Skip to main content

Advertisement

Log in

Advances in the Management of Pediatric Sarcomas

  • Sarcomas (SR Patel, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The prognosis of pediatric patients who present with metastatic or recurrent sarcomas remains poor. In this review, we summarize the advances in the management of metastatic and relapsed pediatric sarcoma by highlighting recent and future clinical trials.

Recent Findings

Research into the identification of novel therapies for refractory pediatric sarcomas continues to advance. Outcomes have not improved in several decades underlying a need for improved understanding of the biology behind these tumors and the identification of novel therapeutic molecular targets that can be exploited pharmacologically. Multiple challenges remain for novel therapy in sarcomas such as the selection of effective targets, management of toxicities, and the tumor microenvironment.

Summary

Many unique challenges remain in the treatment of patients with refractory pediatric sarcomas. Multiple strategies and targets are under investigation that hold promise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ries LAG SM, Gurney JG, Linet M, Tamra T, Young JL, Bunin GR (eds). Cancer incidence and survival among children and adolescents: United States SEER Program 1975-1995. National Cancer Institute, SEER program; Bethesda, MD, 1999.

  2. Williams RF, Fernandez-Pineda I, Gosain A. Pediatric Sarcomas. Surg Clin North Am. 2016;96(5):1107–25.

    PubMed  Google Scholar 

  3. Anderson JL, Denny CT, Tap WD, Federman N. Pediatric sarcomas: translating molecular pathogenesis of disease to novel therapeutic possibilities. Pediatr Res. 2012;72(2):112–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hingorani P, Janeway K, Crompton BD, Kadoch C, Mackall CL, Khan J, et al. Current state of pediatric sarcoma biology and opportunities for future discovery: a report from the sarcoma translational research workshop. Cancer Genet. 2016;209(5):182–94.

    PubMed  PubMed Central  Google Scholar 

  5. Smith MA, Seibel NL, Altekruse SF, Ries LA, Melbert DL, O'Leary M, et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol. 2010;28(15):2625–34.

    PubMed  PubMed Central  Google Scholar 

  6. al. BAe. Cancer epidemiology in older adolescents and young adults 15 to 29 years of age, including SEER incidence and survival: 1975-2000. National Cancer Institute; Bethesda, MD, 2006.

  7. Kempf-Bielack B, Bielack SS, Jurgens H, Branscheid D, Berdel WE, Exner GU, et al. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the cooperative Osteosarcoma Study Group (COSS). J Clin Oncol. 2005;23(3):559–68.

    PubMed  Google Scholar 

  8. Federman N, Bernthal N, Eilber FC, Tap WD. The multidisciplinary management of osteosarcoma. Curr Treat Options in Oncol. 2009;10(1–2):82–93.

    Google Scholar 

  9. Bielack SS, Carrle D, Hardes J, Schuck A, Paulussen M. Bone tumors in adolescents and young adults. Curr Treat Options in Oncol. 2008;9(1):67–80.

    Google Scholar 

  10. Meyers PA, Schwartz CL, Krailo M, Kleinerman ES, Betcher D, Bernstein ML, et al. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol. 2005;23(9):2004–11.

    CAS  PubMed  Google Scholar 

  11. Ferrari S, Smeland S, Mercuri M, Bertoni F, Longhi A, Ruggieri P, et al. Neoadjuvant chemotherapy with high-dose Ifosfamide, high-dose methotrexate, cisplatin, and doxorubicin for patients with localized osteosarcoma of the extremity: a joint study by the Italian and Scandinavian Sarcoma Groups. J Clin Oncol. 2005;23(34):8845–52.

    PubMed  Google Scholar 

  12. Weiss A, Gill J, Goldberg J, Lagmay J, Spraker-Perlman H, Venkatramani R, et al. Advances in therapy for pediatric sarcomas. Curr Oncol Rep. 2014;16(8):395.

    PubMed  Google Scholar 

  13. Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002;20(3):776–90.

    PubMed  Google Scholar 

  14. Kager L, Zoubek A, Potschger U, Kastner U, Flege S, Kempf-Bielack B, et al. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol. 2003;21(10):2011–8.

    PubMed  Google Scholar 

  15. Champiat S, Ferte C, Lebel-Binay S, Eggermont A, Soria JC. Exomics and immunogenics: bridging mutational load and immune checkpoints efficacy. Oncoimmunology. 2014;3(1):e27817.

    PubMed  PubMed Central  Google Scholar 

  16. Lettieri CK, Appel N, Labban N, Lussier DM, Blattman JN, Hingorani P. Progress and opportunities for immune therapeutics in osteosarcoma. Immunotherapy. 2016;8(10):1233–44.

    CAS  PubMed  Google Scholar 

  17. Roth M, Linkowski M, Tarim J, Piperdi S, Sowers R, Geller D, et al. Ganglioside GD2 as a therapeutic target for antibody-mediated therapy in patients with osteosarcoma. Cancer. 2014;120(4):548–54.

    CAS  PubMed  Google Scholar 

  18. Kopp LM, Malempati S, Krailo M, Gao Y, Buxton A, Weigel BJ, et al. Phase II trial of the glycoprotein non-metastatic B-targeted antibody-drug conjugate, glembatumumab vedotin (CDX-011), in recurrent osteosarcoma AOST1521: a report from the Children’s Oncology Group. Eur J Cancer. 2019;121:177–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Isakoff MS, Goldsby R, Villaluna D, Krailo MD, Hingorani P, Collier A, et al. A phase II study of eribulin in recurrent or refractory osteosarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2019;66(2):e27524.

    PubMed  Google Scholar 

  20. Mori K, Le Goff B, Berreur M, Riet A, Moreau A, Blanchard F, et al. Human osteosarcoma cells express functional receptor activator of nuclear factor-kappa B. J Pathol. 2007;211(5):555–62.

    CAS  PubMed  Google Scholar 

  21. Chawla S, Blay JY, Rutkowski P, Le Cesne A, Reichardt P, Gelderblom H, et al. Denosumab in patients with giant-cell tumour of bone: a multicentre, open-label, phase 2 study. Lancet Oncol. 2019;20(12):1719–29.

    CAS  PubMed  Google Scholar 

  22. Mori K, Berreur M, Blanchard F, Chevalier C, Guisle-Marsollier I, Masson M, et al. Receptor activator of nuclear factor-kappaB ligand (RANKL) directly modulates the gene expression profile of RANK-positive Saos-2 human osteosarcoma cells. Oncol Rep. 2007;18(6):1365–71.

    CAS  PubMed  Google Scholar 

  23. Lamoureux F, Richard P, Wittrant Y, Battaglia S, Pilet P, Trichet V, et al. Therapeutic relevance of osteoprotegerin gene therapy in osteosarcoma: blockade of the vicious cycle between tumor cell proliferation and bone resorption. Cancer Res. 2007;67(15):7308–18.

    CAS  PubMed  Google Scholar 

  24. Davis LE, Bolejack V, Ryan CW, Ganjoo KN, Loggers ET, Chawla S, et al. Randomized Double-Blind Phase II Study of Regorafenib in Patients With Metastatic Osteosarcoma. J Clin Oncol. 2019;37(16):1424–31 The SARC0024 trial demonstrated activity of regorafenib, a multi-kinase inhibtor in patients with progressive metastatic osteosarcoma.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Longhi A, Paioli A, Palmerini E, Cesari M, Abate ME, Setola E, et al. Pazopanib in relapsed osteosarcoma patients: report on 15 cases. Acta Oncol. 2019;58(1):124–8.

    PubMed  Google Scholar 

  26. Italiano A, Mir O, Mathoulin-Pelissier S, Penel N, Piperno-Neumann S, Bompas E, et al. Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2020;21(3):446–55.

    CAS  PubMed  Google Scholar 

  27. Kim JR, Moon YJ, Kwon KS, Bae JS, Wagle S, Kim KM, et al. Tumor infiltrating PD1-positive lymphocytes and the expression of PD-L1 predict poor prognosis of soft tissue sarcomas. PLoS One. 2013;8(12):e82870.

    PubMed  PubMed Central  Google Scholar 

  28. van Dam LS, de Zwart VM, Meyer-Wentrup FAG. The role of programmed cell death-1 (PD-1) and its ligands in pediatric cancer. Pediatr Blood Cancer. 2015;62(2):190–7.

    PubMed  Google Scholar 

  29. Lussier DM, O'Neill L, Nieves LM, McAfee MS, Holechek SA, Collins AW, et al. Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions. J Immunother. 2015;38(3):96–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lussier DM, Johnson JL, Hingorani P, Blattman JN. Combination immunotherapy with α-CTLA-4 and α-PD-L1 antibody blockade prevents immune escape and leads to complete control of metastatic osteosarcoma. J Immunother Cancer. 2015;3:21.

    PubMed  PubMed Central  Google Scholar 

  32. Hingorani P, Maas ML, Gustafson MP, Dickman P, Adams RH, Watanabe M, et al. Increased CTLA-4(+) T cells and an increased ratio of monocytes with loss of class II (CD14(+) HLA-DR(lo/neg)) found in aggressive pediatric sarcoma patients. J Immunother Cancer. 2015;3:35.

    PubMed  PubMed Central  Google Scholar 

  33. Merchant MS, Wright M, Baird K, Wexler LH, Rodriguez-Galindo C, Bernstein D, et al. Phase I clinical trial of Ipilimumab in pediatric patients with advanced solid tumors. Clin Cancer Res. 2016;22(6):1364–70.

    CAS  PubMed  Google Scholar 

  34. Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C, et al. Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol. 2015;33(15):1688–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. von Levetzow C, Jiang X, Gwye Y, von Levetzow G, Hung L, Cooper A, et al. Modeling initiation of Ewing sarcoma in human neural crest cells. PLoS One. 2011;6(4):e19305.

    Google Scholar 

  36. Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O. Mesenchymal stem cell features of Ewing tumors. Cancer Cell. 2007;11(5):421–9.

    CAS  PubMed  Google Scholar 

  37. Hu-Lieskovan S, Zhang J, Wu L, Shimada H, Schofield DE, Triche TJ. EWS-FLI1 fusion protein up-regulates critical genes in neural crest development and is responsible for the observed phenotype of Ewing’s family of tumors. Cancer Res. 2005;65(11):4633–44.

    CAS  PubMed  Google Scholar 

  38. Lawlor ER, Sorensen PH. Twenty years on: what do we really know about Ewing sarcoma and what is the path forward? Crit Rev Oncog. 2015;20(3–4):155–71.

    PubMed  PubMed Central  Google Scholar 

  39. Gaspar N, Hawkins DS, Dirksen U, Lewis IJ, Ferrari S, Deley M-CL, et al. Ewing sarcoma: current management and future approaches through collaboration. J Clin Oncol. 2015;33(27):3036–46.

    CAS  PubMed  Google Scholar 

  40. Womer RB, West DC, Krailo MD, Dickman PS, Pawel BR, Grier HE, et al. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(33):4148–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Grier HE, Krailo MD, Tarbell NJ, Link MP, Fryer CJ, Pritchard DJ, et al. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med. 2003;348(8):694–701.

    CAS  PubMed  Google Scholar 

  42. Ladenstein R, Potschger U, Le Deley MC, Whelan J, Paulussen M, Oberlin O, et al. Primary disseminated multifocal Ewing sarcoma: results of the Euro-EWING 99 trial. J Clin Oncol. 2010;28(20):3284–91.

    CAS  PubMed  Google Scholar 

  43. NCT02306161: National Cancer Institute RPTEtAotI-RMAGA, NSC# 750008) to multiagent chemotherapy for patients with newly diagnosed metastatic Ewing sarcoma. In: ClinicalTrials.gov (cited 2020, Jan 27).

  44. Schafer ES, Rau RE, Berg S, Liu X, Minard CG, D'Adamo D, et al. A phase 1 study of eribulin mesylate (E7389), a novel microtubule-targeting chemotherapeutic agent, in children with refractory or recurrent solid tumors: a Children’s Oncology Group Phase 1 Consortium study (ADVL1314). Pediatr Blood Cancer. 2018;65(8):e27066.

    PubMed  PubMed Central  Google Scholar 

  45. Theisen ER, Pishas KI, Saund RS, Lessnick SL. Therapeutic opportunities in Ewing sarcoma: EWS-FLI inhibition via LSD1 targeting. Oncotarget. 2016;7(14):17616–30.

    PubMed  PubMed Central  Google Scholar 

  46. Sankar S, Theisen ER, Bearss J, Mulvihill T, Hoffman LM, Sorna V, et al. Reversible LSD1 inhibition interferes with global EWS/ETS transcriptional activity and impedes Ewing sarcoma tumor growth. Clin Cancer Res. 2014;20(17):4584–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Erkizan HV, Kong Y, Merchant M, Schlottmann S, Barber-Rotenberg JS, Yuan L, et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing's sarcoma. Nat Med. 2009;15(7):750–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Attia S, Okuno SH, Robinson SI, Webber NP, Indelicato DJ, Jones RL, et al. Clinical activity of pazopanib in metastatic extraosseous Ewing sarcoma. Rare Tumors. 2015;7(2):5992.

    PubMed  PubMed Central  Google Scholar 

  49. Alcindor T. Response of refractory Ewing sarcoma to pazopanib. Acta Oncol. 2015;54(7):1063–4.

    PubMed  Google Scholar 

  50. Bailey K, Cost C, Davis I, Glade-Bender J, Grohar P, Houghton P, et al. Emerging novel agents for patients with advanced Ewing sarcoma: a report from the Children’s Oncology Group (COG) new agents for Ewing sarcoma task force. F1000Res. 2019;8:F1000 Faculty Rev-493. https://doi.org/10.12688/f1000research.18139.1.. The COGs New Agents for Ewing Sarcoma Task Force present an evaluation of new agents with the higuest priority to treat metastatic and relapse Ewing Sarcoma.

  51. Ognjanovic S, Linabery AM, Charbonneau B, Ross JA. Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975-2005. Cancer. 2009;115(18):4218–26.

    PubMed  PubMed Central  Google Scholar 

  52. Shern JF, Yohe ME, Khan J. Pediatric Rhabdomyosarcoma. Crit Rev Oncog. 2015;20(3–4):227–43.

    PubMed  PubMed Central  Google Scholar 

  53. Casanova M, Meazza C, Favini F, Fiore M, Morosi C, Ferrari A. Rhabdomyosarcoma of the extremities: a focus on tumors arising in the hand and foot. Pediatr Hematol Oncol. 2009;26(5):321–31.

    PubMed  Google Scholar 

  54. Chowdhury T, Barnacle A, Haque S, Sebire N, Gibson S, Anderson J, et al. Ultrasound-guided core needle biopsy for the diagnosis of rhabdomyosarcoma in childhood. Pediatr Blood Cancer. 2009;53(3):356–60.

    PubMed  Google Scholar 

  55. Chen C, Dorado Garcia H, Scheer M, Henssen AG. Current and future treatment strategies for rhabdomyosarcoma. Front Oncol. 2019;9:1458.

    PubMed  PubMed Central  Google Scholar 

  56. Stewart E, McEvoy J, Wang H, Chen X, Honnell V, Ocarz M, et al. Identification of therapeutic targets in rhabdomyosarcoma through integrated genomic, epigenomic, and proteomic Analyses. Cancer Cell. 2018;34(3):411–26.e19.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hibbitts E, Chi YY, Hawkins DS, Barr FG, Bradley JA, Dasgupta R, et al. Refinement of risk stratification for childhood rhabdomyosarcoma using FOXO1 fusion status in addition to established clinical outcome predictors: a report from the Children’s Oncology Group. Cancer Med. 2019;8(14):6437–48 This report established that in patients with metastatic RMS, FOXO1 status is the most important prognostic factor.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Oberlin O, Rey A, Lyden E, Bisogno G, Stevens MC, Meyer WH, et al. Prognostic factors in metastatic rhabdomyosarcomas: results of a pooled analysis from United States and European cooperative groups. J Clin Oncol. 2008;26(14):2384–9.

    PubMed  PubMed Central  Google Scholar 

  59. Malempati S, Hawkins DS. Rhabdomyosarcoma: review of the Children’s Oncology Group (COG) Soft-Tissue Sarcoma Committee experience and rationale for current COG studies. Pediatr Blood Cancer. 2012;59(1):5–10.

    PubMed  PubMed Central  Google Scholar 

  60. Sultan I, Rodriguez-Galindo C, Saab R, Yasir S, Casanova M, Ferrari A. Comparing children and adults with synovial sarcoma in the Surveillance, Epidemiology, and End Results program, 1983 to 2005: an analysis of 1268 patients. Cancer. 2009;115(15):3537–47.

    PubMed  Google Scholar 

  61. Stacchiotti S, Van Tine BA. Synovial sarcoma: current concepts and future perspectives. J Clin Oncol. 2018;36(2):180–7.

    CAS  PubMed  Google Scholar 

  62. Hale R, Sandakly S, Shipley J, Walters Z. Epigenetic targets in synovial sarcoma: a mini-review. Front Oncol. 2019;9:1078.

    PubMed  PubMed Central  Google Scholar 

  63. Fletcher CDM, World Health Organization, International Agency for Research on Cancer. WHO classification of tumours of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 468.

    Google Scholar 

  64. Ferrari A, De Salvo GL, Oberlin O, Casanova M, De Paoli A, Rey A, et al. Synovial sarcoma in children and adolescents: a critical reappraisal of staging investigations in relation to the rate of metastatic involvement at diagnosis. Eur J Cancer. 2012;48(9):1370–5.

    PubMed  Google Scholar 

  65. Wang S, Song R, Sun T, Hou B, Hong G, Mallampati S, et al. Survival changes in patients with synovial sarcoma, 1983-2012. J Cancer. 2017;8(10):1759–68.

    PubMed  PubMed Central  Google Scholar 

  66. Ferrari A, Chi Y-Y, De Salvo GL, Orbach D, Brennan B, Randall RL, et al. Surgery alone is sufficient therapy for children and adolescents with low-risk synovial sarcoma: a joint analysis from the European paediatric soft tissue sarcoma Study Group and the Children’s Oncology Group. Eur J Cancer. 2017;78:1–6.

    PubMed  PubMed Central  Google Scholar 

  67. Tesfaye M, Savoldo B. Adoptive cell therapy in treating pediatric solid tumors. Curr Oncol Rep. 2018;20(9):73.

    PubMed  PubMed Central  Google Scholar 

  68. Takeoka T, Nagase H, Kurose K, Ohue Y, Yamasaki M, Takiguchi S, et al. NY-ESO-1 protein cancer vaccine with poly-ICLC and OK-432: rapid and strong induction of NY-ESO-1-specific immune responses by poly-ICLC. J Immunother. 2017. https://doi.org/10.1097/CJI.0000000000000162.

  69. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29(7):917–24.

    PubMed  PubMed Central  Google Scholar 

  70. Robbins PF, Kassim SH, Tran TL, Crystal JS, Morgan RA, Feldman SA, et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res. 2015;21(5):1019–27.

    CAS  PubMed  Google Scholar 

  71. D'Angelo SP, Melchiori L, Merchant MS, Bernstein D, Glod J, Kaplan R, et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 (c259)T cells in synovial sarcoma. Cancer Discov. 2018;8(8):944–57.

    CAS  PubMed  Google Scholar 

  72. Subbiah V, Lamhamedi-Cherradi SE, Cuglievan B, Menegaz BA, Camacho P, Huh W, et al. Multimodality treatment of desmoplastic small round cell tumor: chemotherapy and complete cytoreductive surgery improve patient survival. Clin Cancer Res. 2018;24(19):4865–73.

    PubMed  PubMed Central  Google Scholar 

  73. Menegaz BA, Cuglievan B, Benson J, Camacho P, Lamhamedi-Cherradi SE, Leung CH, et al. Clinical activity of pazopanib in patients with advanced desmoplastic small round cell tumor. Oncologist. 2018;23(3):360–6.

    CAS  PubMed  Google Scholar 

  74. . Hayes-Jordan AA, Coakley BA, Green HL, Xiao L, Fournier KF, Herzog CE, et al. Desmoplastic small round cell tumor treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: results of a phase 2 trial. Ann Surg Oncol. 2018;25(4):872–7 This Phase 2 clinical trial provides evidence of survival benefit of cytoreductive surgery plus HIPEC in patients with DSRCT.

    PubMed  PubMed Central  Google Scholar 

  75. Hayes-Jordan A, LaQuaglia MP, Modak S. Management of desmoplastic small round cell tumor. Semin Pediatr Surg. 2016;25(5):299–304.

    PubMed  PubMed Central  Google Scholar 

  76. Lal DR, Su WT, Wolden SL, Loh KC, Modak S, La Quaglia MP. Results of multimodal treatment for desmoplastic small round cell tumors. J Pediatr Surg. 2005;40(1):251–5.

    PubMed  Google Scholar 

  77. Fine RL, Shah SS, Moulton TA, Yu IR, Fogelman DR, Richardson M, et al. Androgen and c-Kit receptors in desmoplastic small round cell tumors resistant to chemotherapy: novel targets for therapy. Cancer Chemother Pharmacol. 2007;59(4):429–37.

    CAS  PubMed  Google Scholar 

  78. Verret B, Honore C, Dumont S, Terrier P, Adam J, Cavalcanti A, et al. Trabectedin in advanced desmoplastic round cell tumors: a retrospective single-center series. Anti-Cancer Drugs. 2017;28(1):116–9.

    CAS  PubMed  Google Scholar 

  79. Subbiah V, Murthy R, Anderson PM. [90Y]yttrium microspheres radioembolotherapy in desmoplastic small round cell tumor hepatic metastases. J Clin Oncol. 2011;29(11):e292–e4.

    PubMed  PubMed Central  Google Scholar 

  80. Italiano A, Kind M, Cioffi A, Maki RG, Bui B. Clinical activity of sunitinib in patients with advanced desmoplastic round cell tumor: a case series. Target Oncol. 2013;8(3):211–3.

    PubMed  Google Scholar 

  81. Shi C, Feng Y, Zhang LC, Ding DY, Yan MY, Pan L. Effective treatment of apatinib in desmoplastic small round cell tumor: a case report and literature review. BMC Cancer. 2018;18(1):338.

    PubMed  PubMed Central  Google Scholar 

  82. Cote GM, Choy E, Chen T, Marino-Enriquez A, Morgan J, Merriam P, et al. A phase II multi-strata study of lurbinectedin as a single agent or in combination with conventional chemotherapy in metastatic and/or unresectable sarcomas. Eur J Cancer. 2020;126:21–32.

    CAS  PubMed  Google Scholar 

  83. Kakarla S, Gottschalk S. CAR T cells for solid tumors: armed and ready to go? Cancer J. 2014;20(2):151–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med. 2016;22(4):433–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pasetto A, Gros A, Robbins PF, Deniger DC, Prickett TD, Matus-Nicodemos R, et al. Tumor- and neoantigen-reactive T-cell receptors can be identified based on their frequency in fresh tumor. Cancer Immunol Res. 2016;4(9):734–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Blankenstein T, Leisegang M, Uckert W, Schreiber H. Targeting cancer-specific mutations by T cell receptor gene therapy. Curr Opin Immunol. 2015;33:112–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Deniger DC, Pasetto A, Robbins PF, Gartner JJ, Prickett TD, Paria BC, et al. T-cell responses to TP53 “hotspot” mutations and unique neoantigens expressed by human ovarian cancers. Clin Cancer Res. 2018;24(22):5562–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Parkhurst MR, Robbins PF, Tran E, Prickett TD, Gartner JJ, Jia L, et al. Unique neoantigens arise from somatic mutations in patients with gastrointestinal cancers. Cancer Discov. 2019;9(8):1022–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hont AB, Cruz CR, Ulrey R, O'Brien B, Stanojevic M, Datar A, et al. Immunotherapy of relapsed and refractory solid tumors with ex vivo expanded multi-tumor associated antigen specific cytotoxic T lymphocytes: a phase I study. J Clin Oncol. 2019;37(26):2349–59.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Harrison.

Ethics declarations

Conflict of Interest

Fiorela N. Hernandez Tejada, Alejandro Zamudio, Mario L. Marques-Piubelli, and Branko Cuglievan declare no conflict of interest. Douglas Harrison receives 2% salary support from Salarius Pharmaceuticals, which supports one of the clinical trials for Ewing sarcoma cited in this article (phase I trial of LSD-1 inhibitor, seclidemstadt).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sarcomas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez Tejada, F.N., Zamudio, A., Marques-Piubelli, M.L. et al. Advances in the Management of Pediatric Sarcomas. Curr Oncol Rep 23, 3 (2021). https://doi.org/10.1007/s11912-020-00995-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11912-020-00995-8

Keywords

Navigation