Skip to main content
Log in

Engineered T Cells: CAR T Cell Therapy and Beyond

  • Lymphomas (T Hilal, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This article reviews the current data and future directions of engineered T cell therapies in non-Hodgkin lymphomas.

Recent Findings

Currently, four chimeric antigen receptor (CAR) T cell products are approved: axicabtagene ciloleucel, tisagenlecleucel, lisocabtagene maraleucel, and brexucabtagene autoleucel. These products differ in construct, indication, manufacturing, clinical trial design, and toxicity profile, but all are autologous products targeting CD19. Encouraging early data is also emerging with the use of these products in additional subtypes of B cell lymphoma. Alternative engineered T cell products are also in development, including dual CD19/22 targeting CAR T cells, CD30-directed CAR T cells, allogeneic CAR T cells, and engineered natural killer (NK) cells. Preclinical data using novel CAR constructs such as cytokine-secreting CARs targeted gene delivery into the T cell receptor α constant (TRAC) locus, combination strategies, and third-generation CARs holds promise for additional novel approaches.

Summary

CAR T cells have transformed the therapeutic landscape for patients with relapsed/refractory B cell lymphomas. Early data with novel engineered cellular products is encouraging and holds promise for future clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.

    Article  Google Scholar 

  2. Sehn LH, Gascoyne RD. Diffuse large B cell lymphoma: optimizing outcome in the context of clinical and biologic heterogeneity. Blood. 2015;125(1):22–32.

    Article  CAS  Google Scholar 

  3. Dunleavy K, Wilson WH. Primary mediastinal B cell lymphoma and mediastinal gray zone lymphoma: do they require a unique therapeutic approach? Blood. 2015;125(1):33–9.

    Article  CAS  Google Scholar 

  4. Casulo C, Burack WR, Friedberg JW. Transformed follicular non-Hodgkin lymphoma. Blood. 2015;125(1):40–7.

    Article  CAS  Google Scholar 

  5. Crump M, Kuruvilla J, Couban S, et al. Randomized comparison of gemcitabine, dexamethasone, and cisplatin versus dexamethasone, cytarabine, and cisplatin chemotherapy before autologous stem-cell transplantation for relapsed and refractory aggressive lymphomas: NCIC-CTG LY.12. J Clin Oncol. 2014;1(32 31):3490–6.

    Article  Google Scholar 

  6. van Imhoff GW, McMillan A, Matasar MJ, et al. Ofatumumab versus rituximab salvage chemoimmunotherapy in relapsed or refractory diffuse large B-cell lymphoma: the ORCHARRD Study. J Clin Oncol. 2017;35(5):544–51.

    Article  Google Scholar 

  7. Gisselbrecht C, Glass B, Mounier N, et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol. 2010;28(27):4184–90.

    Article  Google Scholar 

  8. Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800–8.

    Article  CAS  Google Scholar 

  9. Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382(14):1331–42.

    Article  CAS  Google Scholar 

  10. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44.

    Article  CAS  Google Scholar 

  11. Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380(1):45–56.

    Article  CAS  Google Scholar 

  12. Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396(10254):839–52.

    Article  Google Scholar 

  13. Cheah CY, Seymour JF, Wang ML. Mantle cell lymphoma. J Clin Cncol. 2016;34(11):1256–69.

    Article  CAS  Google Scholar 

  14. Martin P, Maddocks K, Leonard JP, et al. Postibrutinib outcomes in patients with mantle cell lymphoma. Blood. 2016;127(12):1559–63.

    Article  CAS  Google Scholar 

  15. Efficacy of axicabtagene ciloleucel compared to standard of care therapy in subjects with relapsed/refractory diffuse large B cell lymphoma.

  16. A study to compare the efficacy and safety of JCAR017 to standard of care in adult subjects with high-risk, transplant-eligible relapsed or refractory aggressive B-cell non-Hodgkin lymphomas.

  17. Tisagenlecleucel in adult patients with aggressive B-cell non-Hodgkin lymphoma.

  18. Jacobson C, Chavez JC, Sehgal Ar, et al., editors. Primary analysis of Zuma-5: a phase 2 study of axicabtagene ciloleucel (Axi-Cel) in patients with relapsed/refractory (R/R) indolent non-Hodgkin Lymphoma (iNHL). 62nd American Society of Hematology Annual Meeting and Exposition; 2020 December 5–8, 2020.

  19. Siddiqi T, Soumerai JD, Dorritie KA, et al. Rapid undetectable MRD (uMRD) responses in patients with relapsed/refractory (R/R) chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) treated with lisocabtagene maraleucel (liso-cel), a CD19-directed CAR T cell product: updated results from transcend CLL 004, a phase 1/2 study including patients with high-risk disease previously treated with ibrutinib. Blood. 2019;134((Supplement_1)):503–503.

    Article  Google Scholar 

  20. Song MK, Park BB, Uhm JE. Resistance mechanisms to CAR T-cell therapy and overcoming strategy in B-cell hematologic malignancies. Int J Mol Sci. 2019;10(20):20.

    CAS  Google Scholar 

  21. Osborne W, Marzolini M, Tholouli E, et al. Phase I Alexander study of AUTO3, the first CD19/22 dual targeting CAR T cell therapy, with pembrolizumab in patients with relapsed/refractory (r/r) DLBCL. Am J Clin Oncol. 2020;38(15_suppl):8001–8001.

    Article  Google Scholar 

  22. Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382(6):545–53.

    Article  CAS  Google Scholar 

  23. Ramos CA, Grover NS, Beaven AW, et al. Anti-CD30 CAR-T cell therapy in relapsed and refractory Hodgkin lymphoma. J Clin Oncol. 2020;38(32):3794–804.

    Article  CAS  Google Scholar 

  24. Gomes-Silva D, Srinivasan M, Sharma S, et al. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood. 2017;130(3):285–96.

    Article  CAS  Google Scholar 

  25. Maciocia PM, Wawrzyniecka PA, Philip B, et al. Targeting the T cell receptor beta-chain constant region for immunotherapy of T cell malignancies. Nat Med. 2017;23(12):1416–23.

    Article  CAS  Google Scholar 

  26. Pinz K, Liu H, Golightly M, et al. Preclinical targeting of human T-cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells. Leuk Off J Leuk Soc Am Leuk Res Fund UK. 2016;30(3):701–7.

    CAS  Google Scholar 

  27. Chen KH, Wada M, Pinz KG, et al. Preclinical targeting of aggressive T-cell malignancies using anti-CD5 chimeric antigen receptor. Leuk Off J Leuk Soc Am Leuk Res Fund UK. 2017;31(10):2151–60.

    CAS  Google Scholar 

  28. Scarfo I, Ormhoj M, Frigault MJ, et al. Anti-CD37 chimeric antigen receptor T cells are active against B- and T-cell lymphomas. Blood. 2018;132(14):1495–506.

    Article  CAS  Google Scholar 

  29. Hill LC, Rouce RH, Smith TS, et al. Safety and anti-tumor activity of CD5 CAR T-cells in patients with relapsed/refractory T-cell malignancies. Blood. 2019;134((Supplement_1)):199–199.

    Article  Google Scholar 

  30. Pegram HJ, Lee JC, Hayman EG, et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood. 2012;119(18):4133–41.

    Article  CAS  Google Scholar 

  31. Avanzi MP, Yeku O, Li X, et al. Engineered tumor-targeted T cells mediate enhanced anti-tumor efficacy both directly and through activation of the endogenous immune system. Cell Rep. 2018;23(7):2130–41.

    Article  CAS  Google Scholar 

  32. Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540–9.

    Article  CAS  Google Scholar 

  33. Rafiq S, Yeku OO, Jackson HJ, et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol. 2018;36(9):847–56.

    Article  CAS  Google Scholar 

  34. Eyquem J, Mansilla-Soto J, Giavridis T, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543(7643):113–7.

    Article  CAS  Google Scholar 

  35. Zhao Z, Condomines M, van der Stegen SJC, et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell. 2015;28(4):415–28.

    Article  CAS  Google Scholar 

  36. John LB, Kershaw MH, Darcy PK. Blockade of PD-1 immunosuppression boosts CAR T-cell therapy. Oncoimmunology. 2013;2(10):e26286.

    Article  Google Scholar 

  37. Jacobson CALF, Miklos DB, Herrera AF, Westin JR, Lee J, Rossi JM, Sun J, Zheng L, Avanzi MP, Roberts ZJ. End of phase 1 results from Zuma-6: axicabtagene ciloleucel (Axi-Cel) in combination with atezolizumab for the treatment of patients with refractory diffuse large B cell lymphoma. Biol Blood Marrow Transplant. 2019;25(3):S173.

    Article  Google Scholar 

  38. Qin JS, Johnstone TG, Baturevych A, et al. Antitumor potency of an anti-CD19 chimeric antigen receptor T-cell therapy, lisocabtagene maraleucel in combination with ibrutinib or acalabrutinib. J Immunother. 2020;43(4):107–20.

    Article  CAS  Google Scholar 

  39. Gauthier J, Hirayama AV, Purushe J, et al. Feasibility and efficacy of CD19-targeted CAR T cells with concurrent ibrutinib for CLL after ibrutinib failure. Blood. 2020;135(19):1650–60.

    Article  Google Scholar 

  40. Stock S, Ubelhart R, Schubert ML, et al. Idelalisib for optimized CD19-specific chimeric antigen receptor T cells in chronic lymphocytic leukemia patients. International journal of cancer Journal international du cancer. 2019;145(5):1312–24.

    Article  CAS  Google Scholar 

  41. Funk CR, Wang S, Waller A, et al., editors. Dual inhibition of PI3KDelta/gamma during manufacturing reprograms metabolism of CAR T cells to enhance expansion and cytotoxicity against CLL. 62nd American Society of Hematology Annual Meeting and Exposition; 2020 December 5–8, 2020.

  42. Otahal P, Prukova D, Kral V, et al. Lenalidomide enhances antitumor functions of chimeric antigen receptor modified T cells. Oncoimmunology. 2016;5(4):e1115940.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy S. Abramson.

Ethics declarations

Conflict of Interest

P. Connor Johnson declares that he has no conflict of interest. JSA reports consulting for Allogene, Celgene, Juno Therapeutics, Kite Pharma, and Novartis. Jeremy S. Abramson has received compensation from AstraZeneca and Genmab for service as a consultant; has received speaker’s honoraria from Celgene and Regeneron; and has received compensation for participation on scientific advisory boards from Celgene, Juno Therapeutics, AbbVie, EMD Serono, Genentech/Roche, Janssen, Karyopharm Therapeutics, Gilead Sciences, Verastem Oncology, Bayer, Merck, Kite Pharma, Amgen, Mustang Bio, Century Therapeutics, Epizyme Seattle Genetics, Allogene Therapeutics, MorphoSys, C4 Therapeutics, Incyte Corporation, and BeiGene.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Lymphomas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, P.C., Abramson, J.S. Engineered T Cells: CAR T Cell Therapy and Beyond. Curr Oncol Rep 24, 23–31 (2022). https://doi.org/10.1007/s11912-021-01161-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-021-01161-4

Keywords

Navigation