Skip to main content

Advertisement

Log in

Tumor Biomarkers and Interventional Oncology: Impact on Local Outcomes for Liver and Lung Malignancy

  • Interventional Oncology (DC Madoff, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Interventional oncology (IO) loco-regional treatments are widely utilized in clinical practice. However, local tumor control rates are still widely variable. There is a need to identify and develop novel biomarkers prognosticators following IO therapies. Here, we review the current literature on molecular tumor biomarkers in IO, mainly focusing on patients with liver and lung cancers.

Recent Findings

RAS mutation is a prognosticator for patients with colorectal liver metastases. Several promising serum metabolites, gene signatures, circulating tumor nucleotides, and peptides are being evaluated for patients with hepatocellular carcinoma. Ki-67 and RAS mutation are independent risk factors for local tumor progression in the ablation of lung cancer.

Summary

The relevant interplay between specific tumor biomarkers and IO loco-regional therapies outcomes has brought a new vision in the management of cancer. Further evolution of personalized interventional oncology accordingly to tumor biomarkers should improve oncologic outcomes for patients receiving IO therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lin SM, Lin CJ, Lin CC, Hsu CW, Chen YC. Randomised controlled trial comparing percutaneous radiofrequency thermal ablation, percutaneous ethanol injection, and percutaneous acetic acid injection to treat hepatocellular carcinoma of 3 cm or less. Gut. 2005;54(8):1151–6. https://doi.org/10.1136/gut.2004.045203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lammer J, Malagari K, Vogl T, Pilleul F, Denys A, Watkinson A, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol. 2010;33(1):41–52. https://doi.org/10.1007/s00270-009-9711-7.

    Article  PubMed  Google Scholar 

  3. Fitzmaurice C, Akinyemiju TF, Al Lami FH, Alam T, Alizadeh-Navaei R, Allen C, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncol. 2018;4(11):1553–68. https://doi.org/10.1001/jamaoncol.2018.2706.

    Article  PubMed  Google Scholar 

  4. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604. https://doi.org/10.1038/s41575-019-0186-y.

    Article  PubMed  PubMed Central  Google Scholar 

  5. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. Eur J Cancer. 2012;48(5):599-641. https://doi.org/10.1016/j.ejca.2011.12.021.

  6. Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology. 2018;68(2):723–50. https://doi.org/10.1002/hep.29913.

    Article  PubMed  Google Scholar 

  7. Forner A, Reig ME, de Lope CR, Bruix J. Current strategy for staging and treatment: the BCLC update and future prospects. Semin Liver Dis. 2010;30(1):61–74. https://doi.org/10.1055/s-0030-1247133.

    Article  CAS  PubMed  Google Scholar 

  8. Casadei Gardini A, Marisi G, Canale M, Foschi FG, Donati G, Ercolani G, et al. Radiofrequency ablation of hepatocellular carcinoma: a meta-analysis of overall survival and recurrence-free survival. Onco Targets Ther. 2018;11:6555–67. https://doi.org/10.2147/ott.S170836.

    Article  PubMed  Google Scholar 

  9. Shiina S, Tateishi R, Arano T, Uchino K, Enooku K, Nakagawa H, et al. Radiofrequency ablation for hepatocellular carcinoma: 10-year outcome and prognostic factors. Am J Gastroenterol. 2012;107(4):569–77; quiz 78. https://doi.org/10.1038/ajg.2011.425.

    Article  CAS  PubMed  Google Scholar 

  10. Tsai MC, Wang JH, Hung CH, Kee KM, Yen YH, Lee CM, et al. Favorable alpha-fetoprotein decrease as a prognostic surrogate in patients with hepatocellular carcinoma after radiofrequency ablation. J Gastroenterol Hepatol. 2010;25(3):605–12. https://doi.org/10.1111/j.1440-1746.2009.06115.x.

    Article  CAS  PubMed  Google Scholar 

  11. Kao WY, Chiou YY, Hung HH, Su CW, Chou YH, Wu JC, et al. Serum alpha-fetoprotein response can predict prognosis in hepatocellular carcinoma patients undergoing radiofrequency ablation therapy. Clin Radiol. 2012;67(5):429–36. https://doi.org/10.1016/j.crad.2011.10.009.

    Article  PubMed  Google Scholar 

  12. Lee YK, Kim SU, Kim DY, Ahn SH, Lee KH, Lee DY, et al. Prognostic value of α-fetoprotein and des-γ-carboxy prothrombin responses in patients with hepatocellular carcinoma treated with transarterial chemoembolization. BMC Cancer. 2013;13:5. https://doi.org/10.1186/1471-2407-13-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bhutiani N, O'Brien SJ, Priddy EE, Egger ME, Hong YK, Mercer MK, et al. Correlating serum alpha-fetoprotein in hepatocellular carcinoma with response to Yttrium-90 transarterial radioembolization with glass microspheres (TheraSphere™). HPB (Oxford). 2020;22:1330–8. https://doi.org/10.1016/j.hpb.2019.12.007.

    Article  Google Scholar 

  14. Riaz A, Ryu RK, Kulik LM, Mulcahy MF, Lewandowski RJ, Minocha J, et al. Alpha-fetoprotein response after locoregional therapy for hepatocellular carcinoma: oncologic marker of radiologic response, progression, and survival. J Clin Oncol. 2009;27(34):5734–42. https://doi.org/10.1200/jco.2009.23.1282.

    Article  CAS  PubMed  Google Scholar 

  15. Koike Y, Shiratori Y, Sato S, Obi S, Teratani T, Imamura M, et al. Des-gamma-carboxy prothrombin as a useful predisposing factor for the development of portal venous invasion in patients with hepatocellular carcinoma: a prospective analysis of 227 patients. Cancer. 2001;91(3):561–9. https://doi.org/10.1002/1097-0142(20010201)91:3<561::aid-cncr1035>3.0.co;2-n.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang XF, Lai EC, Kang XY, Qian HH, Zhou YM, Shi LH, et al. Lens culinaris agglutinin-reactive fraction of alpha-fetoprotein as a marker of prognosis and a monitor of recurrence of hepatocellular carcinoma after curative liver resection. Ann Surg Oncol. 2011;18(8):2218–23. https://doi.org/10.1245/s10434-011-1613-7.

    Article  PubMed  Google Scholar 

  17. Saito Y, Shimada M, Utsunomiya T, Morine Y, Imura S, Ikemoto T, et al. Prediction of recurrence of hepatocellular carcinoma after curative hepatectomy using preoperative Lens culinaris agglutinin-reactive fraction of alpha-fetoprotein. Hepatol Res. 2012;42(9):887–94. https://doi.org/10.1111/j.1872-034X.2012.01004.x.

    Article  PubMed  Google Scholar 

  18. Tateishi R, Shiina S, Yoshida H, Teratani T, Obi S, Yamashiki N, et al. Prediction of recurrence of hepatocellular carcinoma after curative ablation using three tumor markers. Hepatology. 2006;44(6):1518–27. https://doi.org/10.1002/hep.21408.

    Article  CAS  PubMed  Google Scholar 

  19. Ogawa C, Kudo M, Minami Y, Chung H, Kawasaki T. Tumor markers after radiofrequency ablation therapy for hepatocellular carcinoma. Hepatogastroenterology. 2008;55(85):1454–7.

    PubMed  Google Scholar 

  20. Kobayashi M, Ikeda K, Kawamura Y, Yatsuji H, Hosaka T, Sezaki H, et al. High serum des-gamma-carboxy prothrombin level predicts poor prognosis after radiofrequency ablation of hepatocellular carcinoma. Cancer. 2009;115(3):571–80. https://doi.org/10.1002/cncr.24031.

    Article  CAS  PubMed  Google Scholar 

  21. Lee S, Rhim H, Kim YS, Kang TW, Song KD. Post-ablation des-gamma-carboxy prothrombin level predicts prognosis in hepatitis B-related hepatocellular carcinoma. Liver Int. 2016;36(4):580–7. https://doi.org/10.1111/liv.12991.

    Article  CAS  PubMed  Google Scholar 

  22. Okuwaki Y, Nakazawa T, Shibuya A, Ono K, Hidaka H, Watanabe M, et al. Intrahepatic distant recurrence after radiofrequency ablation for a single small hepatocellular carcinoma: risk factors and patterns. J Gastroenterol. 2008;43(1):71–8. https://doi.org/10.1007/s00535-007-2123-z.

    Article  PubMed  Google Scholar 

  23. Asaoka Y, Tateishi R, Nakagomi R, Kondo M, Fujiwara N, Minami T, et al. Frequency of and predictive factors for vascular invasion after radiofrequency ablation for hepatocellular carcinoma. PLoS One. 2014;9(11):e111662. https://doi.org/10.1371/journal.pone.0111662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ueno M, Hayami S, Shigekawa Y, Kawai M, Hirono S, Okada K, et al. Prognostic impact of surgery and radiofrequency ablation on single nodular HCC ⩽5 cm: Cohort study based on serum HCC markers. J Hepatol. 2015;63(6):1352–9. https://doi.org/10.1016/j.jhep.2015.07.013.

    Article  PubMed  Google Scholar 

  25. Park WH, Shim JH, Han SB, Won HJ, Shin YM, Kim KM, et al. Clinical utility of des-γ-carboxyprothrombin kinetics as a complement to radiologic response in patients with hepatocellular carcinoma undergoing transarterial chemoembolization. J Vasc Interv Radiol. 2012;23(7):927–36. https://doi.org/10.1016/j.jvir.2012.04.021.

    Article  PubMed  Google Scholar 

  26. Arai T, Kobayashi A, Ohya A, Takahashi M, Yokoyama T, Shimizu A, et al. Assessment of treatment outcomes based on tumor marker trends in patients with recurrent hepatocellular carcinoma undergoing trans-catheter arterial chemo-embolization. Int J Clin Oncol. 2014;19(5):871–9. https://doi.org/10.1007/s10147-013-0634-6.

    Article  CAS  PubMed  Google Scholar 

  27. Huang C, Sheng S, Sun X, Liu J, Huang G. Lens culinaris agglutinin-reactive α-fetoprotein decline after transcatheter arterial chemoembolization in patients with hepatocellular carcinoma predicts survival. Clin Chim Acta. 2014;431:232–8. https://doi.org/10.1016/j.cca.2014.02.009.

    Article  CAS  PubMed  Google Scholar 

  28. Cho HJ, Kim JK, Nam JS, Wang HJ, Lee JH, Kim BW, et al. High circulating microRNA-122 expression is a poor prognostic marker in patients with hepatitis B virus-related hepatocellular carcinoma who undergo radiofrequency ablation. Clin Biochem. 2015;48(16-17):1073–8. https://doi.org/10.1016/j.clinbiochem.2015.06.019.

    Article  CAS  PubMed  Google Scholar 

  29. Cho HJ, Kim SS, Nam JS, Kim JK, Lee JH, Kim B, et al. Low levels of circulating microRNA-26a/29a as poor prognostic markers in patients with hepatocellular carcinoma who underwent curative treatment. Clin Res Hepatol Gastroenterol. 2017;41(2):181–9. https://doi.org/10.1016/j.clinre.2016.09.011.

    Article  CAS  PubMed  Google Scholar 

  30. HEA A, Emam AA, Zeeneldin AA, Srour R, Tabashy R, El-Desouky ED, et al. Circulating miR-26a, miR-106b, miR-107 and miR-133b stratify hepatocellular carcinoma patients according to their response to transarterial chemoembolization. Clin Biochem. 2019;65:45–52. https://doi.org/10.1016/j.clinbiochem.2019.01.002This study compared a panel of circulating microRNAs to predict the clinical outcomes of HCC after TACE treatment. It provide better accuracy with combination of twenty circulating microRNAs to meet the diversity of HCC patients.

    Article  CAS  Google Scholar 

  31. Kim SS, Cho HJ, Nam JS, Kim HJ, Kang DR, Won JH, et al. Plasma microRNA-21, 26a, and 29a-3p as predictive markers for treatment response following transarterial chemoembolization in patients with hepatocellular carcinoma. J Korean Med Sci. 2018;33(1):e6. https://doi.org/10.3346/jkms.2018.33.e6.

    Article  CAS  PubMed  Google Scholar 

  32. Luo Z, Feng C, Hu P, Chen Y, He XF, Li Y, et al. Serum microRNA-199a/b-3p as a predictive biomarker for treatment response in patients with hepatocellular carcinoma undergoing transarterial chemoembolization. Onco Targets Ther. 2016;9:2667–74. https://doi.org/10.2147/ott.S98408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shen J, Wang WS, Zhu XL, Ni CF. High epithelial cell adhesion molecule-positive circulating tumor cell count predicts poor survival of patients with unresectable hepatocellular carcinoma treated with transcatheter arterial chemoembolization. J Vasc Interv Radiol. 2018;29(12):1678–84. https://doi.org/10.1016/j.jvir.2018.07.030.

    Article  PubMed  Google Scholar 

  34. Divella R, Daniele A, Abbate I, Savino E, Casamassima P, Sciortino G, et al. Circulating levels of PAI-1 and SERPINE1 4G/4G polymorphism are predictive of poor prognosis in HCC patients undergoing TACE. Transl Oncol. 2015;8(4):273–8. https://doi.org/10.1016/j.tranon.2015.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang Z, Qu K, Huang Z, Xu X, Zhang J, Zhang L, et al. Glutathione S-transferase O2 gene rs157077 polymorphism predicts response to transarterial chemoembolization in hepatocellular carcinoma. Tumour Biol. 2015;36(8):6463–9. https://doi.org/10.1007/s13277-015-3336-z.

    Article  CAS  PubMed  Google Scholar 

  36. Huang XY, Yao JG, Huang BC, Ma Y, Xia Q, Long XD. Polymorphisms of a disintegrin and metalloproteinase with thrombospondin motifs 5 and aflatoxin B1-related hepatocellular carcinoma. Cancer Epidemiol Biomark Prev. 2016;25(2):334–43. https://doi.org/10.1158/1055-9965.Epi-15-0774.

    Article  CAS  Google Scholar 

  37. Gaba RC, Groth JV, Parvinian A, Guzman G, Casadaban LC. Gene expression in hepatocellular carcinoma: pilot study of potential transarterial chemoembolization response biomarkers. J Vasc Interv Radiol. 2015;26(5):723–32. https://doi.org/10.1016/j.jvir.2014.12.610.

    Article  PubMed  Google Scholar 

  38. Ziv E, Zhang Y, Kelly L, Nikolovski I, Boas FE, Erinjeri JP, et al. NRF2 Dysregulation in hepatocellular carcinoma and ischemia: a cohort study and laboratory investigation. Radiology. 2020;297(1):225–34. https://doi.org/10.1148/radiol.2020200201This study was designed with laboratory and clinical arms. In the clinical arm, HCC with NRF2 pathway mutations had shorter time to local progression than wild type after TAE. In the laboratory arm, knocking down NRF2 resulted in accumulation of reactive oxygen species in HCC cells and inhibited postischemia recovery in HCC cells with NRF2 overexpression. Moreoever, the NRF2 inhibitor overcame ischemia resistance of HCC cell lines with NRF2 overexpression. This study showed NRF2 not only a predictor of TAE response but also a potential therapeutic target to improve the treatment outcome.

    Article  PubMed  Google Scholar 

  39. Zhu AX, Duda DG, Sahani DV, Jain RK. HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol. 2011;8(5):292–301. https://doi.org/10.1038/nrclinonc.2011.30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Poon RT, Lau C, Pang R, Ng KK, Yuen J, Fan ST. High serum vascular endothelial growth factor levels predict poor prognosis after radiofrequency ablation of hepatocellular carcinoma: importance of tumor biomarker in ablative therapies. Ann Surg Oncol. 2007;14(6):1835–45. https://doi.org/10.1245/s10434-007-9366-z.

    Article  PubMed  Google Scholar 

  41. Poon RT, Lau C, Yu WC, Fan ST, Wong J. High serum levels of vascular endothelial growth factor predict poor response to transarterial chemoembolization in hepatocellular carcinoma: a prospective study. Oncol Rep. 2004;11(5):1077–84.

    CAS  PubMed  Google Scholar 

  42. Hsieh MY, Lin ZY, Chuang WL. Serial serum VEGF-A, angiopoietin-2, and endostatin measurements in cirrhotic patients with hepatocellular carcinoma treated by transcatheter arterial chemoembolization. Kaohsiung J Med Sci. 2011;27(8):314–22. https://doi.org/10.1016/j.kjms.2011.03.008.

    Article  CAS  PubMed  Google Scholar 

  43. Lambrecht RW, Sterling RK, Naishadham D, Stoddard AM, Rogers T, Morishima C, et al. Iron levels in hepatocytes and portal tract cells predict progression and outcomes of patients with advanced chronic hepatitis C. Gastroenterology. 2011;140(5):1490–500.e3. https://doi.org/10.1053/j.gastro.2011.01.053.

    Article  CAS  PubMed  Google Scholar 

  44. Facciorusso A, Del Prete V, Antonino M, Neve V, Crucinio N, Di Leo A, et al. Serum ferritin as a new prognostic factor in hepatocellular carcinoma patients treated with radiofrequency ablation. J Gastroenterol Hepatol. 2014;29(11):1905–10. https://doi.org/10.1111/jgh.12618.

    Article  CAS  PubMed  Google Scholar 

  45. Abdel-Wahab R, Shehata S, Hassan MM, Habra MA, Eskandari G, Tinkey PT, et al. Type I insulin-like growth factor as a liver reserve assessment tool in hepatocellular carcinoma. J Hepatocell Carcinoma. 2015;2:131–42. https://doi.org/10.2147/jhc.S81309.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liu S, Liu Y, Jiang X. Prognostic significance of serum insulin-like growth factor-1 in patients with hepatocellular carcinoma following transarterial chemoembolization. Exp Ther Med. 2016;11(2):607–12. https://doi.org/10.3892/etm.2015.2949.

    Article  CAS  PubMed  Google Scholar 

  47. Pan HW, Ou YH, Peng SY, Liu SH, Lai PL, Lee PH, et al. Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer. 2003;98(1):119–27. https://doi.org/10.1002/cncr.11487.

    Article  CAS  PubMed  Google Scholar 

  48. Kim SH, Chung YH, Yang SH, Kim JA, Jang MK, Kim SE, et al. Prognostic value of serum osteopontin in hepatocellular carcinoma patients treated with transarterial chemoembolization. Korean J Hepatol. 2009;15(3):320–30. https://doi.org/10.3350/kjhep.2009.15.3.320.

    Article  CAS  PubMed  Google Scholar 

  49. Kohles N, Nagel D, Jüngst D, Durner J, Stieber P, Holdenrieder S. Relevance of circulating nucleosomes and oncological biomarkers for predicting response to transarterial chemoembolization therapy in liver cancer patients. BMC Cancer. 2011;11:202. https://doi.org/10.1186/1471-2407-11-202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hummel R, Hussey DJ, Haier J. MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer. 2010;46(2):298–311. https://doi.org/10.1016/j.ejca.2009.10.027.

    Article  CAS  PubMed  Google Scholar 

  51. Cui X, Wu Y, Wang Z, Liu X, Wang S, Qin C. MicroRNA-34a expression is predictive of recurrence after radiofrequency ablation in early hepatocellular carcinoma. Tumour Biol. 2015;36(5):3887–93. https://doi.org/10.1007/s13277-014-3031-5.

    Article  CAS  PubMed  Google Scholar 

  52. Ziol M, Sutton A, Calderaro J, Barget N, Aout M, Leroy V, et al. ESM-1 expression in stromal cells is predictive of recurrence after radiofrequency ablation in early hepatocellular carcinoma. J Hepatol. 2013;59(6):1264–70. https://doi.org/10.1016/j.jhep.2013.07.030.

    Article  CAS  PubMed  Google Scholar 

  53. Tsuchiya K, Komuta M, Yasui Y, Tamaki N, Hosokawa T, Ueda K, et al. Expression of keratin 19 is related to high recurrence of hepatocellular carcinoma after radiofrequency ablation. Oncology. 2011;80(3-4):278–88. https://doi.org/10.1159/000328448.

    Article  CAS  PubMed  Google Scholar 

  54. Dal Bello B, Rosa L, Campanini N, Tinelli C, Torello Viera F, D'Ambrosio G, et al. Glutamine synthetase immunostaining correlates with pathologic features of hepatocellular carcinoma and better survival after radiofrequency thermal ablation. Clin Cancer Res. 2010;16(7):2157–66. https://doi.org/10.1158/1078-0432.Ccr-09-1978.

    Article  CAS  PubMed  Google Scholar 

  55. Taussig MD, Irene Koran ME, Mouli SK, Ahmad A, Geevarghese S, Baker JC, et al. Neutrophil to lymphocyte ratio predicts disease progression following intra-arterial therapy of hepatocellular carcinoma. HPB (Oxford). 2017;19(5):458–64. https://doi.org/10.1016/j.hpb.2017.01.013.

    Article  Google Scholar 

  56. Liao Y, Wang B, Huang ZL, Shi M, Yu XJ, Zheng L, et al. Increased circulating Th17 cells after transarterial chemoembolization correlate with improved survival in stage III hepatocellular carcinoma: a prospective study. PLoS One. 2013;8(4):e60444. https://doi.org/10.1371/journal.pone.0060444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou L, Fu JL, Lu YY, Fu BY, Wang CP, An LJ, et al. Regulatory T cells are associated with post-cryoablation prognosis in patients with hepatitis B virus-related hepatocellular carcinoma. J Gastroenterol. 2010;45(9):968–78. https://doi.org/10.1007/s00535-010-0243-3.

    Article  CAS  PubMed  Google Scholar 

  58. Avritscher R, Jo N, Polak U, Cortes AC, Nishiofuku H, Odisio BC, et al. Hepatic arterial bland embolization increases Th17 cell infiltration in a syngeneic rat model of hepatocellular carcinoma. Cardiovasc Intervent Radiol. 2020;43(2):311–21. https://doi.org/10.1007/s00270-019-02343-1.

    Article  PubMed  Google Scholar 

  59. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol. 2019;14(2):89–103. https://doi.org/10.5114/pg.2018.81072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bramhall SR, Gur U, Coldham C, Gunson BK, Mayer AD, McMaster P, et al. Liver resection for colorectal metastases. Ann R Coll Surg Engl. 2003;85(5):334–9. https://doi.org/10.1308/003588403769162468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Riihimäki M, Hemminki A, Sundquist J, Hemminki K. Patterns of metastasis in colon and rectal cancer. Sci Rep. 2016;6:29765. https://doi.org/10.1038/srep29765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Clancy C, Burke JP, Barry M, Kalady MF, Calvin CJ. A meta-analysis to determine the effect of primary tumor resection for stage IV colorectal cancer with unresectable metastases on patient survival. Ann Surg Oncol. 2014;21(12):3900–8. https://doi.org/10.1245/s10434-014-3805-4.

    Article  PubMed  Google Scholar 

  63. Shady W, Petre EN, Gonen M, Erinjeri JP, Brown KT, Covey AM, et al. Percutaneous radiofrequency ablation of colorectal cancer liver metastases: factors affecting outcomes--a 10-year experience at a single center. Radiology. 2016;278(2):601–11. https://doi.org/10.1148/radiol.2015142489.

    Article  PubMed  Google Scholar 

  64. Solbiati L, Ahmed M, Cova L, Ierace T, Brioschi M, Goldberg SN. Small liver colorectal metastases treated with percutaneous radiofrequency ablation: local response rate and long-term survival with up to 10-year follow-up. Radiology. 2012;265(3):958–68. https://doi.org/10.1148/radiol.12111851.

    Article  PubMed  Google Scholar 

  65. Sofocleous CT, Petre EN, Gonen M, Brown KT, Solomon SB, Covey AM, et al. CT-guided radiofrequency ablation as a salvage treatment of colorectal cancer hepatic metastases developing after hepatectomy. J Vasc Interv Radiol. 2011;22(6):755–61. https://doi.org/10.1016/j.jvir.2011.01.451.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ruers T, Van Coevorden F, Punt CJ, Pierie JE, Borel-Rinkes I, Ledermann JA, et al. Local treatment of unresectable colorectal liver metastases: results of a randomized phase ii trial. J Natl Cancer Inst. 2017;109(9):djx015. https://doi.org/10.1093/jnci/djx015.

    Article  PubMed Central  Google Scholar 

  67. Hammill CW, Billingsley KG, Cassera MA, Wolf RF, Ujiki MB, Hansen PD. Outcome after laparoscopic radiofrequency ablation of technically resectable colorectal liver metastases. Ann Surg Oncol. 2011;18(7):1947–54. https://doi.org/10.1245/s10434-010-1535-9.

    Article  PubMed  Google Scholar 

  68. Wang X, Sofocleous CT, Erinjeri JP, Petre EN, Gonen M, Do KG, et al. Margin size is an independent predictor of local tumor progression after ablation of colon cancer liver metastases. Cardiovasc Intervent Radiol. 2013;36(1):166–75. https://doi.org/10.1007/s00270-012-0377-1.

    Article  CAS  PubMed  Google Scholar 

  69. Veltri A, Sacchetto P, Tosetti I, Pagano E, Fava C, Gandini G. Radiofrequency ablation of colorectal liver metastases: small size favorably predicts technique effectiveness and survival. Cardiovasc Intervent Radiol. 2008;31(5):948–56. https://doi.org/10.1007/s00270-008-9362-0.

    Article  PubMed  Google Scholar 

  70. Calandri M, Yamashita S, Gazzera C, Fonio P, Veltri A, Bustreo S, et al. Ablation of colorectal liver metastasis: interaction of ablation margins and RAS mutation profiling on local tumour progression-free survival. Eur Radiol. 2018;28(7):2727–34. https://doi.org/10.1007/s00330-017-5273-2This two-institutional retrospective study showed the mutant RAS was a significant predictor of local tumor progression in ablation of colorectal liver metastases, irrespective of the minimal ablation margins achieved. In order to ahieve best local tumor control, minimal albation margins of >10 mm for mutant RAS tumors should be required.

    Article  PubMed  Google Scholar 

  71. Odisio BC, Yamashita S, Huang SY, Harmoush S, Kopetz SE, Ahrar K, et al. Local tumour progression after percutaneous ablation of colorectal liver metastases according to RAS mutation status. Br J Surg. 2017;104(6):760–8. https://doi.org/10.1002/bjs.10490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shady W, Petre EN, Vakiani E, Ziv E, Gonen M, Brown KT, et al. Kras mutation is a marker of worse oncologic outcomes after percutaneous radiofrequency ablation of colorectal liver metastases. Oncotarget. 2017;8(39):66117–27. https://doi.org/10.18632/oncotarget.19806.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jiang BB, Yan K, Zhang ZY, Yang W, Wu W, Yin SS, et al. The value of KRAS gene status in predicting local tumor progression of colorectal liver metastases following radiofrequency ablation. Int J Hyperth. 2019;36(1):211–9. https://doi.org/10.1080/02656736.2018.1556818.

    Article  CAS  Google Scholar 

  74. Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757–65. https://doi.org/10.1056/NEJMoa0804385.

    Article  CAS  PubMed  Google Scholar 

  75. Van Cutsem E, Köhne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408–17. https://doi.org/10.1056/NEJMoa0805019.

    Article  PubMed  Google Scholar 

  76. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(10):1626–34. https://doi.org/10.1200/jco.2007.14.7116.

    Article  CAS  PubMed  Google Scholar 

  77. Lahti SJ, Xing M, Zhang D, Lee JJ, Magnetta MJ, Kim HS. KRAS status as an independent prognostic factor for survival after yttrium-90 radioembolization therapy for unresectable colorectal cancer liver metastases. J Vasc Interv Radiol. 2015;26(8):1102–11. https://doi.org/10.1016/j.jvir.2015.05.032.

    Article  PubMed  Google Scholar 

  78. Magnetta MJ, Ghodadra A, Lahti SJ, Xing M, Zhang D, Kim HS. Connecting cancer biology and clinical outcomes to imaging in KRAS mutant and wild-type colorectal cancer liver tumors following selective internal radiation therapy with yttrium-90. Abdom Radiol (NY). 2017;42(2):451–9. https://doi.org/10.1007/s00261-016-0875-8.

    Article  Google Scholar 

  79. Ziv E, Bergen M, Yarmohammadi H, Boas FE, Petre EN, Sofocleous CT, et al. PI3K pathway mutations are associated with longer time to local progression after radioembolization of colorectal liver metastases. Oncotarget. 2017;8(14):23529–38. https://doi.org/10.18632/oncotarget.15278.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kurilova I, Beets-Tan RGH, Flynn J, Gönen M, Ulaner G, Petre EN, et al. Factors affecting oncologic outcomes of 90Y radioembolization of heavily pre-treated patients with colon cancer liver metastases. Clin Colorectal Cancer. 2019;18(1):8–18. https://doi.org/10.1016/j.clcc.2018.08.004.

    Article  PubMed  Google Scholar 

  81. Fahmueller YN, Nagel D, Hoffmann RT, Tatsch K, Jakobs T, Stieber P, et al. Predictive and prognostic value of circulating nucleosomes and serum biomarkers in patients with metastasized colorectal cancer undergoing Selective Internal Radiation Therapy. BMC Cancer. 2012;12:5. https://doi.org/10.1186/1471-2407-12-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fahmueller YN, Nagel D, Hoffmann RT, Tatsch K, Jakobs T, Stieber P, et al. Immunogenic cell death biomarkers HMGB1, RAGE, and DNAse indicate response to radioembolization therapy and prognosis in colorectal cancer patients. Int J Cancer. 2013;132(10):2349–58. https://doi.org/10.1002/ijc.27894.

    Article  CAS  PubMed  Google Scholar 

  83. Petrowsky H, Sturm I, Graubitz O, Kooby DA, Staib-Sebler E, Gog C, et al. Relevance of Ki-67 antigen expression and K-ras mutation in colorectal liver metastases. Eur J Surg Oncol. 2001;27(1):80–7. https://doi.org/10.1053/ejso.2000.1029.

    Article  CAS  PubMed  Google Scholar 

  84. Urruticoechea A, Smith IE, Dowsett M. Proliferation marker Ki-67 in early breast cancer. J Clin Oncol. 2005;23(28):7212–20. https://doi.org/10.1200/jco.2005.07.501.

    Article  CAS  PubMed  Google Scholar 

  85. King KL, Hwang JJ, Chau GY, Tsay SH, Chi CW, Lee TG, et al. Ki-67 expression as a prognostic marker in patients with hepatocellular carcinoma. J Gastroenterol Hepatol. 1998;13(3):273–9. https://doi.org/10.1111/j.1440-1746.1998.01555.x.

    Article  CAS  PubMed  Google Scholar 

  86. Vilar E, Salazar R, Pérez-García J, Cortes J, Oberg K, Tabernero J. Chemotherapy and role of the proliferation marker Ki-67 in digestive neuroendocrine tumors. Endocr Relat Cancer. 2007;14(2):221–32. https://doi.org/10.1677/erc-06-0074.

    Article  CAS  PubMed  Google Scholar 

  87. Tollefson MK, Thompson RH, Sheinin Y, Lohse CM, Cheville JC, Leibovich BC, et al. Ki-67 and coagulative tumor necrosis are independent predictors of poor outcome for patients with clear cell renal cell carcinoma and not surrogates for each other. Cancer. 2007;110(4):783–90. https://doi.org/10.1002/cncr.22840.

    Article  PubMed  Google Scholar 

  88. Sofocleous CT, Garg S, Petrovic LM, Gonen M, Petre EN, Klimstra DS, et al. Ki-67 is a prognostic biomarker of survival after radiofrequency ablation of liver malignancies. Ann Surg Oncol. 2012;19(13):4262–9. https://doi.org/10.1245/s10434-012-2461-9.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sofocleous CT, Nascimento RG, Petrovic LM, Klimstra DS, Gonen M, Brown KT, et al. Histopathologic and immunohistochemical features of tissue adherent to multitined electrodes after RF ablation of liver malignancies can help predict local tumor progression: initial results. Radiology. 2008;249(1):364–74. https://doi.org/10.1148/radiol.2491071752.

    Article  PubMed  Google Scholar 

  90. Steinmüller T, Kianmanesh R, Falconi M, Scarpa A, Taal B, Kwekkeboom DJ, et al. Consensus guidelines for the management of patients with liver metastases from digestive (neuro)endocrine tumors: foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2008;87(1):47–62. https://doi.org/10.1159/000111037.

    Article  CAS  PubMed  Google Scholar 

  91. Sommer WH, Ceelen F, García-Albéniz X, Paprottka PM, Auernhammer CJ, Armbruster M, et al. Defining predictors for long progression-free survival after radioembolisation of hepatic metastases of neuroendocrine origin. Eur Radiol. 2013;23(11):3094–103. https://doi.org/10.1007/s00330-013-2925-8.

    Article  PubMed  Google Scholar 

  92. Ziv E, Yarmohammadi H, Boas FE, Petre EN, Brown KT, Solomon SB, et al. Gene signature associated with upregulation of the Wnt/β-catenin signaling pathway predicts tumor response to transarterial embolization. J Vasc Interv Radiol. 2017;28(3):349–55.e1. https://doi.org/10.1016/j.jvir.2016.11.004.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ziv E, Rice SL, Filtes J, Yarmohammadi H, Boas FE, Erinjeri JP, et al. DAXX mutation status of embolization-treated neuroendocrine tumors predicts shorter time to hepatic progression. J Vasc Interv Radiol. 2018;29(11):1519–26. https://doi.org/10.1016/j.jvir.2018.05.023.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Deipolyi AR, Riedl CC, Bromberg J, Chandarlapaty S, Klebanoff CA, Sofocleous CT, et al. Association of PI3K pathway mutations with early positron-emission tomography/CT imaging response after radioembolization for breast cancer liver metastases: results of a single-center retrospective pilot study. J Vasc Interv Radiol. 2018;29(9):1226–35. https://doi.org/10.1016/j.jvir.2018.04.018.

    Article  PubMed  PubMed Central  Google Scholar 

  95. de Baère T, Aupérin A, Deschamps F, Chevallier P, Gaubert Y, Boige V, et al. Radiofrequency ablation is a valid treatment option for lung metastases: experience in 566 patients with 1037 metastases. Ann Oncol. 2015;26(5):987–91. https://doi.org/10.1093/annonc/mdv037.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Anderson EM, Lees WR, Gillams AR. Early indicators of treatment success after percutaneous radiofrequency of pulmonary tumors. Cardiovasc Intervent Radiol. 2009;32(3):478–83. https://doi.org/10.1007/s00270-008-9482-6.

    Article  PubMed  Google Scholar 

  97. Sofocleous CT, Garg SK, Cohen P, Petre EN, Gonen M, Erinjeri JP, et al. Ki 67 is an independent predictive biomarker of cancer specific and local recurrence-free survival after lung tumor ablation. Ann Surg Oncol. 2013;20(Suppl 3):S676–83. https://doi.org/10.1245/s10434-013-3140-1.

    Article  PubMed  Google Scholar 

  98. Ziv E, Erinjeri JP, Yarmohammadi H, Boas FE, Petre EN, Gao S, et al. Lung adenocarcinoma: predictive value of KRAS mutation status in assessing local recurrence in patients undergoing image-guided ablation. Radiology. 2017;282(1):251–8. https://doi.org/10.1148/radiol.2016160003.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno C. Odisio.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

Yuan-Mao Lin, Ryosuke Taiji, and Marco Calandri declare no conflict of interest. Bruno C. Odisio is supported in part by an R01 industry-academy grant from the National Institutes of Health (NIH) and Raysearch Laboratories, has received research funding from Siemens Healthineers, and is an institutional PI on a multi-institutional clinical study funded by Johnson & Johnson; and has received speaker's honoraria from Siemens Healthineers.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Interventional Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YM., Taiji, R., Calandri, M. et al. Tumor Biomarkers and Interventional Oncology: Impact on Local Outcomes for Liver and Lung Malignancy. Curr Oncol Rep 23, 67 (2021). https://doi.org/10.1007/s11912-021-01056-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11912-021-01056-4

Keywords

Navigation