PubMed  Google Scholar 

  6. Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391(10126):1163–73. https://doi.org/10.1016/s0140-6736(18)30207-1.

    Article  CAS  PubMed  Google Scholar 

  7. Kudo M, Finn RS, Qin S, et al. A nalysis of survival and objective response (OR) in patients with hepatocellular carcinoma in a phase III study of lenvatinib (REFLECT). J Clin Oncol. 2019;37:suppl 4; abstr 186.

  8. Bruix J, Qin S, Merle P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389(10064):56–66. https://doi.org/10.1016/s0140-6736(16)32453-9.

    Article  CAS  PubMed  Google Scholar 

  9. Ang C, Miura JT, Gamblin TC, et al. Comprehensive multiplatform biomarker analysis of 350 hepatocellular carcinomas identifies potential novel therapeutic options. J Surg Oncol. 2016;113(1):55–61. https://doi.org/10.1002/jso.24086.

    Article  CAS  PubMed  Google Scholar 

  10. Kaposi-Novak P, Lee JS, Gomez-Quiroz L, Coulouarn C, Factor VM, Thorgeirsson SS. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest. 2006;116(6):1582–95. https://doi.org/10.1172/jci27236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gherardi E, Birchmeier W, Birchmeier C, Vande WG. Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 2012;12(2):89–103. https://doi.org/10.1038/nrc3205.

    Article  CAS  PubMed  Google Scholar 

  12. Abou-Alfa GK, Meyer T, Cheng AL, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379(1):54–63. https://doi.org/10.1056/NEJMoa1717002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu AX, Kang YK, Yen CJ, et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(2):282–96. https://doi.org/10.1016/s1470-2045(18)30937-9.

    Article  CAS  PubMed  Google Scholar 

  14. Greten TF, Duffy AG, Korangy F. Hepatocellular carcinoma from an immunologic perspective. Clin Cancer Res. 2013;19(24):6678–85. https://doi.org/10.1158/1078-0432.ccr-13-1721.

    Article  CAS  PubMed  Google Scholar 

  15. Kobayashi N, Hiraoka N, Yamagami W, et al. FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res. 2007;13(3):902–11. https://doi.org/10.1158/1078-0432.ccr-06-2363.

    Article  CAS  PubMed  Google Scholar 

  16. Gao Q, Qiu SJ, Fan J, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 2007;25(18):2586–93. https://doi.org/10.1200/jco.2006.09.4565.

    Article  PubMed  Google Scholar 

  17. Flecken T, Schmidt N, Hild S, et al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology. 2014;59(4):1415–26. https://doi.org/10.1002/hep.26731.

    Article  CAS  PubMed  Google Scholar 

  18. Shi F, Shi M, Zeng Z, et al. PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int J Cancer. 2011;128(4):887–96. https://doi.org/10.1002/ijc.25397.

    Article  CAS  PubMed  Google Scholar 

  19. Ma C, Kesarwala AH, Eggert T, et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature. 2016;531(7593):253–7. https://doi.org/10.1038/nature16969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao Q, Wang XY, Qiu SJ, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009;15(3):971–9. https://doi.org/10.1158/1078-0432.ccr-08-1608.

    Article  CAS  PubMed  Google Scholar 

  21. Gabrielson A, Wu Y, Wang H, et al. Intratumoral CD3 and CD8 T-cell densities associated with relapse-free survival in HCC. Cancer Immunol Res. 2016;4(5):419–30. https://doi.org/10.1158/2326-6066.cir-15-0110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–502. https://doi.org/10.1016/s0140-6736(17)31046-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu AX, Finn RS, Edeline J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19(7):940–52. https://doi.org/10.1016/s1470-2045(18)30351-6.

    Article  PubMed  Google Scholar 

  24. Finn RS, Ryoo BY, Merle P, et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J Clin Oncol. 2020;38(3):193–202. https://doi.org/10.1200/jco.19.01307.

    Article  CAS  PubMed  Google Scholar 

  25. Yau T, Park JW, Finn RS, et al. CheckMate 459: a randomized, multi-center phase 3 study of nivolumab (NIVO) vs. sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma. Ann Oncol. 2019;30:(suppl 5): v851-v934.

  26. Kudo M, Matilla A, Santoro A, et al. Checkmate-040: nivolumab (NIVO) in patients (pts) with advanced hepatocellular carcinoma (aHCC) and Child-Pugh B (CPB) status. J Clin Oncol. 2019;37:suppl 4; abstr 327.

  27. Fessas P, Kaseb A, Wang Y, et al. Post-registration experience of nivolumab in advanced hepatocellular carcinoma: an international study. J Immunother Cancer. 2020;8(2):e001033. https://pubmed-ncbi-nlm-nih-gov.offcampus.lib.washington.edu/32868393/.

  28. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012.

    Article  CAS  PubMed  Google Scholar 

  29. Morse MA, Sun W, Kim R, et al. The role of angiogenesis in hepatocellular carcinoma. Clin Cancer Res. 2019;25(3):912–20. https://doi.org/10.1158/1078-0432.ccr-18-1254.

    Article  CAS  PubMed  Google Scholar 

  30. Wallin JJ, Bendell JC, Funke R, et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun. 2016;7:12624. https://doi.org/10.1038/ncomms12624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382(20):1894–905. https://doi.org/10.1056/NEJMoa1915745.

    Article  CAS  PubMed  Google Scholar 

  32. Finn RS, Qin S, Ikeda M, al. e. IMbrave150: Updated overall survival (OS) data from a global, randomized, open-label phase III study of atezolizumab (atezo) + bevacizumab (bev) versus sorafenib (sor) in patients (pts) with unresectable hepatocellular carcinoma (HCC). J Clin Oncol. 2021;39:suppl 3; abstr 267.

  33. Kelley RK, Yau T, Cheng AL, et al. Cabozantinib (C) plus atezolizumab (A) versus sorafenib (S) as first-line systemic treatment for advanced hepatocellular carcinoma (aHCC): results from the randomized phase III COSMIC-312 trial. Ann Oncol. 2022; 2021; VP10–2021.

  34. Finn RS, Ikeda M, Zhu AX, et al. Phase Ib study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma. J Clin Oncol. 2020;38(26):2960–70. https://doi.org/10.1200/jco.20.00808.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ross S, Mullins S, Watkins A, et al. Preclinical modelling of immune checkpoint blockade (P2012). J Immunol. 2013;190:(1 Supplement) 214.7.

  36. Kelley RK, Sangro B, Harris WP, et al. Efficacy, tolerability, and biologic activity of a novel regimen of tremelimumab (T) in combination withdurvalumab (D) for patients (pts) with advanced hepatocellular carcinoma (aHCC). J Clin Oncol. 2020;38:suppl; abstr 4508.

  37. McCoon P, Lee YS, Kelley RK, et al. T-cell receptor pharmacodynamics associated with survival and response totremelimumab (T) in combination with durvalumab (D) in patients (pts) withunresectable hepatocellular carcinoma (uHCC). J Clin Oncol. 2021;39:suppl 15; abstr 4087.

  38. Abou-Alfa GK, Chan SL, Kudo M, et al. Phase 3 randomized, open-label, multicenter study of tremelimumab (T) and durvalumab (D) as first-line therapy in patients (pts) with unresectable hepatocellular carcinoma (uHCC): HIMALAYA. J Clin Oncol. 2022;4(suppl;abstr 379). https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.4_suppl.379.

  39. Yau T, Kang YK, Kim TY, et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: the CheckMate 040 randomized clinical trial. JAMA Oncol. 2020;6(11):e204564. https://doi.org/10.1001/jamaoncol.2020.4564.

    Article  PubMed  PubMed Central  Google Scholar 

  40. FDA. FDA grants accelerated approval to nivolumab and ipilimumab combination for hepatocellular carcinoma. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-nivolumab-and-ipilimumab-combination-hepatocellular-carcinoma. Accessed 26 Sept 2021

  41. Yau T, Zagonel V, Santoro A, et al. Nivolumab (NIVO) + ipilimumab (IPI) + cabozantinib (CABO) combination therapy in patients (pts) with advancedhepatocellular carcinoma (aHCC): Results from CheckMate 040. J Clin Oncol. 2020;38:suppl 4; abstr 478.

  42. Gordan JD, Kennedy EB, Abou-Alfa GK, et al. Systemic therapy for advanced hepatocellular carcinoma: ASCO GUIDELINE. J Clin Oncol. 2020;38(36):4317–45. https://doi.org/10.1200/jco.20.02672.

    Article  CAS  PubMed  Google Scholar 

  43. Wong JSL, Kwok GGW, Tang V, et al. Ipilimumab and nivolumab/pembrolizumab in advanced hepatocellular carcinoma refractory to prior immune checkpoint inhibitors. J Immunother Cancer. 2021;9(2)doi:https://doi.org/10.1136/jitc-2020-001945

  44. Yau T, Lee JJX, Wong JSL, et al. Outcomes of tyrosine kinase inhibitors after immunotherapy in advanced hepatocellular carcinoma: a multi-center study. J Clin Oncol. 2021;39(suppl 15):suppl.e16181.

  45. Ducreux M, Zhu AX, Cheng A-L, et al. IMbrave150: Exploratory analysis to examine the association between treatment response and overall survival (OS) in patients (pts) with unresectable hepatocellular carcinoma (HCC) treated with atezolizumab (atezo) + bevacizumab (bev) versus sorafenib (sor). J Clin Oncol. 2021;39(suppl 15):4071.

    Article  Google Scholar 

  46. Zhu AX, Guan Y, Abbas AR, et al. Genomic correlates of clinical benefits from atezolizumab combined with bevacizumab vs. atezolizumab alone in patients with advanced hepatocellular carcinoma (HCC). Cancer Res 2020;80(suppl 16;abstr nr CT044). https://www.researchgate.net/publication/345179794_Abstract_CT044_Genomic_correlates_of_clinical_benefits_from_atezolizumab_combined_with_bevacizumab_vs_atezolizumab_alone_in_patients_with_advanced_hepatocellular_carcinoma_HCC

  47. Bratman SV, Yang SYC, Iafolla MAJ, et al. Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nature Cancer. 2020;1(9):873–81. https://doi.org/10.1038/s43018-020-0096-5.

    Article  CAS  PubMed  Google Scholar 

  48. Hsu C-H, Lu S, Abbas A, et al. Longitudinal and personalized detection of circulating tumor DNA (ctDNA) for monitoring efficacy of atezolizumab plus bevacizumab in patients with unresectable hepatocellular carcinoma (HCC). J Clin Oncol. 2020;38(suppl 15):3531.

    Article  Google Scholar 

  49. Kasi PM, Budde G, Dayyani F, et al. Tumor-informed assessment of circulating tumor DNA and its incorporation into practice for patients with hepatobiliary cancers. J Clin Oncol. 2021;39(suppl 15):4103.

    Article  Google Scholar 

  50. Roayaie S, Obeidat K, Sposito C, et al. Resection of hepatocellular cancer ≤2 cm: results from two Western centers. Hepatology. 2013;57(4):1426–35. https://doi.org/10.1002/hep.25832.

    Article  PubMed  Google Scholar 

  51. Pinato DJ, Cortellini A, Pai M, et al. PRIME-HCC: Phase Ib study of neoadjuvant ipilimumab and nivolumab prior to liver resection for hepatocellular carcinoma. J Clin Oncol. 2021;39:suppl 15; abstr e16131.

  52. Kaseb AO, Pestana RC, Vence LM, et al. Randomized, open-label, perioperative phase II study evaluating nivolumab alone versus nivolumab plusipilimumab in patients with resectable HCC. J Clin Oncol. 2019;37:suppl 4; abstr 185.

  53. Tang C, Wang X, Soh H, et al. Combining radiation and immunotherapy: a new systemic therapy for solid tumors? Cancer Immunol Res. 2014;2(9):831–8. https://doi.org/10.1158/2326-6066.cir-14-0069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Deng L, Liang H, Burnette B, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014;124(2):687–95. https://doi.org/10.1172/jci67313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sharabi AB, Nirschl CJ, Kochel CM, et al. Stereotactic radiation therapy augments antigen-specific PD-1-mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol Res. 2015;3(4):345–55. https://doi.org/10.1158/2326-6066.cir-14-0196.

    Article  CAS  PubMed  Google Scholar 

  56. Pilia G, Hughes-Benzie RM, MacKenzie A, et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet. 1996;12(3):241–7. https://doi.org/10.1038/ng0396-241.

    Article  CAS  PubMed  Google Scholar 

  57. Capurro MI, Xiang YY, Lobe C, Filmus J. Glypican-3 promotes the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling. Cancer Res. 2005;65(14):6245–54. https://doi.org/10.1158/0008-5472.can-04-4244.

    Article  CAS  PubMed  Google Scholar 

  58. Wang L, Yao M, Pan LH, Qian Q, Yao DF. Glypican-3 is a biomarker and a therapeutic target of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2015;14(4):361–6.

    Article  CAS  Google Scholar 

  59. Zhang J, Zhang M, Ma H, et al. Overexpression of glypican-3 is a predictor of poor prognosis in hepatocellular carcinoma: an updated meta-analysis. Medicine (Baltimore). 2018;97(24): e11130. https://doi.org/10.1097/md.0000000000011130.

    Article  CAS  Google Scholar 

  60. Gao H, Li K, Tu H, et al. Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res. 2014;20(24):6418–28. https://doi.org/10.1158/1078-0432.ccr-14-1170.

    Article  CAS  PubMed  Google Scholar 

  61. Jiang Z, Jiang X, Chen S, et al. Anti-GPC3-CAR T cells suppress the growth of tumor cells in patient-derived xenografts of hepatocellular carcinoma. Front Immunol. 2016;7:690. https://doi.org/10.3389/fimmu.2016.00690.

    Article  CAS  PubMed  Google Scholar 

  62. Shi D, Shi Y, Kaseb AO, et al. Chimeric antigen receptor-glypican-3 T-cell therapy for advanced hepatocellular carcinoma: results of phase I trials. Clin Cancer Res. 2020;26(15):3979–89. https://doi.org/10.1158/1078-0432.ccr-19-3259.

    Article  CAS  PubMed  Google Scholar 

  63. Zhao Z, Guo W, Fang S, et al. An armored GPC3-directed CAR-T for refractory or relapsed hepatocellularcarcinoma in China: a phase I trial. J Clin Oncol. 2021;39:suppl 15; abstr 4095.

  64. Fang W, Fu Q, Zhao Q, et al. Phase I trial of fourth-generation chimeric antigen receptor T-cells targetingglypican-3 for advanced hepatocellular carcinoma. J Clin Oncol. 2021;39:suppl 15; abstr 4088.

  65. Sangro B, Borad MJ, Hausner PF, et al. Data from the third dose cohort of an ongoing study with ADP-A2AFP SPEAR T-cells. J Hepatol. 2020;73(suppl 1):S122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kit Man Wong.

Ethics declarations

Conflict of Interest

Kit Man Wong has received institutional research funding from Genentech, Exelixis, Shanghai De Novo Pharmatech, Adaptimmune Therapeutics, Pfizer, Astellas, Replimune, Mitsubishi Tanabe Pharma, Eli Lilly, and AstraZeneca and has received compensation for participation on advisory boards from Genentech, Exelixis, and HalioDX. Gentry G. King has received institutional funding for clinical trials from Bayer; has received compensation for service as a consultant from Zymeworks and Tempus; has received compensation for participation on advisory boards from Pfizer and QED Therapeutics; has received speaker’s honoraria from the Society for Immunotherapy of Cancer (SITC) and the International Society of Gastrointestinal Oncology (IGSIO); received reimbursement for travel/accommodations from the IGSIO; is member of the National Cancer Institute (NCI) Hepatobiliary Task Force and Southwest Oncology Group; and is Co-Chair of the ctDNA GI Steering Committee. William P. Harris has received institutional research funding from Exelixis, Bristol-Myers Squibb, MedImmune, AstraZeneca, Bayer, Boston Scientific, Merck, Koo Foundation, and Zymeworks; has received compensation for service as a consultant from Zymeworks, Merck, and BD Medical; has received compensation for participation on advisory boards from Exelixis, AstraZeneca, and Eisai; and serves on the Board of Directors (unpaid) of the GI Cancers Alliance.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Gastrointestinal Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, K.M., King, G.G. & Harris, W.P. The Treatment Landscape of Advanced Hepatocellular Carcinoma. Curr Oncol Rep 24, 917–927 (2022). https://doi.org/10.1007/s11912-022-01247-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-022-01247-7

Keywords

Navigation