Skip to main content
Log in

Genetic Testing in Prostate Cancer

  • Genitourinary Cancers (DP Petrylak and JW Kim, Section Editors)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes recent advances in prostate cancer (PCa) genetics.

Recent Findings

Upwards of 20% of metastatic castration-resistant prostate tumors (mCRPC) carry homologous recombination (HR) repair gene mutations, of which ~ 10% are germline (inherited). Another ~ 5% exhibit microsatellite instability (MSI-H) and/or mismatch repair deficiency (MMRd). Pembrolizumab is approved for tumors with MMRd, thus patients with mCRPC and MMRd are candidates for pembrolizumab. Emerging data indicate that platinum chemotherapy and poly ADP-ribose polymerase inhibitors (PARPi) are effective in PCa exhibiting HR deficiency. NCCN guidelines now recommend germline and somatic tumor testing in specific clinical scenarios due to treatment and family implications.

Summary

Genetic testing in PCa patients may inform prognosis, treatment options, and have implications for family counseling. PARPi, platinum chemotherapy, and immune checkpoint inhibitors are promising targeted therapies for PCa with specific molecular features. Therapeutic advances, along with importance to relatives, are driving genetic testing in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gudmundsson J, Sulem P, Gudbjartsson DF, Masson G, Agnarsson BA, Benediktsdottir KR, et al. A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer. Nat Genet. 2012 Dec;44(12):1326–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Amin Al Olama A, Kote-Jarai Z, Schumacher FR, Wiklund F, Berndt SI, Benlloch S, et al. A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Hum Mol Genet. 2013 Jan 15;22(2):408–15.

    Article  CAS  PubMed  Google Scholar 

  3. Bajrami I, Frankum JR, Konde A, Miller RE, Rehman FL, Brough R, et al. Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity. Cancer Res. 2014 Jan 1;74(1):287–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Gudmundsson J, Sulem P, Gudbjartsson DF, Blondal T, Gylfason A, Agnarsson BA, et al. Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility. Nat Genet. 2009 Oct;41(10):1122–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Akamatsu S, Takata R, Haiman CA, Takahashi A, Inoue T, Kubo M, et al. Common variants at 11q12, 10q26 and 3p11.2 are associated with prostate cancer susceptibility in Japanese. Nat Genet. 2012 Feb 26;44(4):426–9 S1.

    Article  CAS  PubMed  Google Scholar 

  6. Goh CL, Schumacher FR, Easton D, Muir K, Henderson B, Kote-Jarai Z, et al. Genetic variants associated with predisposition to prostate cancer and potential clinical implications. J Intern Med. 2012 Apr;271(4):353–65.

    Article  CAS  PubMed  Google Scholar 

  7. Eeles RA, Olama AAA, Benlloch S, Saunders EJ, Leongamornlert DA, Tymrakiewicz M, et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat Genet [Internet]. 2013 Apr [cited 2019 Aug 13];45(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832790/

  8. Ewing CM, Ray AM, Lange EM, Zuhlke KA, Robbins CM, Tembe WD, et al. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med. 2012 Jan 12;366(2):141–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kote-Jarai Z, Leongamornlert D, Saunders E, Tymrakiewicz M, Castro E, Mahmud N, et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br J Cancer. 2011 Oct 11;105(8):1230–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gallagher DJ, Gaudet MM, Pal P, Kirchhoff T, Balistreri L, Vora K, et al. Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res. 2010 Apr 1;16(7):2115–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Robinson D, Van Allen EM, Wu Y-M, Schultz N, Lonigro RJ, Mosquera J-M, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015 May 21;161(5):1215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. •• Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. New England Journal of Medicine. 2016 Aug 4;375(5):443–53. This study assesses prevalence of germline DNA repair mutations and shows prevalence of 11.8% among mCPRC patients. This study lead to NCCN recommendation of germline testing in metastatic prostate cancer.

  13. Nicolosi P, Ledet E, Yang S, Michalski S, Freschi B, O’Leary E, et al. Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines. JAMA Oncol. 2019 Apr 1;5(4):523–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chua MLK, Lo W, Pintilie M, Murgic J, Lalonde E, Bhandari V, et al. A prostate cancer “Nimbosus”: genomic instability and SChLAP1 dysregulation underpin aggression of intraductal and cribriform subpathologies. Eur Urol. 2017;72(5):665–74.

    Article  CAS  PubMed  Google Scholar 

  15. Böttcher R, Kweldam CF, Livingstone J, Lalonde E, Yamaguchi TN, Huang V, et al. Cribriform and intraductal prostate cancer are associated with increased genomic instability and distinct genomic alterations. BMC Cancer. 2018 02;18(1):8.

  16. Seipel AH, Whitington T, Delahunt B, Samaratunga H, Mayrhofer M, Wiklund P, et al. Genetic profile of ductal adenocarcinoma of the prostate. Hum Pathol. 2017;69:1–7.

    Article  CAS  PubMed  Google Scholar 

  17. Schweizer MT, Antonarakis ES, Bismar TA, Guedes LB, Cheng HH, Tretiakova MS, et al. Genomic characterization of prostatic ductal adenocarcinoma identifies a high prevalence of DNA repair gene mutations. JCO Precision Oncology. 2019 Apr 18;3:1–9.

    Article  Google Scholar 

  18. Taylor RA, Fraser M, Livingstone J, Espiritu SMG, Thorne H, Huang V, et al. Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nat Commun. 2017 Jan 9;8(1):1–10.

    Article  CAS  Google Scholar 

  19. Risbridger GP, Taylor RA, Clouston D, Sliwinski A, Thorne H, Hunter S, et al. Patient-derived xenografts reveal that intraductal carcinoma of the prostate is a prominent pathology in BRCA2 mutation carriers with prostate cancer and correlates with poor prognosis. Eur Urol. 2015 Mar;67(3):496–503.

    Article  CAS  PubMed  Google Scholar 

  20. Isaacsson Velho P, Silberstein JL, Markowski MC, Luo J, Lotan TL, Isaacs WB, et al. Intraductal/ductal histology and lymphovascular invasion are associated with germline DNA-repair gene mutations in prostate cancer. Prostate. 2018;78(5):401–7.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng HH, Sokolova AO, Schaeffer EM, Small EJ, Higano CS. Germline and somatic mutations in Prostate Cancer for the clinician. J Natl Compr Cancer Netw. 2019 May 1;17(5):515–21.

    Article  Google Scholar 

  22. Prostate Cancer NCCN Guidlines Version 4.2019 10/05/2019.

  23. Genetic/Familial High-Risk Assessment: Breast and Ovarian NCCN Guidlines Version 3.2019 10/05/2019.

  24. Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst. 1999 Aug 4;91(15):1310–6.

    Article  Google Scholar 

  25. Leongamornlert D, Mahmud N, Tymrakiewicz M, Saunders E, Dadaev T, Castro E, et al. Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer. 2012 May 8;106(10):1697–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Page EC, Bancroft EK, Brook MN, Assel M, Hassan Al Battat M, Thomas S, et al. Interim results from the IMPACT study: evidence for prostate-specific antigen screening in BRCA2 mutation carriers. Eur Urol 2019 Sep 16;

  27. Eeles RA, Bancroft E, Page E, Castro E, Taylor N. Identification of men with a genetic predisposition to prostate cancer: targeted screening in men at higher genetic risk and controls—the IMPACT study. JCO. 2013 Feb 20;31(6_suppl):12–12.

    Article  Google Scholar 

  28. Castro E, Goh C, Olmos D, Saunders E, Leongamornlert D, Tymrakiewicz M, et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol. 2013 May 10;31(14):1748–57.

  29. Castro E, Goh C, Leongamornlert D, Saunders E, Tymrakiewicz M, Dadaev T, et al. Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur Urol. 2015 Aug 1;68(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  30. • Na R, Zheng SL, Han M, Yu H, Jiang D, Shah S, et al. Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are associated with early age at death. Eur Urol. 2017;71(5):740–7. This is a retrospective case study that showed higher rate of germline BRCA1/2 and ATM mutations in men who died from prostate cancer compared to men with localized disease.

  31. •• Castro E, Romero-Laorden N, Del Pozo A, Lozano R, Medina A, Puente J, et al. PROREPAIR-B: A prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer. J Clin Oncol. 2019 Feb 20;37(6):490–503. This is a prospective study that showed mCRPC patients with germline BRCA2 mutations had worse cancer specific survival.

  32. Marshall CH, Fu W, Wang H, Baras AS, Lotan TL, Antonarakis ES. Prevalence of DNA repair gene mutations in localized prostate cancer according to clinical and pathologic features: association of Gleason score and tumor stage. Prostate Cancer Prostatic Dis. 2018 Aug;31:1.

    Google Scholar 

  33. Administration USFaD. FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication. In. 2017.

  34. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015 Jun 25;372(26):2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. • Abida W, Cheng ML, Armenia J, Middha S, Autio KA, Vargas HA, et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol. 2019 Apr 1;5(4):471–8. This study evaluates prevalence of MSI/dMMR in prostate cancer and showed that 5% of mCRPC tumors have MSI/dMMR.

    Article  PubMed  Google Scholar 

  36. Rescigno P, Rodrigues DN, Yuan W, Carreira S, Lambros M, Seed G, et al. Abstract 4679: mismatch repair defects in lethal prostate cancer. Cancer Res. 2017 Jul 1;77(13 Supplement):4679–9.

  37. Pritchard CC, Morrissey C, Kumar A, Zhang X, Smith C, Coleman I, et al. Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nat Commun. 2014 Sep 25;5:4988.

    Article  CAS  PubMed  Google Scholar 

  38. Guedes LB, Antonarakis ES, Schweizer MT, Mirkheshti N, Almutairi F, Park JC, et al. MSH2 loss in primary prostate cancer. Clin Cancer Res. 2017 Nov 15;23(22):6863–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Athie A, Arce-Gallego S, Gonzalez M, Morales-Barrera R, Suarez C, Casals Galobart T, et al. Targeting DNA repair defects for precision medicine in prostate cancer. Curr Oncol Rep. 2019 Mar 27;21(5):42.

  40. Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015 Oct 29;373(18):1697–708.

  41. •• Abida W., et al. Preliminary results from TRITON2: a phase 2 study of rucaparib in patients with metastatic castration-resistant prostate cancer (mCRPC) associated with homologous recombination repair (HRR) gene alterations” (abstract 793PD), ESMO 2018. Preliminary results of a phase II trial evaluating rucaparib in patients with mCRPC and alterations in DNA repair genes.

  42. Clovis Oncology Receives Breakthrough Therapy Designation for Rubraca® (rucaparib) for Treatment of BRCA1/2-Mutated Metastatic Castration Resistant Prostate Cancer (mCRPC) [Internet]. 2018 [cited 2018 Dec 6]. Available from: https://www.businesswire.com/news/home/20181002005512/en/Clovis-Oncology-Receives-Breakthrough-Therapy-Designation-Rubraca%C2%AE

  43. •• Mateo J, Porta N, McGovern UB, Elliott T, Jones RJ, Syndikus I, et al. TOPARP-B: a phase II randomized trial of the poly(ADP)-ribose polymerase (PARP) inhibitor olaparib for metastatic castration resistant prostate cancers (mCRPC) with DNA damage repair (DDR) alterations. JCO. 2019 May 20;37(15_suppl):5005–5005. Preliminary results of a phase II study evaluating olaparib (300 mg BID and 400 mg BID) in mCRPC patients with DDR.

  44. •• Olaparib Outperforms Enzalutamide or Abiraterone Acetate | ESMO [Internet]. [cited 2019 Oct 1]. Available from: https://www.esmo.org/Oncology-News/Olaparib-Outperforms-Enzalutamide-or-Abiraterone-Acetate-in-Men-with-mCRPC-and-HRR-Alterations. This is first phase III randomized clinical trial evaluating olaparib vs abiraterone/enzalutamide in mCRPC, that showed statistically significant improvement rPFS with olaparib in patients with BRCA1/2 and ATM mutations.

  45. Karzai F, et al. A phase 2 study of olaparib and durvalumab in metastatic castrate-resistant prostate cancer (mCRPC) in an unselected population. J Clin Oncol. 2018;36(suppl 6S; abstr 163):163

    Article  Google Scholar 

  46. Smith MR, Sandhu SK, Kelly WK, et al: Phase II study of niraparib in patients with metastatic castration-resistant prostate cancer and biallelic DNA-repair defects: preliminary results of GALAHAD. 2019 Genitourinary Cancers Symposium. Abstract 202. Presented February 14, 2019.

  47. Yu EY, Massard C, Retz M, et al: KEYNOTE-365 cohort A: pembrolizumab plus olaparib in docetaxel-pretreated patients with metastatic castration-resistant prostate cancer. 2019 Genitourinary Cancers Symposium. Abstract 145. Presented February 14, 2019.

  48. Marshall CH, Sokolova AO, McNatty AL, Cheng HH, Eisenberger MA, Bryce AH, et al. Differential response to olaparib treatment among men with metastatic castration-resistant prostate cancer harboring BRCA1 or BRCA2 versus ATM mutations. Eur Urol. 2019 Feb;21.

  49. Alsop K, Fereday S, Meldrum C, deFazio a, Emmanuel C, George J, et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J Clin Oncol 2012 Jul 20;30(21):2654–2663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chetrit A, Hirsh-Yechezkel G, Ben-David Y, Lubin F, Friedman E, Sadetzki S. Effect of BRCA1/2 mutations on long-term survival of patients with invasive ovarian cancer: the national Israeli study of ovarian cancer. J Clin Oncol. 2008 Jan 1;26(1):20–5.

    Article  PubMed  Google Scholar 

  51. Cheng HH, Pritchard CC, Boyd T, Nelson PS, Montgomery B. Biallelic inactivation of BRCA2 in platinum sensitive, metastatic castration resistant prostate cancer. Eur Urol. 2016 Jun;69(6):992–5.

    Article  CAS  PubMed  Google Scholar 

  52. Pomerantz MM, Spisák S, Jia L, Cronin AM, Csabai I, Ledet E, et al. The association between germline BRCA2 variants and sensitivity to platinum-based chemotherapy among men with metastatic prostate cancer. Cancer. 2017 Sep 15;123(18):3532–9.

    Article  CAS  PubMed  Google Scholar 

  53. Carter HB, Helfand B, Mamawala M, Wu Y, Landis P, Yu H, et al. Germline mutations in ATM and BRCA1/2 are associated with grade reclassification in men on active surveillance for prostate cancer. Eur Urol. 2018 Oct;8.

Download references

Funding

NCI award numbers T32CA009515, P30 CA015704, P50 CA097186-16A1 (PNW Prostate SPORE), Institute for Prostate Cancer Research, Prostate Cancer Foundation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather H. Cheng.

Ethics declarations

Conflict of Interest

Alexandra O. Sokolova declares that she has no conflict of interest.

Heather H. Cheng has received research funding to her institution from Inovio, Clovis Oncology, Color Genomics, Medivation, Sanofi, Astellas, Janssen.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Genitourinary Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolova, A.O., Cheng, H.H. Genetic Testing in Prostate Cancer. Curr Oncol Rep 22, 5 (2020). https://doi.org/10.1007/s11912-020-0863-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-020-0863-6

Keywords

Navigation