Chronic Myelogenous Leukemia in Childhood

Abstract

Purpose of Review

Chronic myelogenous leukemia (CML) is rare in children, requiring extrapolation from treatment of adults. In this review, we explore similarities and differences between adult and pediatric CML with a focus on therapeutic advances and emerging clinical questions.

Recent Findings

Pediatric CML is effectively treated with long-term targeted therapy using tyrosine kinase inhibitors (TKIs). Newly diagnosed pediatric patients in chronic phase can now be treated with imatinib, dasatinib, or nilotinib without allogeneic hematopoietic stem cell transplantation. While treatment-free remission is possible in adults in chronic phase with optimal response to therapy, data are currently insufficient to support stopping TKI in pediatrics outside of a clinical trial. Knowledge gaps remain regarding long-term and late effects of TKIs in pediatric CML.

Summary

Targeted therapy has markedly improved outcomes for pediatric CML, while raising a number of clinical questions, including the possibility of treatment-free remission and long-term health implications of prolonged TKI exposure at a young age.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    SEER Cancer Stat Facts: Chronic Myeloid Leukemia. National Cancer Institute. Bethesda. Available at: https://seer.cancer.gov/statfacts/html/cmyl.html. Accessed 7/2/2020.

  2. 2.

    Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M et al. SEER Cancer Statistics Review, 1975-2017. National Cancer Institute Bethesda, MD, https://seercancergov/csr/1975_2017/, based on November 2019 SEER data submission, posted to the SEER web site, April 2020.

  3. 3.

    Bower H, Björkholm M, Dickman PW, Höglund M, Lambert PC, Andersson TML. Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. J Clin Oncol. 2016;34(24):2851–7. https://doi.org/10.1200/JCO.2015.66.2866.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Sasaki K, Strom SS, O’Brien S, Jabbour E, Ravandi F, Konopleva M, et al. Relative survival in patients with chronic-phase chronic myeloid leukaemia in the tyrosine-kinase inhibitor era: analysis of patient data from six prospective clinical trials. Lancet Haematol. 2015;2(5):e186–e93. https://doi.org/10.1016/S2352-3026(15)00048-4.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Knöfler R, Lange BS, Paul F, Tiebel O, Suttorp M. Bleeding signs due to acquired von Willebrand syndrome at diagnosis of chronic myeloid leukaemia in children. Br J Haematol. 2020;188(5):701–6. https://doi.org/10.1111/bjh.16241.

    Article  PubMed  Google Scholar 

  6. 6.

    Hijiya N, Schultz KR, Metzler M, Millot F, Suttorp M. Pediatric chronic myeloid leukemia is a unique disease that requires a different approach. Blood. 2016;127(4):392–9. https://doi.org/10.1182/blood-2015-06-648667.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Baccarani M, Castagnetti F, Gugliotta G, Rosti G. A review of the European LeukemiaNet recommendations for the management of CML. Ann Hematol. 2015;94(2):141–7. https://doi.org/10.1007/s00277-015-2322-2.

    CAS  Article  Google Scholar 

  8. 8.

    National Comprehensive Cancer Network. NCCN Guidelines, Chronic Myeloid Leukemia (version 3.2020), 2020. Available at: https://www.nccn.org/professionals/physician_gls/pdf/cml.pdf. Accessed 8/10/2020.

  9. 9.

    Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966–84. https://doi.org/10.1038/s41375-020-0776-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. https://doi.org/10.1182/blood-2016-03-643544.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    • Millot F, Maledon N, Guilhot J, Güneş AM, Kalwak K, Suttorp M. Favourable outcome of de novo advanced phases of childhood chronic myeloid leukaemia. Eur J Cancer. 2019;115:17–23. https://doi.org/10.1016/j.ejca.2019.03.020This report from an international pediatric CML registry presents the largest observational experience of newly diagnosed children and adolescents during the TKI treatment era. Notable findings include the proportion in advanced phase at diagnosis (7.5%) and observation that some patients with de novo advanced phase were effectively treated without HSCT.

    Article  PubMed  Google Scholar 

  12. 12.

    Ernst T, Busch M, Rinke J, Ernst J, Haferlach C, Beck JF, et al. Frequent ASXL1 mutations in children and young adults with chronic myeloid leukemia. Leukemia. 2018;32(9):2046–9. https://doi.org/10.1038/s41375-018-0157-2.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Liang DC, Liu HC, Yang CP, Jaing TH, Hung IJ, Yeh TC, et al. Cooperating gene mutations in childhood acute myeloid leukemia with special reference on mutations of ASXL1, TET2, IDH1, IDH2, and DNMT3A. Blood. 2013;121(15):2988–95. https://doi.org/10.1182/blood-2012-06-436782.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Shih AH, Abdel-Wahab O, Patel JP, Levine RL. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer. 2012;12(9):599–612. https://doi.org/10.1038/nrc3343.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Abdel-Wahab O, Dey A. The ASXL-BAP1 axis: new factors in myelopoiesis, cancer and epigenetics. Leukemia. 2013;27(1):10–5. https://doi.org/10.1038/leu.2012.288.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    de Cássia Viu Carrara R, Fontes AM, Abraham KJ, Orellana MD, Haddad SK, Palma PVB, et al. Expression differences of genes in the PI3K/AKT, WNT/b-catenin, SHH, NOTCH and MAPK signaling pathways in CD34+ hematopoietic cells obtained from chronic phase patients with chronic myeloid leukemia and from healthy controls. Clin Transl Oncol. 2018;20(4):542–9. https://doi.org/10.1007/s12094-017-1751-x.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Drozdov D, Bonaventure A, Nakata K, Suttorp M, Belot A. Temporal trends in the proportion of “cure” in children, adolescents, and young adults diagnosed with chronic myeloid leukemia in England: a population-based study. Pediatr Blood Cancer. 2018;65(12):e27422. https://doi.org/10.1002/pbc.27422.

    Article  PubMed  Google Scholar 

  18. 18.

    Druker BJ. STI571 (Gleevec™) as a paradigm for cancer therapy. Trends Mol Med. 2002;8(4):S14–S8. https://doi.org/10.1016/S1471-4914(02)02305-5.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Cohen MH, Williams G, Johnson JR, Duan J, Gobburu J, Rahman A, et al. Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin Cancer Res. 2002;8(5):935–42.

    CAS  PubMed  Google Scholar 

  20. 20.

    Athale U, Hijiya N, Patterson BC, Bergsagel J, Andolina JR, Bittencourt H, et al. Management of chronic myeloid leukemia in children and adolescents: recommendations from the Children’s Oncology Group CML working group. Pediatr Blood Cancer. 2019;66(9):e27827. https://doi.org/10.1002/pbc.27827.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    • Hijiya N, Suttorp M. How I treat chronic myeloid leukemia in children and adolescents. Blood. 2019;133(22):2374–84. https://doi.org/10.1182/blood.2018882233This case-based review provides a clinically relevant contemporary perspective on management of challenging clinical scenarios arising in treatment of pediatric CML, including suboptimal response to initial TKI, poor adherence to treatment, side effect arising on therapy, and de novo advanced-phase CML.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Millot F, Baruchel A, Guilhot J, Petit A, Leblanc T, Bertrand Y, et al. Imatinib Is effective in children with previously untreated chronic myelogenous leukemia in early chronic phase: results of the French national phase IV trial. J Clin Oncol. 2011;29(20):2827–32. https://doi.org/10.1200/JCO.2010.32.7114.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Champagne MA, Fu CH, Chang M, Chen H, Gerbing RB, Alonzo TA, et al. Higher dose imatinib for children with de novo chronic phase chronic myelogenous leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2011;57(1):56–62. https://doi.org/10.1002/pbc.23031.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    •• Suttorp M, Schulze P, Glauche I, Göhring G, von Neuhoff N, Metzler M, et al. Front-line imatinib treatment in children and adolescents with chronic myeloid leukemia: results from a phase III trial. Leukemia. 2018;32(7):1657–69. https://doi.org/10.1038/s41375-018-0179-9This nonrandomized phase 3 clinical trial of imatinib for newly diagnosed pediatric CML includes 140 patients with chronic-phase CML, making it the largest prospective pediatric study to date. Results extend and confirm earlier phase trials showing efficacy and safety of imatinib.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    • Vener C, Banzi R, Ambrogi F, Ferrero A, Saglio G, Pravettoni G, et al. First-line imatinib vs second- and third-generation TKIs for chronic-phase CML: a systematic review and meta-analysis. Blood Adv. 2020;4(12):2723–35. https://doi.org/10.1182/bloodadvances.2019001329The authors present a systematic review and meta-analysis of seven randomized controlled trials of frontline TKI treatment for chronic-phase CML in adults age ≥ 18 years, with a focus on both efficacy and toxicity. For adults with CML, data support use of a second- or third-generation TKI based on efficacy and use of imatinib for patients with comorbidities based on toxicity profiles.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    •• Gore L, Kearns PR, de Martino ML, De Souza Lee CA, Bertrand Y, et al. Dasatinib in pediatric patients with chronic myeloid leukemia in chronic phase: results from a phase II trial. J Clin Oncol. 2018;36(13):1330–8. https://doi.org/10.1200/JCO.2017.75.9597This phase 2 clinical trial demonstrated efficacy and safety of dasatinib in 84 pediatric patients with newly diagnosed chronic-phase CML, providing data to support FDA approval.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    •• Hijiya N, Maschan A, Rizzari C, Shimada H, Dufour C, Goto H, et al. Phase 2 study of nilotinib in pediatric patients with Philadelphia chromosome–positive chronic myeloid leukemia. Blood. 2019;134(23):2036–45. https://doi.org/10.1182/blood.2019000069This phase 2 clinical trial demonstrated efficacy and safety of nilotinib in 25 pediatric patients with newly diagnosed chronic-phase CML, providing data to support FDA approval.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Cortes JE, Kim D-W, Pinilla-Ibarz J, le Coutre PD, Paquette R, Chuah C, et al. Ponatinib efficacy and safety in Philadelphia chromosome–positive leukemia: final 5-year results of the phase 2 PACE trial. Blood. 2018;132(4):393–404. https://doi.org/10.1182/blood-2016-09-739086.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lipton JH, Chuah C, Guerci-Bresler A, Rosti G, Simpson D, Assouline S, et al. Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2016;17(5):612–21. https://doi.org/10.1016/S1470-2045(16)00080-2.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Müller MC, Cervantes F, Hjorth-Hansen H, Janssen JJWM, Milojkovic D, Rea D, et al. Ponatinib in chronic myeloid leukemia (CML): consensus on patient treatment and management from a European expert panel. Crit Rev Oncol Hematol. 2017;120:52–9. https://doi.org/10.1016/j.critrevonc.2017.10.002.

    Article  PubMed  Google Scholar 

  31. 31.

    • Rossoff J, Huynh V, Rau RE, Macy ME, Sulis ML, Schultz KR, et al. Experience with ponatinib in paediatric patients with leukaemia. Br J Haematol. 2020;189(2):363–8. https://doi.org/10.1111/bjh.16338One of two multi-institutional retrospective studies published in 2020 that describes clinical experience with ponatinib in pediatric patients’ results shows tolerability of ponatinib with no reports of vascular toxicity thus far. Despite having low patient numbers, both studies are important for clinicians considering ponatinib in pediatric patients resistant to all approved TKIs.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    • Millot F, Suttorp M, Versluys AB, Kalwak K, Nelken B, Ducassou S, et al. Ponatinib in childhood Philadelphia chromosome–positive leukaemias: an international registry of childhood chronic myeloid leukaemia study. Eur J Cancer. 2020;136:107–12. https://doi.org/10.1016/j.ejca.2020.05.020One of two multi-institutional retrospective studies published in 2020 that describes clinical experience with ponatinib in pediatric patients’ results shows tolerability of ponatinib with no reports of vascular toxicity thus far. Despite having low patient numbers, both studies are important for clinicians considering ponatinib in pediatric patients resistant to all approved TKIs.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Andolina JR, Burke MJ, Hijiya N, Chaudhury S, Schultz KR, Roth ME. Practice patterns of physician treatment for pediatric chronic myelogenous leukemia. Biol Blood Marrow Transplant. 2019;25(2):321–7. https://doi.org/10.1016/j.bbmt.2018.09.029.

    Article  PubMed  Google Scholar 

  34. 34.

    de la Fuente J, Baruchel A, Biondi A, de Bont E, Dresse M-F, Suttorp M, et al. Managing children with chronic myeloid leukaemia (CML): recommendations for the management of CML in children and young people up to the age of 18 years. Br J Haematol. 2014;167(1):33–47. https://doi.org/10.1111/bjh.12977.

    Article  PubMed  Google Scholar 

  35. 35.

    Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. Am J Hematol. 2020;95(6):691–709. https://doi.org/10.1002/ajh.25792.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Hughes TP, Mauro MJ, Cortes JE, Minami H, Rea D, DeAngelo DJ, et al. Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure. New England Journal of Medicine. 2019;381(24):2315–26. https://doi.org/10.1056/NEJMoa1902328.

    CAS  Article  Google Scholar 

  37. 37.

    Shima H, Kada A, Tanizawa A, Yuza Y, Watanabe A, Ito M, et al. Discontinuation of tyrosine kinase inhibitor in children with chronic myeloid leukemia (JPLSG STKI-14 study). Blood. 2019;134(Supplement_1):25. https://doi.org/10.1182/blood-2019-122623.

    Article  Google Scholar 

  38. 38.

    Millot F, Claviez A, Leverger G, Corbaciglu S, Groll AH, Suttorp M. Imatinib cessation in children and adolescents with chronic myeloid leukemia in chronic phase: imatinib cessation in children with CML. Pediatr Blood Cancer. 2014;61(2):355–7. https://doi.org/10.1002/pbc.24521.

    Article  PubMed  Google Scholar 

  39. 39.

    • Giona F, Malaspina F, Putti MC, Ladogana S, Mura R, Burnelli R, et al. Results and outcome of intermittent imatinib (ON/OFF schedule) in children and adolescents with chronic myeloid leukaemia. Br J Haematol. 2020;188(6):e101–5. https://doi.org/10.1111/bjh.16388This brief report presents a novel intermittent imatinib dosing strategy that was used in 15 pediatric patients in one of three distinct clinical scenarios: (a) deep molecular response as a bridge before stopping TKI, (b) deep molecular response with adverse long-term effects from TKI, or (3) poor adherence to continuous imatinib. While preliminary and based on low patient numbers, results support feasibility of this approach for some patients and lay the groundwork for future studies.

    Article  PubMed  Google Scholar 

  40. 40.

    Berger MG, Pereira B, Rousselot P, Cony-Makhoul P, Gardembas M, Legros L, et al. Longer treatment duration and history of osteoarticular symptoms predispose to tyrosine kinase inhibitor withdrawal syndrome. Br J Haematol. 2019;187(3):337–46. https://doi.org/10.1111/bjh.16083.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Moslehi JJ, Deininger M. Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. J Clin Oncol. 2015;33(35):4210–8. https://doi.org/10.1200/JCO.2015.62.4718.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Chow EJ, Antal Z, Constine LS, Gardner R, Wallace WH, Weil BR, et al. New agents, emerging late effects, and the development of precision survivorship. J Clin Oncol. 2018;36(21):2231–40. https://doi.org/10.1200/JCO.2017.76.4647.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Millot F, Guilhot J, Baruchel A, Petit A, Leblanc T, Bertrand Y, et al. Growth deceleration in children treated with imatinib for chronic myeloid leukaemia. Eur J Cancer. 2014;50(18):3206–11. https://doi.org/10.1016/j.ejca.2014.10.007.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Tauer JT, Nowasz C, Sedlacek P, de Bont ESJM, Aleinikova OV, Suttorp M. Impairment of longitudinal growth by tyrosine kinase inhibitor (TKI) treatment-data from a large pediatric cohort with chronic myeloid leukemia (CML). Blood. 2014;124(21):522. https://doi.org/10.1182/blood.V124.21.522.522.

    Article  Google Scholar 

  45. 45.

    Bansal D, Shava U, Varma N, Trehan A, Marwaha RK. Imatinib has adverse effect on growth in children with chronic myeloid leukemia. Pediatr Blood Cancer. 2012;59(3):481–4. https://doi.org/10.1002/pbc.23389.

    Article  PubMed  Google Scholar 

  46. 46.

    Rastogi MV, Stork L, Druker B, Blasdel C, Nguyen T, Boston BA. Imatinib mesylate causes growth deceleration in pediatric patients with chronic myelogenous leukemia. Pediatr Blood Cancer. 2012;59(5):840–5. https://doi.org/10.1002/pbc.24121.

    Article  PubMed  Google Scholar 

  47. 47.

    Hobernicht SL, Schweiger B, Zeitler P, Wang M, Hunger SP. Acquired growth hormone deficiency in a girl with chronic myelogenous leukemia treated with tyrosine kinase inhibitor therapy. Pediatr Blood Cancer. 2011;56(4):671–3. https://doi.org/10.1002/pbc.22945.

    Article  PubMed  Google Scholar 

  48. 48.

    Sabnis HS, Keenum C, Lewis RW, Patterson B, Bergsagel J, Effinger KE, et al. Growth disturbances in children and adolescents receiving long-term tyrosine kinase inhibitor therapy for chronic myeloid leukaemia or Philadelphia chromosome-positive acute lymphoblastic leukaemia. Br J Haematol. 2019;185(4):795–9. https://doi.org/10.1111/bjh.15633.

    Article  PubMed  Google Scholar 

  49. 49.

    Narayanan KR, Bansal D, Walia R, Sachdeva N, Bhansali A, Varma N, et al. Growth failure in children with chronic myeloid leukemia receiving imatinib is due to disruption of GH/IGF-1 axis. Pediatr Blood Cancer. 2013;60(7):1148–53. https://doi.org/10.1002/pbc.24397.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Walia R, Aggarwal A, Bhansali A, Aggarwal A, Varma N, Sachdeva N, et al. Acquired neuro-secretory defect in growth hormone secretion due to imatinib mesylate and the efficacy of growth hormone therapy in children with chronic myeloid leukemia. Pediatr Hematol Oncol. 2020;37(2):99–108. https://doi.org/10.1080/08880018.2019.1689320.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Vandyke K, Dewar AL, Fitter S, Menicanin D, To LB, Hughes TP, et al. Imatinib mesylate causes growth plate closure in vivo. Leukemia. 2009;23(11):2155–9. https://doi.org/10.1038/leu.2009.150.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Balakumaran J, Birk T, Golemiec B, Helmeczi W, Inkaran J, Kao Y-Y, et al. Evaluating the endometabolic and bone health effects of tyrosine kinase inhibitors in chronic myeloid leukaemia: a systematic review protocol. BMJ Open. 2019;9(9):e030092. https://doi.org/10.1136/bmjopen-2019-030092.

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Samis J, Lee P, Zimmerman D, Arceci RJ, Suttorp M, Hijiya N. Recognizing endocrinopathies associated with tyrosine kinase inhibitor therapy in children with chronic myelogenous leukemia. Pediatr Blood Cancer. 2016;63(8):1332–8. https://doi.org/10.1002/pbc.26028.

    Article  PubMed  Google Scholar 

  54. 54.

    Salem W, Li K, Krapp C, Ingles SA, Bartolomei MS, Chung K, et al. Imatinib treatments have long-term impact on placentation and embryo survival. Sci Rep. 2019;9(1):1–10. https://doi.org/10.1038/s41598-019-39134-0.

    Article  Google Scholar 

  55. 55.

    Seshadri T, Seymour JF, McArthur GA. Oligospermia in a patient receiving imatinib therapy for the hypereosinophilic syndrome. N Engl J Med. 2004;351(20):2134–5. https://doi.org/10.1056/NEJM200411113512024.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Chang X, Zhou L, Chen X, Xu B, Cheng Y, Sun S, et al. Impact of imatinib on the fertility of male patients with chronic myelogenous leukaemia in the chronic phase. Target Oncol. 2017;12(6):827–32. https://doi.org/10.1007/s11523-017-0521-6.

    Article  PubMed  Google Scholar 

  57. 57.

    Weatherald J, Chaumais M-C, Savale L, Jaïs X, Seferian A, Canuet M, et al. Long-term outcomes of dasatinib-induced pulmonary arterial hypertension: a population-based study. Eur Respir J. 2017;50(1):1700217. https://doi.org/10.1183/13993003.00217-2017.

    Article  PubMed  Google Scholar 

  58. 58.

    Minson AG, Cummins K, Fox L, Costello B, Yeung D, Cleary R, et al. The natural history of vascular and other complications in patients treated with nilotinib for chronic myeloid leukemia. Blood Adv. 2019;3(7):1084–91. https://doi.org/10.1182/bloodadvances.2018028035.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Caocci G, Mulas O, Annunziata M, Luciano L, Abruzzese E, Bonifacio M, et al. Long-term mortality rate for cardiovascular disease in 656 chronic myeloid leukaemia patients treated with second- and third-generation tyrosine kinase inhibitors. Int J Cardiol. 2020;301:163–6. https://doi.org/10.1016/j.ijcard.2019.10.036.

    Article  PubMed  Google Scholar 

  60. 60.

    Jain P, Kantarjian H, Boddu PC, Nogueras-González GM, Verstovsek S, Garcia-Manero G, et al. Analysis of cardiovascular and arteriothrombotic adverse events in chronic-phase CML patients after frontline TKIs. Blood Adv. 2019;3(6):851–61. https://doi.org/10.1182/bloodadvances.2018025874.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Chen MH, Kerkela R, Force T. Mechanisms of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics. Circulation. 2008;118(1):84–95. https://doi.org/10.1161/CIRCULATIONAHA.108.776831.

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Efficace F, Baccarani M, Breccia M, Alimena G, Rosti G, Cottone F, et al. Health-related quality of life in chronic myeloid leukemia patients receiving long-term therapy with imatinib compared with the general population. Blood. 2011;118(17):4554–60. https://doi.org/10.1182/blood-2011-04-347575.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Efficace F, Cannella L. The value of quality of life assessment in chronic myeloid leukemia patients receiving tyrosine kinase inhibitors. Hematol Am Soc Hematol Educ Program. 2016;1:170–9. https://doi.org/10.1182/asheducation-2016.1.170.

    Article  Google Scholar 

  64. 64.

    Efficace F, Cardoni A, Cottone F, Vignetti M, Mandelli F. Tyrosine-kinase inhibitors and patient-reported outcomes in chronic myeloid leukemia: a systematic review. Leuk Res. 2013;37(2):206–13. https://doi.org/10.1016/j.leukres.2012.10.021.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Hewison A, Atkin K, McCaughan D, Roman E, Smith A, Smith G, et al. Experiences of living with chronic myeloid leukaemia and adhering to tyrosine kinase inhibitors: a thematic synthesis of qualitative studies. Eur J Oncol Nurs. 2020;45:101730. https://doi.org/10.1016/j.ejon.2020.101730.

    Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Children’s Oncology Group Long-Term Follow-Up Guidelines for Survivors of Childhood, Adolescent, and Young Adult Cancers, Version 5.0 (2018). Available at: http://survivorshipguidelines.org/. Accessed 7/2/2020.

  67. 67.

    International Late Effects of Childhood Cancer Guideline Harmonization Group Guidelines. Available at: https://www.ighg.org/guidelines/topics/. Accessed 8/7/2020.

  68. 68.

    Smith G, Apperley J, Milojkovic D, Cross NCP, Foroni L, Byrne J, et al. A British Society for Haematology Guideline on the diagnosis and management of chronic myeloid leukaemia. Br J Haematol. 2020. https://doi.org/10.1111/bjh.16971.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. Sakamoto.

Ethics declarations

Conflict of Interest

Stephanie M. Smith and Kathleen M. Sakamoto declare no conflict of interest. Nobuko Hijiya has served on data and safety monitoring boards (DSMB) for Novartis and Incyte Corporation.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Oncology

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smith, S.M., Hijiya, N. & Sakamoto, K.M. Chronic Myelogenous Leukemia in Childhood. Curr Oncol Rep 23, 40 (2021). https://doi.org/10.1007/s11912-021-01025-x

Download citation

Keywords

  • Chronic myelogenous leukemia
  • Chronic myeloid leukemia
  • Targeted biologic therapy
  • Tyrosine kinase inhibitor
  • BCR-ABL
  • Pediatric CML
  • Childhood CML