Skip to main content

Advertisement

Log in

Immune Checkpoint Inhibitors in the Aged

  • Geriatric Oncology (L Balducci, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Large phase III trials have established the benefit of checkpoint blockade across multiple tumor types, but patient representation is limited in some subgroups including the aged population. There are several changes in the immune system that occur with age (termed immunosenescence) that could potentially limit efficacy in aged populations.

Recent Findings

Despite the concerns stated above, available evidence from prospective trials, retrospective cohorts, and registry data suggest that elderly patients achieve similar benefit with immune checkpoint blockade in comparison to the general population and do not have increased toxicity. However, as patients age, they are at higher risk of developing a decline in multiple physiologic systems (including the immune system) and reduced ability to recover from illness. Clinical evidence shows that patients who have a poor performance status have inferior outcomes and limited clinical benefit from checkpoint blockade.

Summary

Clinicians should take an individualized approach that accounts for each patient’s health status rather than considering age alone when determining who should be offered checkpoint blockade therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.

    Article  CAS  PubMed  Google Scholar 

  2. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B, Choueiri TK, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burtness B, Harrington KJ, Greil R, Soulières D, Tahara M, de Castro GJ, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet. 2019;394(10212):1915–28.

    Article  CAS  PubMed  Google Scholar 

  5. Horn L, Mansfield AS, Szczęsna A, Havel L, Krzakowski M, Hochmair MJ, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med. 2018;379(23):2220–9.

    Article  CAS  PubMed  Google Scholar 

  6. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim T-Y, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382(20):1894–905.

    Article  CAS  PubMed  Google Scholar 

  7. Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüş M, Mazières J, et al. Pembrolizumab plus chemotherapy for squamous non–small-cell lung cancer. N Engl J Med. 2018;379(21):2040–51.

    Article  CAS  PubMed  Google Scholar 

  8. Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N Engl J Med. 2018;378(22):2078–92.

    Article  CAS  PubMed  Google Scholar 

  9. Lilenbaum RC, Cashy J, Hensing TA, Young S, Cella D. Prevalence of poor performance status in lung cancer patients: implications for research. J Thorac Oncol. 2008;3(2):125–9.

    Article  PubMed  Google Scholar 

  10. Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ, Rossi DJ, et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci. 2011;108(50):20012–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. • Kaczorowski KJ, Shekhar K, Nkulikiyimfura D, Dekker CL, Maecker H, Davis MM, et al. Continuous immunotypes describe human immune variation and predict diverse responses. Proc Natl Acad Sci. 2017;114(30):E6097–E106 This study evaluated immune cell subsets in 1,575 patients and demonstrated that immune cell function varied on a continuous spectrum rather than discriminating into discrete groups. They also found that there was substantial heterogeneity in immune cell function with older age.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saule P, Trauet J, Dutriez V, Lekeux V, Dessaint JP, Labalette M. Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4(+) versus effector memory and terminally differentiated memory cells in CD8(+) compartment. Mech Ageing Dev. 2006;127(3):274–81.

    Article  CAS  PubMed  Google Scholar 

  13. Naylor K, Li G, Vallejo AN, Lee W-W, Koetz K, Bryl E, et al. The influence of age on T cell generation and TCR diversity. J Immunol. 2005;174(11):7446–52.

    Article  CAS  PubMed  Google Scholar 

  14. Palmer DB. The effect of age on thymic function. Front Immunol. 2013;4:316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med. 2008;205(3):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mögling R, de Boer AB, et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity. 2012;36(2):288–97.

    Article  CAS  Google Scholar 

  17. Westera L, van Hoeven V, Drylewicz J, Spierenburg G, van Velzen JF, de Boer RJ, et al. Lymphocyte maintenance during healthy aging requires no substantial alterations in cellular turnover. Aging Cell. 2015;14(2):219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Frontiers in Immunology. 2018;8(1960).

  19. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011;17(10):1290–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Siddiqui I, Schaeuble K, Chennupati V, Fuertes Marraco SA, Calderon-Copete S, Pais Ferreira D, et al. Intratumoral Tcf1(+)PD-1(+)CD8(+) T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity. 2019;50(1):195–211.e10.

    Article  CAS  PubMed  Google Scholar 

  21. Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell. 2018;175(4):998–1013.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fane M, Weeraratna AT. How the ageing microenvironment influences tumour progression. Nat Rev Cancer. 2020;20(2):89–106.

    Article  CAS  PubMed  Google Scholar 

  23. van der Geest KSM, Abdulahad WH, Tete SM, Lorencetti PG, Horst G, Bos NA, et al. Aging disturbs the balance between effector and regulatory CD4+ T cells. Exp Gerontol. 2014;60:190–6.

    Article  PubMed  CAS  Google Scholar 

  24. Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, et al. Blood CD33(+)HLA-DR(-) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol. 2013;93(4):633–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sceneay J, Goreczny GJ, Wilson K, Morrow S, DeCristo MJ, Ubellacker JM, et al. Interferon signaling is diminished with age and is associated with immune checkpoint blockade efficacy in triple-negative breast cancer. Cancer Discovery. 2019;9(9):1208–27.

    Article  CAS  PubMed  Google Scholar 

  26. •• Kugel CH 3rd, Douglass SM, Webster MR, Kaur A, Liu Q, Yin X, et al. Age correlates with response to anti-PD1, reflecting age-related differences in intratumoral effector and regulatory T-cell populations. Clin Cancer Res. 2018;24(21):5347–56 This multicenter retrospective study of over 500 patients treated with pembrolizumab for metastatic melanoma found that surprisingly, patients over the age of 60 had higher response rates than those younger than 60. Analysis of on-treatment biopsies found an increase in intratumoral Tregs in patients younger than 60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shimada Y, Hayashi M, Nagasaka Y, Ohno-Iwashita Y, Inomata M. Age-associated up-regulation of a negative co-stimulatory receptor PD-1 in mouse CD4+ T cells. Exp Gerontol. 2009;44(8):517–22.

    Article  CAS  PubMed  Google Scholar 

  28. •• Alpert A, Pickman Y, Leipold M, Rosenberg-Hasson Y, Ji X, Gaujoux R, et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat Med. 2019;25(3):487–95 This prospective longitudinal analysis of human immune cell phenotypes (using flow cytometry–based immunophenotyping) generated an “immune age” score termed IMM-AGE. They also developed a genomic signature that correlated with IMM-AGE score. Finally, they demonstrated that advanced immune age defined by the IMM-AGE score correlated with all-cause mortality (independent of age).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.

    Article  CAS  PubMed  Google Scholar 

  31. Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. • Elias R, Giobbie-Hurder A, McCleary NJ, Ott P, Hodi FS, Rahma O. Efficacy of PD-1 & PD-L1 inhibitors in older adults: a meta-analysis. J Immunother Cancer. 2018;6(1):26 References 32 and 33 performed meta-analysis combining pivotal randomized trials evaluating checkpoint blockade therapy vs non-checkpoint blockade standard of care. They both demonstrated that patients over the age of 65 achieved similar clinical benefit to those younger than 65.

    Article  PubMed  PubMed Central  Google Scholar 

  33. • Kasherman L, Siu DHW, Lee KWC, Lord S, Marschner I, Lewis CR, et al. Efficacy of immune checkpoint inhibitors in older adults with advanced stage cancers: a meta-analysis. J Geriatr Oncol. 2020;11(3):508–14 References 32 and 33 performed meta-analysis combining pivotal randomized trials evaluating checkpoint blockade therapy vs non-checkpoint blockade standard of care. They both demonstrated that patients over the age of 65 achieved similar clinical benefit to those younger than 65.

    Article  PubMed  Google Scholar 

  34. Nishijima TF, Muss HB, Shachar SS, Moschos SJ. Comparison of efficacy of immune checkpoint inhibitors (ICIs) between younger and older patients: a systematic review and meta-analysis. Cancer Treat Rev. 2016;45:30–7.

    Article  CAS  PubMed  Google Scholar 

  35. Petrelli F, Inno A, Ghidini A, Gori S, Bersanelli M. Efficacy of immune checkpoint inhibitors in elderly patients aged ≥ 75 years. Cancer Immunol Immunother. 2020.

  36. Betof AS, Nipp RD, Giobbie-Hurder A, Johnpulle RAN, Rubin K, Rubinstein SM, et al. Impact of age on outcomes with immunotherapy for patients with melanoma. Oncologist. 2017;22(8):963–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Perier-Muzet M, Gatt E, Péron J, Falandry C, Amini-Adlé M, Thomas L, et al. Association of immunotherapy with overall survival in elderly patients with melanoma. JAMA Dermatol. 2018;154(1):82–7.

    Article  PubMed  Google Scholar 

  38. Ridolfi L, De Rosa F, Petracci E, Tanda ET, Marra E, Pigozzo J, et al. Anti-PD1 antibodies in patients aged ≥ 75 years with metastatic melanoma: a retrospective multicentre study. J Geriatr Oncol. 2020;11(3):515–22.

    Article  PubMed  Google Scholar 

  39. Chiarion Sileni V, Pigozzo J, Ascierto PA, Grimaldi AM, Maio M, Di Guardo L, et al. Efficacy and safety of ipilimumab in elderly patients with pretreated advanced melanoma treated at Italian centres through the expanded access programme. J Exp Clin Cancer Res. 2014;33(1):30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bastholt L, Schmidt H, Bjerregaard JK, Herrstedt J, Svane IM. Age favoured overall survival in a large population-based Danish patient cohort treated with anti-PD1 immune checkpoint inhibitor for metastatic melanoma. Eur J Cancer. 2019;119:122–31.

    Article  CAS  PubMed  Google Scholar 

  41. Sattar J, Kartolo A, Hopman WM, Lakoff JM, Baetz T. The efficacy and toxicity of immune checkpoint inhibitors in a real-world older patient population. J Geriatr Oncol. 2019;10(3):411–4.

    Article  PubMed  Google Scholar 

  42. • Samani A, Zhang S, Spiers L, Mohamed AA, Merrick S, Tippu Z, et al. Impact of age on the toxicity of immune checkpoint inhibition. Journal for ImmunoTherapy of Cancer. 2020;8(2):e000871 This multicenter retrospective study evaluated adverse events in 448 patients (263 greater than 65 years old) who were treated with immune checkpoint blockade. They found that checkpoint blockade is well tolerated regardless of age, with no increase in toxicity in patients over the age of 65 or over the age of 75.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Friedman CF, Horvat TZ, Minehart J, Panageas K, Callahan MK, Chapman PB, et al. Efficacy and safety of checkpoint blockade for treatment of advanced melanoma (mel) in patients (pts) age 80 and older (80+). J Clin Oncol. 2016;34(15_suppl):10009.

    Article  Google Scholar 

  44. Leroy V, Gerard E, Dutriaux C, Prey S, Gey A, Mertens C, et al. Adverse events need for hospitalization and systemic immunosuppression in very elderly patients (over 80 years) treated with ipilimumab for metastatic melanoma. Cancer Immunol Immunother. 2019;68(4):545–51.

    Article  CAS  PubMed  Google Scholar 

  45. Joris S, Pieters T, Sibille A, Bustin F, Jacqmin L, Kalantari HR, et al. Real life safety and effectiveness of nivolumab in older patients with non-small cell lung cancer: results from the Belgian compassionate use program. Journal of Geriatric Oncology. 2020;11(5):796–801.

    Article  PubMed  Google Scholar 

  46. • Alessi JV, Ricciuti B, Jiménez-Aguilar E, Hong F, Wei Z, Nishino M, et al. Outcomes to first-line pembrolizumab in patients with PD-L1-high (≥50%) non–small cell lung cancer and a poor performance status. Journal for ImmunoTherapy of Cancer. 2020;8(2):e001007 This multicenter real-world retrospective analysis of patients with NSCLC found that even in patients highly selected for favorable benefit with checkpoint blockade (PD-L1 > 50%), outcomes were poor in patients who had an ECOG performance status 2 or more.

    Article  PubMed  PubMed Central  Google Scholar 

  47. •• Spigel DR, McCleod M, Jotte RM, Einhorn L, Horn L, Waterhouse DM, et al. Safety, efficacy, and patient-reported health-related quality of life and symptom burden with nivolumab in patients with advanced non-small cell lung cancer, including patients aged 70 years or older or with poor performance status (CheckMate 153). J Thorac Oncol. 2019;14(9):1628–39 This large, 1,426 patient prospective trial of second-line nivolumab for NSCLC demonstrated that patients over the age of 70 achieved similar clinical benefit as the whole study population, but patients with ECOG PS of 2 had inferior outcomes.

    Article  CAS  PubMed  Google Scholar 

  48. Khaki AR, Li A, Diamantopoulos LN, Bilen MA, Santos V, Esther J, et al. Impact of performance status on treatment outcomes: a real-world study of advanced urothelial cancer treated with immune checkpoint inhibitors. Cancer. 2020;126(6):1208–16.

    Article  CAS  PubMed  Google Scholar 

  49. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381(9868):752–62.

    Article  PubMed  Google Scholar 

  50. Barzilay JI, Blaum C, Moore T, Xue QL, Hirsch CH, Walston JD, et al. Insulin resistance and inflammation as precursors of frailty: the Cardiovascular Health Study. Arch Intern Med. 2007;167(7):635–41.

    Article  PubMed  Google Scholar 

  51. Hubbard RE, O'Mahony MS, Savva GM, Calver BL, Woodhouse KW. Inflammation and frailty measures in older people. J Cell Mol Med. 2009;13(9b):3103–9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Collerton J, Martin-Ruiz C, Davies K, Hilkens CM, Isaacs J, Kolenda C, et al. Frailty and the role of inflammation, immunosenescence and cellular ageing in the very old: cross-sectional findings from the Newcastle 85+ Study. Mech Ageing Dev. 2012;133(6):456–66.

    Article  CAS  PubMed  Google Scholar 

  53. Schaap LA, Pluijm SM, Deeg DJ, Visser M. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med. 2006;119(6):526.e9–17.

    Article  CAS  Google Scholar 

  54. Oldenburg HS, Rogy MA, Lazarus DD, Van Zee KJ, Keeler BP, Chizzonite RA, et al. Cachexia and the acute-phase protein response in inflammation are regulated by interleukin-6. Eur J Immunol. 1993;23(8):1889–94.

    Article  CAS  PubMed  Google Scholar 

  55. Soubeyran P, Fonck M, Blanc-Bisson C, Blanc JF, Ceccaldi J, Mertens C, et al. Predictors of early death risk in older patients treated with first-line chemotherapy for cancer. J Clin Oncol. 2012;30(15):1829–34.

    Article  PubMed  Google Scholar 

  56. Clough-Gorr KM, Stuck AE, Thwin SS, Silliman RA. Older breast cancer survivors: geriatric assessment domains are associated with poor tolerance of treatment adverse effects and predict mortality over 7 years of follow-up. J Clin Oncol. 2010;28(3):380–6.

    Article  PubMed  Google Scholar 

  57. Kenis C, Decoster L, Bastin J, Bode H, Van Puyvelde K, De Grève J, et al. Functional decline in older patients with cancer receiving chemotherapy: a multicenter prospective study. J Geriatr Oncol. 2017;8(3):196–205.

    Article  PubMed  Google Scholar 

  58. Bellera CA, Rainfray M, Mathoulin-Pélissier S, Mertens C, Delva F, Fonck M, et al. Screening older cancer patients: first evaluation of the G-8 geriatric screening tool. Ann Oncol. 2012;23(8):2166–72.

    Article  CAS  PubMed  Google Scholar 

  59. • Welaya K, Loh KP, Messing S, Szuba E, Magnuson A, Mohile SG, et al. Geriatric assessment and treatment outcomes in older adults with cancer receiving immune checkpoint inhibitors. J Geriatr Oncol. 2020;11(3):523–8 This small retrospective analysis of 28 patients is the only study that has evaluated the use of the comprehensive geriatric assessment in patients who have received checkpoint blockade. Impairment in IADL was associated with receiving fewer cycles of checkpoint blockade. The small sample size limited interpretation of other geriatric assessment domains.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Isaacs.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Geriatric Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaacs, J., Antonia, S. & Clarke, J. Immune Checkpoint Inhibitors in the Aged. Curr Oncol Rep 23, 115 (2021). https://doi.org/10.1007/s11912-021-01106-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11912-021-01106-x

Keywords

Navigation