Skip to main content

Advertisement

Log in

New Insights on Tramadol and Immunomodulation

  • Anesthesiology and Critical Care (JP Cata, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Opioids are administered to cancer patients although concerns have been raised that they may promote tumour growth or metastasis owing to their ability to suppress anti-cancer immunity. Tramadol has been reported to preserve or promote the immune response and may therefore be preferred to other opioids in cancer patients. We reviewed the literature documenting the immunomodulatory effects of tramadol.

Recent Findings

Recent clinical evidence appears to confirm that tramadol possesses anti-inflammatory properties, and preserves some signalling cascades of the immune system relevant to anti-cancer defence.

Summary

Tramadol is reported to promote or preserve immunity including natural killer cell activity which is important in anti-cancer defences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Arg1:

Arginase 1

Con-A:

Concanavalin A

CRP:

C-reactive protein

Fizz1:

Resistin-like molecule alpha1

IFN-γ:

Interferon gamma

IL-2:

Interleukin 2

LPS:

Lipopolysaccharide

MOR:

μ-Opioid receptor

Mrc1:

Mannose receptor C-type 1

M1:

O-desmethyltramadol

NA:

Noradrenaline

NK:

Natural killer

OR:

Opioid receptor

PBMCs:

Peripheral blood mononuclear cell

PCA:

Patient-controlled analgesia

PHA:

Phytohemagglutinin

PMN:

Polymorphonuclear

TH1:

T helper cell type 1

TNF:

Tumour necrosis factor

TNF-α:

Tumour necrosis factor alpha

Ym1:

Chitinase 3-like 3

5-HT:

Serotonin

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Australian Medicines Handbook. Tramadol. 2020.

  2. Sacerdote P, Bianchi M, Gaspani L, Panerai AE. Effects of tramadol and its enantiomers on Concanavalin-A induced-proliferation and NK activity of mouse splenocytes: involvement of serotonin. Int J Immunopharmacol. 1999;21(11):727–34. https://doi.org/10.1016/s0192-0561(99)00048-x.

    Article  CAS  PubMed  Google Scholar 

  3. Frink MC, Hennies HH, Englberger W, Haurand M, Wilffert B. Influence of tramadol on neurotransmitter systems of the rat brain. Arzneimittelforschung. 1996;46(11):1029–36.

    CAS  PubMed  Google Scholar 

  4. Gong L, Stamer UM, Tzvetkov MV, Altman RB, Klein TE. PharmGKB summary: tramadol pathway. Pharmacogenet Genomics. 2014;24(7):374–80. https://doi.org/10.1097/fpc.0000000000000057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gan SH, Ismail R, Wan Adnan WA, Zulmi W. Impact of CYP2D6 genetic polymorphism on tramadol pharmacokinetics and pharmacodynamics. Mol Diagn Ther. 2007;11(3):171–81. https://doi.org/10.1007/bf03256239.

    Article  CAS  PubMed  Google Scholar 

  6. Paar WD, Poche S, Gerloff J, Dengler HJ. Polymorphic CYP2D6 mediates O-demethylation of the opioid analgesic tramadol. Eur J Clin Pharmacol. 1997;53(3–4):235–9. https://doi.org/10.1007/s002280050368.

    Article  CAS  PubMed  Google Scholar 

  7. Shipton EA. Tramadol–present and future. Anaesth Intensive Care. 2000;28(4):363–74. https://doi.org/10.1177/0310057x0002800403.

    Article  CAS  PubMed  Google Scholar 

  8. Raffa RB, Buschmann H, Christoph T, Eichenbaum G, Englberger W, Flores CM, et al. Mechanistic and functional differentiation of tapentadol and tramadol. Expert Opin Pharmacother. 2012;13(10):1437–49. https://doi.org/10.1517/14656566.2012.696097.

    Article  CAS  PubMed  Google Scholar 

  9. Olson KM, Duron DI, Womer D, Fell R, Streicher JM. Comprehensive molecular pharmacology screening reveals potential new receptor interactions for clinically relevant opioids. PLOS ONE. 2019;14(6):e0217371. https://doi.org/10.1371/journal.pone.0217371This work evaluated the ability of commonly used opioids to interact with non-opioid receptors and revealed several novel interactions.

  10. Enggaard TP, Poulsen L, Arendt-Nielsen L, Brøsen K, Ossig J, Sindrup SH. The analgesic effect of tramadol after intravenous injection in healthy volunteers in relation to CYP2D6. Anesth Analg. 2006;102(1):146–50. https://doi.org/10.1213/01.ane.0000189613.61910.32.

    Article  CAS  PubMed  Google Scholar 

  11. Stamer UM, Musshoff F, Kobilay M, Madea B, Hoeft A, Stuber F. Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes. Clin Pharmacol Ther. 2007;82(1):41–7. https://doi.org/10.1038/sj.clpt.6100152.

    Article  CAS  PubMed  Google Scholar 

  12. Zebala JA, Searle SL, Webster LR, Johnson MS, Schuler AD, Maeda DY, et al. Desmetramadol has the safety and analgesic profile of tramadol without its metabolic liabilities: consecutive randomized, double-blind, placebo- and active comparator-controlled trials. The journal of pain : official journal of the American Pain Society. 2019;20(10):1218–35. https://doi.org/10.1016/j.jpain.2019.04.005.

    Article  CAS  Google Scholar 

  13. Duthie DJ. Remifentanil and tramadol. Br J Anaesth. 1998;81(1):51–7. https://doi.org/10.1093/bja/81.1.51.

    Article  CAS  PubMed  Google Scholar 

  14. Houmes RJ, Voets MA, Verkaaik A, Erdmann W, Lachmann B. Efficacy and safety of tramadol versus morphine for moderate and severe postoperative pain with special regard to respiratory depression. Anesth Analg. 1992;74(4):510–4. https://doi.org/10.1213/00000539-199204000-00007.

    Article  CAS  PubMed  Google Scholar 

  15. Sacerdote P, Bianchi M, Manfredi B, Panerai AE. Effects of tramadol on immune responses and nociceptive thresholds in mice. Pain. 1997;72(3):325–30. https://doi.org/10.1016/s0304-3959(97)00055-9.

    Article  CAS  PubMed  Google Scholar 

  16. Bianchi M, Rossoni G, Sacerdote P, Panerai AE. Effects of tramadol on experimental inflammation. Fundam Clin Pharmacol. 1999;13(2):220–5. https://doi.org/10.1111/j.1472-8206.1999.tb00342.x.

    Article  CAS  PubMed  Google Scholar 

  17. Buccellati C, Sala A, Ballerio R, Bianchib M. Tramadol anti-inflammatory activity is not related to a direct inhibitory action on prostaglandin endoperoxide synthases. European journal of pain (London, England). 2000;4(4):413–5. https://doi.org/10.1053/eujp.2000.0208.

    Article  CAS  Google Scholar 

  18. Sacerdote P, Bianchi M, Gaspani L, Manfredi B, Maucione A, Terno G, et al. The effects of tramadol and morphine on immune responses and pain after surgery in cancer patients. Anesth Analg. 2000;90(6):1411–4. https://doi.org/10.1097/00000539-200006000-00028.

    Article  CAS  PubMed  Google Scholar 

  19. Tsai YC, Won SJ. Effects of tramadol on T lymphocyte proliferation and natural killer cell activity in rats with sciatic constriction injury. Pain. 2001;92(1–2):63–9. https://doi.org/10.1016/s0304-3959(00)00472-3.

    Article  CAS  PubMed  Google Scholar 

  20. Gaspani L, Bianchi M, Limiroli E, Panerai AE, Sacerdote P. The analgesic drug tramadol prevents the effect of surgery on natural killer cell activity and metastatic colonization in rats. J Neuroimmunol. 2002;129(1–2):18–24. https://doi.org/10.1016/s0165-5728(02)00165-0.

    Article  CAS  PubMed  Google Scholar 

  21. Beilin B, Grinevich G, Yardeni IZ, Bessler H. Tramadol does not impair the phagocytic capacity of human peripheral blood cells. Can J Anaesth. 2005;52(10):1035–9. https://doi.org/10.1007/bf03021601.

    Article  PubMed  Google Scholar 

  22. Wang G, Weng Y, Ishiguro Y, Sakamoto H, Morita S. The effect of tramadol on serum cytokine response in patients undergoing pulmonary lobectomy. J Clin Anesth. 2005;17(6):444–50. https://doi.org/10.1016/j.jclinane.2004.10.008.

    Article  CAS  PubMed  Google Scholar 

  23. Liu Z, Gao F, Tian Y. Effects of morphine, fentanyl and tramadol on human immune response. J Huazhong Univ Sci Technolog Med Sci. 2006;26(4):478–81. https://doi.org/10.1007/s11596-006-0427-5.

    Article  CAS  PubMed  Google Scholar 

  24. Wang ZY, Wang CQ, Yang JJ, Sun J, Huang YH, Tang QF, et al. Which has the least immunity depression during postoperative analgesia--morphine, tramadol, or tramadol with lornoxicam? Clin Chim Acta. 2006;369(1):40–5. https://doi.org/10.1016/j.cca.2006.01.008.

    Article  CAS  PubMed  Google Scholar 

  25. Shirzad H, Shahrani M, Rafieian-Kopaei M. Comparison of morphine and tramadol effects on phagocytic activity of mice peritoneal phagocytes in vivo. Int Immunopharmacol. 2009;9(7–8):968–70. https://doi.org/10.1016/j.intimp.2009.04.002.

    Article  CAS  PubMed  Google Scholar 

  26. Hugunin KM, Fry C, Shuster K, Nemzek JA. Effects of tramadol and buprenorphine on select immunologic factors in a cecal ligation and puncture model. Shock (Augusta, Ga). 2010;34(3):250–60. https://doi.org/10.1097/shk.0b013e3181cdc412.

    Article  CAS  Google Scholar 

  27. Bastami S, Norling C, Trinks C, Holmlund B, Walz TM, Ahlner J, et al. Inhibitory effect of opiates on LPS mediated release of TNF and IL-8. Acta oncologica (Stockholm, Sweden). 2013;52(5):1022–33. https://doi.org/10.3109/0284186x.2012.737932.

    Article  CAS  Google Scholar 

  28. Hish GA, Diaz JA, Hawley AE, Myers DD, Lester PA. Effects of analgesic use on inflammation and hematology in a murine model of venous thrombosis. J Am Assoc Lab Anim Sci. 2014;53(5):485–93. https://doi.org/10.3167/jrs.2014.140208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boland JW, Foulds GA, Ahmedzai SH, Pockley AG. A preliminary evaluation of the effects of opioids on innate and adaptive human in vitro immune function. BMJ Support Palliat Care. 2014;4(4):357–67. https://doi.org/10.1136/bmjspcare-2013-000573.

    Article  PubMed  Google Scholar 

  30. Singh P, Rastogi S, Bansal M, Kumar S, Singh R, Nishad SG, et al. A prospective study to assess the levels of interleukin-6 following administration of diclofenac, ketorolac and tramadol after surgical removal of lower third molars. Journal of maxillofacial and oral surgery. 2015;14(2):219–25. https://doi.org/10.1007/s12663-013-0609-1.

    Article  PubMed  Google Scholar 

  31. Axiak-Bechtel SM, Tsuruta K, Amorim J, Donaldson R, Lino G, Honaker A, et al. Effects of tramadol and o-desmethyltramadol on canine innate immune system function. Veterinary Anaesth Analg. 2015;42(3):260–8. https://doi.org/10.1111/vaa.12201.

    Article  CAS  Google Scholar 

  32. Bakr MA, Amr SA, Mohamed SA, Hamed HB, Abd El-Rahman AM, Mostafa MA, et al. Comparison between the effects of intravenous morphine, tramadol, and ketorolac on stress and immune responses in patients undergoing modified radical mastectomy. Clin J Pain. 2016;32(10):889–97. https://doi.org/10.1097/ajp.0000000000000338.

    Article  PubMed  Google Scholar 

  33. Stachtari CC, Thomareis ON, Tsaousi GG, Karakoulas KA, Chatzimanoli FI, Chatzopoulos SA, et al. Interaction of a cannabinoid-2 agonist with Tramadol on nociceptive thresholds and immune responses in a rat model of incisional pain. Am J Ther. 2016;23(6):e1484–92. https://doi.org/10.1097/mjt.0000000000000131.

    Article  PubMed  Google Scholar 

  34. Zhang J, Chen L, Sun Y, Li Y. Tramadol differentially regulates M1 and M2 macrophages from human umbilical cord blood. Inflammopharmacology. 2017. https://doi.org/10.1007/s10787-017-0338-z.

    Article  PubMed  Google Scholar 

  35. Sayed JA, Abd Elshafy SK, Kamel EZ, Fathy Riad MA, Mahmoud AA, Khalaf GS. The impact of caudally administrated tramadol on immune response and analgesic efficacy for pediatric patients: a comparative randomized clinical trial. The Korean journal of pain. 2018;31(3):206–14. https://doi.org/10.3344/kjp.2018.31.3.206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lucena F, Callado de Oliveira DMM, Noroes MM, Mujica EMM, Melleu FF, Benedet PO, et al. Intrathecally injected tramadol reduces articular incapacitation and edema in a rat model of lipopolysaccharide (LPS)-induced reactive arthritis. Life Sci. 2019;236:116860. https://doi.org/10.1016/j.lfs.2019.116860.

  37. Wiese AD, Griffin MR, Schaffner W, Stein CM, Greevy RA, Mitchel EF, et al. Long-acting opioid use and the risk of serious infections: a retrospective cohort study. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2019;68(11):1862–9. https://doi.org/10.1093/cid/ciy809.

    Article  CAS  Google Scholar 

  38. Brivio F, Lissoni P, Mancini D, Tisi E, Tancini G, Barni S, et al. Effect of antitumor surgery on soluble interleukin-2 receptor serum levels. Am J Surg. 1991;161(4):466–9. https://doi.org/10.1016/0002-9610(91)91113-w.

    Article  CAS  PubMed  Google Scholar 

  39. Choudhry H, Helmi N, Abdulaal WH, Zeyadi M, Zamzami MA, Wu W, et al. Prospects of IL-2 in cancer immunotherapy. Biomed Res Int. 2018;2018:9056173. https://doi.org/10.1155/2018/9056173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Investig. 2012;122(3):787–95. https://doi.org/10.1172/jci59643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang HW, Joyce JA. Alternative activation of tumor-associated macrophages by IL-4: priming for protumoral functions. Cell cycle (Georgetown, Tex). 2010;9(24):4824–35. https://doi.org/10.4161/cc.9.24.14322.

    Article  CAS  Google Scholar 

  42. Hernandez ME, Martinez-Fong D, Perez-Tapia M, Estrada-Garcia I, Estrada-Parra S, Pavón L. Evaluation of the effect of selective serotonin-reuptake inhibitors on lymphocyte subsets in patients with a major depressive disorder. Eur Neuropsychopharmacol. 2010;20(2):88–95. https://doi.org/10.1016/j.euroneuro.2009.11.005.

    Article  CAS  PubMed  Google Scholar 

  43. Herr N, Bode C. Duerschmied D. The effects of serotonin in immune cells. Front Cardiovasc Med. 2017;4:48-. https://doi.org/10.3389/fcvm.2017.00048.

  44. Roumier A, Béchade C, Maroteaux L. Chapter 10 - Serotonin and the immune system. In: Pilowsky PM, editor. Serotonin. Boston: Academic Press; 2019. p. 181–96. This review questions the generalization that immunosuppression is a common side effect of all opioid molecules and reports studies on the effects of fentanyl, methadone, oxycodone, buprenorphine, remifentanil, tramadol and tapentadol on immune responses in animal studies, healthy volunteers and patients.

  45. Ninković J, Roy S. Role of the mu-opioid receptor in opioid modulation of immune function. Amino Acids. 2013;45(1):9–24. https://doi.org/10.1007/s00726-011-1163-0.

    Article  CAS  PubMed  Google Scholar 

  46. Franchi S, Moschetti G, Amodeo G, Sacerdote P. Do all opioid drugs share the same immunomodulatory properties? A review from animal and human studies. 2019;10 (2914).  https://doi.org/10.3389/fimmu.2019.02914.

  47. Gavériaux-Ruff C, Matthes HWD, Peluso J, Kieffer BL. Abolition of morphine-immunosuppression in mice lacking the μ-opioid receptor gene. 1998;95(11):6326–30. https://doi.org/10.1073/pnas.95.11.6326%JProceedingsoftheNationalAcademyofSciences.

    Article  Google Scholar 

  48. Xia M, Tong JH, Zhou ZQ, Duan ML, Xu JG, Zeng HJ, et al. Tramadol inhibits proliferation, migration and invasion via alpha2-adrenoceptor signaling in breast cancer cells. European review for medical and pharmacological sciences. 2016;20(1):157–65. This study suggests that tramadol administration reduces tumour growth in a xenograft mouse model using breast cancer cells.

  49. Kim MH, Oh JE, Park S, Kim JH, Lee KY, Bai SJ, et al. Tramadol use is associated with enhanced postoperative outcomes in breast cancer patients: a retrospective clinical study with in vitro. British journal of anaesthesia. 2019;123(6):865–76. https://doi.org/10.1016/j.bja.2019.09.004This retrospective study indicates breast cancer surgery patients receiving tramadol have a decreased risk of postoperative recurence and mortality.

  50. Sarrouilhe D, Mesnil M. Serotonin and human cancer: a critical view. Biochimie. 2019;161:46–50. https://doi.org/10.1016/j.biochi.2018.06.016.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Odile Parat.

Ethics declarations

Conflict of Interest

Iqira Saeed declares that she has no conflict of interest. Adam La Caze declares that he has no conflict of interest. Markus W. Hollmann has received research funding from CSL Behring, ZonMw, the Society of Cardiovasular Anesthesiologists (SCA) and the European Association of Cardiothoracic Anaesthesiology (EACTA); and has received compensation from Eurocept Pharmaceuticals BV and IDD for service as a consultant. Paul N. Shaw declares that he has no conflict of interest. Marie-Odile Parat declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Anesthesiology and Critical Care

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, I., La Caze, A., Hollmann, M.W. et al. New Insights on Tramadol and Immunomodulation. Curr Oncol Rep 23, 123 (2021). https://doi.org/10.1007/s11912-021-01121-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11912-021-01121-y

Keywords

Navigation