Skip to main content

Advertisement

Log in

Synovial Sarcoma: A Complex Disease with Multifaceted Signaling and Epigenetic Landscapes

  • Sarcomas (SR Patel, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

ABSTRACT

Purpose of Review

Aside from a characteristic SS18–SSX translocation identified in almost all cases, no genetic anomalies have been reliably isolated yet to drive the pathogenesis of synovial sarcoma. In the following review, we explore the structural units of wild-type SS18 and SSX, particularly as they relate to the transcriptional alterations and cellular pathway changes imposed by SS18–SSX.

Recent Findings

Native SS18 and SSX contribute recognizable domains to the SS18–SSX chimeric proteins, which inflict transcriptional and epigenetic changes through selective protein interactions involving the SWI/SNF and Polycomb chromatin remodeling complexes. Multiple oncogenic and developmental pathways become altered, collectively reprogramming the cellular origin of synovial sarcoma and promoting its malignant transformation.

Summary

Synovial sarcoma is characterized by complex epigenetic and signaling landscapes. Identifying the operational pathways and concomitant genetic changes induced by SS18–SSX fusions could help develop tailored therapeutic strategies to ultimately improve disease control and patient survivorship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ladanyi M, Antonescu CR, Leung DH, Woodruff JM, Kawai A, Healey JH, et al. Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res. 2002;62(1):135–40.

    CAS  PubMed  Google Scholar 

  2. Spurrell EL, Fisher C, Thomas JM, Judson IR. Prognostic factors in advanced synovial sarcoma: an analysis of 104 patients treated at the Royal Marsden Hospital. Ann Oncol. 2005;16(3):437–44. https://doi.org/10.1093/annonc/mdi082.

    Article  CAS  PubMed  Google Scholar 

  3. Smith ME, Fisher C, Wilkinson LS, Edwards JC. Synovial sarcoma lack synovial differentiation. Histopathology. 1995;26(3):279–81.

    Article  CAS  PubMed  Google Scholar 

  4. Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Synovial sarcoma. Cancer Genet Cytogenet. 2002;133(1):1–23.

    Article  CAS  PubMed  Google Scholar 

  5. Saito T, Nagai M, Ladanyi M. SYT-SSX1 and SYT-SSX2 interfere with repression of E-cadherin by snail and slug: a potential mechanism for aberrant mesenchymal to epithelial transition in human synovial sarcoma. Cancer Res. 2006;66(14):6919–27. https://doi.org/10.1158/0008-5472.CAN-05-3697.

    Article  CAS  PubMed  Google Scholar 

  6. Haldar M, Hancock JD, Coffin CM, Lessnick SL, Capecchi MR. A conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell. 2007;11(4):375–88. https://doi.org/10.1016/j.ccr.2007.01.016.

    Article  CAS  PubMed  Google Scholar 

  7. Naka N, Takenaka S, Araki N, Miwa T, Hashimoto N, Yoshioka K, et al. Synovial sarcoma is a stem cell malignancy. Stem Cells. 2010;28(7):1119–31. https://doi.org/10.1002/stem.452.

    Article  CAS  PubMed  Google Scholar 

  8. Garcia CB, Shaffer CM, Alfaro MP, Smith AL, Sun J, Zhao Z, et al. Reprogramming of mesenchymal stem cells by the synovial sarcoma-associated oncogene SYT-SSX2. Oncogene. 2012;31(18):2323–34. https://doi.org/10.1038/onc.2011.418.

    Article  CAS  PubMed  Google Scholar 

  9. Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, Decarolis PL, et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet. 2010;42(8):715–21. https://doi.org/10.1038/ng.619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vlenterie M, Hillebrandt-Roeffen MH, Flucke UE, Groenen PJ, Tops BB, Kamping EJ, et al. Next generation sequencing in synovial sarcoma reveals novel gene mutations. Oncotarget. 2015;6(33):34680–90. https://doi.org/10.18632/oncotarget.5786.

    Article  PubMed  PubMed Central  Google Scholar 

  11. • El Beaino M, Araujo DM, Lazar AJ, Lin PP. Synovial sarcoma: advances in diagnosis and treatment identification of new biologic targets to improve multimodal therapy. Ann Surg Oncol. 2017;24(8):2145–54. https://doi.org/10.1245/s10434-017-5855-xThis review summarizes the therapeutic strategies implemented in synovial sarcoma and underlines the need for the identification and simultaneous repression of several operational signaling networks in the disease to ensure better patient survival.

    Article  PubMed  Google Scholar 

  12. •• McBride MJ, Pulice JL, Beird HC, Ingram DR, D'Avino AR, Shern JF, et al. The SS18-SSX fusion oncoprotein hijacks BAF complex targeting and function to drive synovial sarcoma. Cancer Cell. 2018;33(6):1128-41 e7. https://doi.org/10.1016/j.ccell.2018.05.002This study highlights the dynamic interplay between the SWI/SNF and Polycomb chromatin remodeling complexes by identifying a mechanism that directs the aberrant SWI/SNF multicomplex to activate Polycomb-silenced targets.

    Article  CAS  Google Scholar 

  13. Guillou L, Coindre J, Gallagher G, Terrier P, Gebhard S, de Saint Aubain Somerhausen N, et al. Detection of the synovial sarcoma translocation t(X;18) (SYT;SSX) in paraffin-embedded tissues using reverse transcriptase-polymerase chain reaction: a reliable and powerful diagnostic tool for pathologists. A molecular analysis of 221 mesenchymal tumors fixed in different fixatives. Hum Pathol. 2001;32(1):105–12.

    Article  CAS  PubMed  Google Scholar 

  14. Ladanyi M. Fusions of the SYT and SSX genes in synovial sarcoma. Oncogene. 2001;20(40):5755–62. https://doi.org/10.1038/sj.onc.1204601.

    Article  CAS  PubMed  Google Scholar 

  15. Brett D, Whitehouse S, Antonson P, Shipley J, Cooper C, Goodwin G. The SYT protein involved in the t(X;18) synovial sarcoma translocation is a transcriptional activator localised in nuclear bodies. Hum Mol Genet. 1997;6(9):1559–64.

    Article  CAS  PubMed  Google Scholar 

  16. Soulez M, Saurin AJ, Freemont PS, Knight JC. SSX and the synovial-sarcoma-specific chimaeric protein SYT-SSX co-localize with the human Polycomb group complex. Oncogene. 1999;18(17):2739–46. https://doi.org/10.1038/sj.onc.1202613.

    Article  CAS  PubMed  Google Scholar 

  17. Thaete C, Brett D, Monaghan P, Whitehouse S, Rennie G, Rayner E, et al. Functional domains of the SYT and SYT-SSX synovial sarcoma translocation proteins and co-localization with the SNF protein BRM in the nucleus. Hum Mol Genet. 1999;8(4):585–91.

    Article  CAS  PubMed  Google Scholar 

  18. Kato H, Tjernberg A, Zhang W, Krutchinsky AN, An W, Takeuchi T, et al. SYT associates with human SNF/SWI complexes and the C-terminal region of its fusion partner SSX1 targets histones. J Biol Chem. 2002;277(7):5498–505. https://doi.org/10.1074/jbc.M108702200.

    Article  CAS  PubMed  Google Scholar 

  19. de Bruijn DR, Allander SV, van Dijk AH, Willemse MP, Thijssen J, van Groningen JJ, et al. The synovial-sarcoma-associated SS18-SSX2 fusion protein induces epigenetic gene (de)regulation. Cancer Res. 2006;66(19):9474–82. https://doi.org/10.1158/0008-5472.CAN-05-3726.

    Article  CAS  PubMed  Google Scholar 

  20. Kadoch C, Crabtree GR. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell. 2013;153(1):71–85. https://doi.org/10.1016/j.cell.2013.02.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. El Beaino M, Araujo DM, Gopalakrishnan V, Lazar AJ, Lin PP. Prognosis of T1 synovial sarcoma depends upon surgery by oncologic surgeons. J Surg Oncol. 2016;114(4):490–4. https://doi.org/10.1002/jso.24306.

    Article  PubMed  Google Scholar 

  22. Ferrari A, Chi YY, De Salvo GL, Orbach D, Brennan B, Randall RL, et al. Surgery alone is sufficient therapy for children and adolescents with low-risk synovial sarcoma: A joint analysis from the European paediatric soft tissue sarcoma Study Group and the Children's Oncology Group. Eur J Cancer. 2017;78:1–6. https://doi.org/10.1016/j.ejca.2017.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ferrari A, Gronchi A, Casanova M, Meazza C, Gandola L, Collini P, et al. Synovial sarcoma: a retrospective analysis of 271 patients of all ages treated at a single institution. Cancer. 2004;101(3):627–34. https://doi.org/10.1002/cncr.20386.

    Article  PubMed  Google Scholar 

  24. de Bruijn DR, Baats E, Zechner U, de Leeuw B, Balemans M, Olde Weghuis D, et al. Isolation and characterization of the mouse homolog of SYT, a gene implicated in the development of human synovial sarcomas. Oncogene. 1996;13(3):643–8.

    PubMed  Google Scholar 

  25. Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014;13(2):397–406. https://doi.org/10.1074/mcp.M113.035600.

    Article  CAS  PubMed  Google Scholar 

  26. dos Santos NR, de Bruijn DR, Kater-Baats E, Otte AP, van Kessel AG. Delineation of the protein domains responsible for SYT, SSX, and SYT-SSX nuclear localization. Exp Cell Res. 2000;256(1):192–202. https://doi.org/10.1006/excr.2000.4813.

    Article  CAS  PubMed  Google Scholar 

  27. de Bruijn DR, dos Santos NR, Thijssen J, Balemans M, Debernardi S, Linder B, et al. The synovial sarcoma associated protein SYT interacts with the acute leukemia associated protein AF10. Oncogene. 2001;20(25):3281–9. https://doi.org/10.1038/sj.onc.1204419.

    Article  CAS  PubMed  Google Scholar 

  28. Perani M, Ingram CJ, Cooper CS, Garrett MD, Goodwin GH. Conserved SNH domain of the proto-oncoprotein SYT interacts with components of the human chromatin remodelling complexes, while the QPGY repeat domain forms homo-oligomers. Oncogene. 2003;22(50):8156–67. https://doi.org/10.1038/sj.onc.1207031.

    Article  CAS  PubMed  Google Scholar 

  29. Nie Z, Xue Y, Yang D, Zhou S, Deroo BJ, Archer TK, et al. A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol Cell Biol. 2000;20(23):8879–88. https://doi.org/10.1128/mcb.20.23.8879-8888.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sudarsanam P, Winston F. The Swi/Snf family nucleosome-remodeling complexes and transcriptional control. Trends Genet. 2000;16(8):345–51.

    Article  CAS  PubMed  Google Scholar 

  31. Hurlstone AF, Olave IA, Barker N, van Noort M, Clevers H. Cloning and characterization of hELD/OSA1, a novel BRG1 interacting protein. Biochem J. 2002;364(Pt 1):255–64. https://doi.org/10.1042/bj3640255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eid JE, Kung AL, Scully R, Livingston DM. p300 interacts with the nuclear proto-oncoprotein SYT as part of the active control of cell adhesion. Cell. 2000;102(6):839–48.

    Article  CAS  PubMed  Google Scholar 

  33. Summy JM, Guappone AC, Sudol M, Flynn DC. The SH3 and SH2 domains are capable of directing specificity in protein interactions between the non-receptor tyrosine kinases cSrc and cYes. Oncogene. 2000;19(1):155–60. https://doi.org/10.1038/sj.onc.1203265.

    Article  CAS  PubMed  Google Scholar 

  34. dos Santos NR, de Bruijn DR, van Kessel AG. Molecular mechanisms underlying human synovial sarcoma development. Genes Chromosomes Cancer. 2001;30(1):1–14.

    Article  PubMed  Google Scholar 

  35. Gure AO, Wei IJ, Old LJ, Chen YT. The SSX gene family: characterization of 9 complete genes. International journal of cancer. 2002;101(5):448–53. https://doi.org/10.1002/ijc.10634.

    Article  CAS  PubMed  Google Scholar 

  36. Smith HA, McNeel DG. The SSX family of cancer-testis antigens as target proteins for tumor therapy. Clin Dev Immunol. 2010;2010:150591. https://doi.org/10.1155/2010/150591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. dos Santos NR, Torensma R, de Vries TJ, Schreurs MW, de Bruijn DR, Kater-Baats E, et al. Heterogeneous expression of the SSX cancer/testis antigens in human melanoma lesions and cell lines. Cancer Res. 2000;60(6):1654–62.

    PubMed  Google Scholar 

  38. Lim FL, Soulez M, Koczan D, Thiesen HJ, Knight JC. A KRAB-related domain and a novel transcription repression domain in proteins encoded by SSX genes that are disrupted in human sarcomas. Oncogene. 1998;17(15):2013–8. https://doi.org/10.1038/sj.onc.1202122.

    Article  CAS  PubMed  Google Scholar 

  39. de Bruijn DR, van Dijk AH, Willemse MP, van Kessel AG. The C terminus of the synovial sarcoma-associated SSX proteins interacts with the LIM homeobox protein LHX4. Oncogene. 2008;27(5):653–62. https://doi.org/10.1038/sj.onc.1210688.

    Article  CAS  PubMed  Google Scholar 

  40. Skytting B, Nilsson G, Brodin B, Xie Y, Lundeberg J, Uhlen M, et al. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J Natl Cancer Inst. 1999;91(11):974–5.

    Article  CAS  PubMed  Google Scholar 

  41. Mancuso T, Mezzelani A, Riva C, Fabbri A, Dal Bo L, Sampietro G, et al. Analysis of SYT-SSX fusion transcripts and bcl-2 expression and phosphorylation status in synovial sarcoma. Lab Invest. 2000;80(6):805–13.

    Article  CAS  PubMed  Google Scholar 

  42. Mezzelani A, Mariani L, Tamborini E, Agus V, Riva C, Lo Vullo S, et al. SYT-SSX fusion genes and prognosis in synovial sarcoma. Br J Cancer. 2001;85(10):1535–9. https://doi.org/10.1054/bjoc.2001.2088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tamborini E, Papini D, Mezzelani A, Riva C, Azzarelli A, Sozzi G, et al. c-KIT and c-KIT ligand (SCF) in synovial sarcoma (SS): an mRNA expression analysis in 23 cases. Br J Cancer. 2001;85(3):405–11. https://doi.org/10.1054/bjoc.2001.1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nagai M, Tanaka S, Tsuda M, Endo S, Kato H, Sonobe H, et al. Analysis of transforming activity of human synovial sarcoma-associated chimeric protein SYT-SSX1 bound to chromatin remodeling factor hBRM/hSNF2 alpha. Proc Natl Acad Sci U S A. 2001;98(7):3843–8. https://doi.org/10.1073/pnas.061036798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Clark J, Rocques PJ, Crew AJ, Gill S, Shipley J, Chan AM, et al. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet. 1994;7(4):502–8. https://doi.org/10.1038/ng0894-502.

    Article  CAS  PubMed  Google Scholar 

  46. Crew AJ, Clark J, Fisher C, Gill S, Grimer R, Chand A, et al. Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO J. 1995;14(10):2333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Leeuw B, Balemans M, Olde Weghuis D. Geurts van Kessel A. Identification of two alternative fusion genes, SYT-SSX1 and SYT-SSX2, in t(X;18)(p11.2;q11.2)-positive synovial sarcomas. Hum Mol Genet. 1995;4(6):1097–9. https://doi.org/10.1093/hmg/4.6.1097.

    Article  PubMed  Google Scholar 

  48. Fligman I, Lonardo F, Jhanwar SC, Gerald WL, Woodruff J, Ladanyi M. Molecular diagnosis of synovial sarcoma and characterization of a variant SYT-SSX2 fusion transcript. Am J Pathol. 1995;147(6):1592–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Safar A, Wickert R, Nelson M, Neff JR, Bridge JA. Characterization of a variant SYT-SSX1 synovial sarcoma fusion transcript. Diagn Mol Pathol. 1998;7(5):283–7.

    Article  CAS  PubMed  Google Scholar 

  50. Sanders ME, van de Rijn M, Barr FG. Detection of a variant SYT-SSX1 fusion in a case of predominantly epithelioid synovial sarcoma. Mol Diagn. 1999;4(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  51. Sonobe H, Takeuchi T, Liag SB, Taguchi T, Yuri K, Shimizu K, et al. A new human synovial sarcoma cell line, HS-SY-3, with a truncated form of hybrid SYT/SSX1 gene. International journal of cancer. 1999;82(3):459–64.

    Article  CAS  PubMed  Google Scholar 

  52. de Bruijn DR, Nap JP, van Kessel AG. The (epi)genetics of human synovial sarcoma. Genes Chromosomes Cancer. 2007;46(2):107–17. https://doi.org/10.1002/gcc.20399.

    Article  CAS  PubMed  Google Scholar 

  53. dos Santos NR, de Bruijn DR, Balemans M, Janssen B, Gartner F, Lopes JM, et al. Nuclear localization of SYT, SSX and the synovial sarcoma-associated SYT-SSX fusion proteins. Hum Mol Genet. 1997;6(9):1549–58.

    Article  PubMed  Google Scholar 

  54. Pretto D, Barco R, Rivera J, Neel N, Gustavson MD, Eid JE. The synovial sarcoma translocation protein SYT-SSX2 recruits beta-catenin to the nucleus and associates with it in an active complex. Oncogene. 2006;25(26):3661–9. https://doi.org/10.1038/sj.onc.1209413.

    Article  CAS  PubMed  Google Scholar 

  55. Middeljans E, Wan X, Jansen PW, Sharma V, Stunnenberg HG, Logie C. SS18 together with animal-specific factors defines human BAF-type SWI/SNF complexes. PLoS One. 2012;7(3):e33834. https://doi.org/10.1371/journal.pone.0033834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Su L, Sampaio AV, Jones KB, Pacheco M, Goytain A, Lin S, et al. Deconstruction of the SS18-SSX fusion oncoprotein complex: insights into disease etiology and therapeutics. Cancer Cell. 2012;21(3):333–47. https://doi.org/10.1016/j.ccr.2012.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nielsen TO, West RB, Linn SC, Alter O, Knowling MA, O'Connell JX, et al. Molecular characterisation of soft tissue tumours: a gene expression study. Lancet. 2002;359(9314):1301–7. https://doi.org/10.1016/S0140-6736(02)08270-3.

    Article  PubMed  Google Scholar 

  58. Francis P, Namlos HM, Muller C, Eden P, Fernebro J, Berner JM, et al. Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: hypoxia-induced transcription profile signifies metastatic potential. BMC Genomics. 2007;8:73. https://doi.org/10.1186/1471-2164-8-73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lubieniecka JM, de Bruijn DR, Su L, van Dijk AH, Subramanian S, van de Rijn M, et al. Histone deacetylase inhibitors reverse SS18-SSX-mediated polycomb silencing of the tumor suppressor early growth response 1 in synovial sarcoma. Cancer Res. 2008;68(11):4303–10. https://doi.org/10.1158/0008-5472.CAN-08-0092.

    Article  CAS  PubMed  Google Scholar 

  60. Barco R, Garcia CB, Eid JE. The synovial sarcoma-associated SYT-SSX2 oncogene antagonizes the polycomb complex protein Bmi1. PLoS One. 2009;4(4):e5060. https://doi.org/10.1371/journal.pone.0005060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cironi L, Petricevic T, Fernandes Vieira V, Provero P, Fusco C, Cornaz S, et al. The fusion protein SS18-SSX1 employs core Wnt pathway transcription factors to induce a partial Wnt signature in synovial sarcoma. Sci Rep. 2016;6:22113. https://doi.org/10.1038/srep22113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell. 2002;111(2):185–96.

    Article  CAS  PubMed  Google Scholar 

  63. Cao R, Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev. 2004;14(2):155–64. https://doi.org/10.1016/j.gde.2004.02.001.

    Article  CAS  PubMed  Google Scholar 

  64. Furuyama T, Banerjee R, Breen TR, Harte PJ. SIR2 is required for polycomb silencing and is associated with an E(Z) histone methyltransferase complex. Curr Biol. 2004;14(20):1812–21. https://doi.org/10.1016/j.cub.2004.09.060.

    Article  CAS  PubMed  Google Scholar 

  65. Changchien YC, Tatrai P, Papp G, Sapi J, Fonyad L, Szendroi M, et al. Poorly differentiated synovial sarcoma is associated with high expression of enhancer of zeste homologue 2 (EZH2). J Transl Med. 2012;10:216. https://doi.org/10.1186/1479-5876-10-216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Garcia CB, Shaffer CM, Eid JE. Genome-wide recruitment to Polycomb-modified chromatin and activity regulation of the synovial sarcoma oncogene SYT-SSX2. BMC Genomics. 2012;13:189. https://doi.org/10.1186/1471-2164-13-189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chittock EC, Latwiel S, Miller TC, Muller CW. Molecular architecture of polycomb repressive complexes. Biochem Soc Trans. 2017;45(1):193–205. https://doi.org/10.1042/BST20160173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wilson BG, Wang X, Shen X, McKenna ES, Lemieux ME, Cho Y-J, et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell. 2010;18(4):316–28. https://doi.org/10.1016/j.ccr.2010.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kawano S, Grassian AR, Tsuda M, Knutson SK, Warholic NM, Kuznetsov G, et al. Preclinical evidence of anti-tumor activity induced by EZH2 inhibition in human models of synovial sarcoma. PLoS One. 2016;11(7):e0158888. https://doi.org/10.1371/journal.pone.0158888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Laporte AN, Poulin NM, Barrott JJ, Wang XQ, Lorzadeh A, Vander Werff R, et al. Death by HDAC inhibition in synovial sarcoma cells. Mol Cancer Ther. 2017;16(12):2656–67. https://doi.org/10.1158/1535-7163.MCT-17-0397.

    Article  CAS  PubMed  Google Scholar 

  71. Sif S, Saurin AJ, Imbalzano AN, Kingston RE. Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev. 2001;15(5):603–18. https://doi.org/10.1101/gad.872801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fleischer TC, Yun UJ, Ayer DE. Identification and characterization of three new components of the mSin3A corepressor complex. Mol Cell Biol. 2003;23(10):3456–67. https://doi.org/10.1128/mcb.23.10.3456-3467.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ito T, Ouchida M, Ito S, Jitsumori Y, Morimoto Y, Ozaki T, et al. SYT, a partner of SYT-SSX oncoprotein in synovial sarcomas, interacts with mSin3A, a component of histone deacetylase complex. Lab Invest. 2004;84(11):1484–90. https://doi.org/10.1038/labinvest.3700174.

    Article  CAS  PubMed  Google Scholar 

  74. Kadamb R, Mittal S, Bansal N, Batra H, Saluja D. Sin3: Insight into its transcription regulatory functions. European Journal of Cell Biology. 2013;92(8):237–46. https://doi.org/10.1016/j.ejcb.2013.09.001.

    Article  CAS  PubMed  Google Scholar 

  75. Iwasaki T, Koibuchi N, Chin WW. Synovial sarcoma translocation (SYT) encodes a nuclear receptor coactivator. Endocrinology. 2005;146(9):3892–9. https://doi.org/10.1210/en.2004-1513.

    Article  CAS  PubMed  Google Scholar 

  76. Perani M, Antonson P, Hamoudi R, Ingram CJ, Cooper CS, Garrett MD, et al. The proto-oncoprotein SYT interacts with SYT-interacting protein/co-activator activator (SIP/CoAA), a human nuclear receptor co-activator with similarity to EWS and TLS/FUS family of proteins. J Biol Chem. 2005;280(52):42863–76. https://doi.org/10.1074/jbc.M502963200.

    Article  CAS  PubMed  Google Scholar 

  77. Auboeuf D, Dowhan DH, Kang YK, Larkin K, Lee JW, Berget SM, et al. Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes. Proc Natl Acad Sci U S A. 2004;101(8):2270–4. https://doi.org/10.1073/pnas.0308133100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Auboeuf D, Dowhan DH, Li X, Larkin K, Ko L, Berget SM, et al. CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing. Mol Cell Biol. 2004;24(1):442–53. https://doi.org/10.1128/mcb.24.1.442-453.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sarver AL, Li L, Subramanian S. MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res. 2010;70(23):9570–80. https://doi.org/10.1158/0008-5472.CAN-10-2074.

    Article  CAS  PubMed  Google Scholar 

  80. Hisaoka M, Matsuyama A, Nagao Y, Luan L, Kuroda T, Akiyama H, et al. Identification of altered MicroRNA expression patterns in synovial sarcoma. Genes Chromosomes Cancer. 2011;50(3):137–45. https://doi.org/10.1002/gcc.20837.

    Article  CAS  PubMed  Google Scholar 

  81. Minami Y, Kohsaka S, Tsuda M, Yachi K, Hatori N, Tanino M, et al. SS18-SSX-regulated miR-17 promotes tumor growth of synovial sarcoma by inhibiting p21WAF1/CIP1. Cancer Sci. 2014;105(9):1152–9. https://doi.org/10.1111/cas.12479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fricke A, Ullrich PV, Heinz J, Pfeifer D, Scholber J, Herget GW, et al. Identification of a blood-borne miRNA signature of synovial sarcoma. Mol Cancer. 2015;14:151. https://doi.org/10.1186/s12943-015-0424-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Patel N, Wang J, Shiozawa K, Jones KB, Zhang Y, Prokop JW, et al. HDAC2 regulates site-specific acetylation of MDM2 and its ubiquitination signaling in tumor suppression. iScience. 2019;13:43–54. https://doi.org/10.1016/j.isci.2019.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Barco R, Hunt LB, Frump AL, Garcia CB, Benesh A, Caldwell RL, et al. The synovial sarcoma SYT-SSX2 oncogene remodels the cytoskeleton through activation of the ephrin pathway. Mol Biol Cell. 2007;18(10):4003–12. https://doi.org/10.1091/mbc.e07-05-0496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Debernardi S, Bassini A, Jones LK, Chaplin T, Linder B, de Bruijn DR, et al. The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Blood. 2002;99(1):275–81.

    Article  PubMed  Google Scholar 

  86. Krskova L, Kalinova M, Brizova H, Mrhalova M, Sumerauer D, Kodet R. Molecular and immunohistochemical analyses of BCL2, KI-67, and cyclin D1 expression in synovial sarcoma. Cancer Genet Cytogenet. 2009;193(1):1–8. https://doi.org/10.1016/j.cancergencyto.2009.03.008.

    Article  CAS  PubMed  Google Scholar 

  87. Xie Y, Skytting B, Nilsson G, Gasbarri A, Haslam K, Bartolazzi A, et al. SYT-SSX is critical for cyclin D1 expression in synovial sarcoma cells: a gain of function of the t(X;18)(p11.2;q11.2) translocation. Cancer Res. 2002;62(13):3861–7.

    CAS  PubMed  Google Scholar 

  88. Tornkvist M, Natalishvili N, Xie Y, Girnita A, D'Arcy P, Brodin B, et al. Differential roles of SS18-SSX fusion gene and insulin-like growth factor-1 receptor in synovial sarcoma cell growth. Biochem Biophys Res Commun. 2008;368(3):793–800. https://doi.org/10.1016/j.bbrc.2008.01.162.

    Article  CAS  PubMed  Google Scholar 

  89. Antonescu CR, Leung DH, Dudas M, Ladanyi M, Brennan M, Woodruff JM, et al. Alterations of cell cycle regulators in localized synovial sarcoma: a multifactorial study with prognostic implications. Am J Pathol. 2000;156(3):977–83. https://doi.org/10.1016/S0002-9440(10)64965-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xie Y, Skytting B, Nilsson G, Grimer RJ, Mangham CD, Fisher C, et al. The SYT-SSX1 fusion type of synovial sarcoma is associated with increased expression of cyclin A and D1. A link between t(X;18)(p11.2; q11.2) and the cell cycle machinery. Oncogene. 2002;21(37):5791–6. https://doi.org/10.1038/sj.onc.1205700.

    Article  CAS  PubMed  Google Scholar 

  91. Horvai AE, Kramer MJ, O'Donnell R. Beta-catenin nuclear expression correlates with cyclin D1 expression in primary and metastatic synovial sarcoma: a tissue microarray study. Arch Pathol Lab Med. 2006;130(6):792–8. https://doi.org/10.1043/1543-2165(2006)130[792:CNECWC]2.0.CO;2.

    Article  CAS  PubMed  Google Scholar 

  92. Bozzi F, Ferrari A, Negri T, Conca E, da Luca R, Losa M, et al. Molecular characterization of synovial sarcoma in children and adolescents: evidence of akt activation. Transl Oncol. 2008;1(2):95–101. https://doi.org/10.1593/tlo.08121.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Friedrichs N, Trautmann M, Endl E, Sievers E, Kindler D, Wurst P, et al. Phosphatidylinositol-3'-kinase/AKT signaling is essential in synovial sarcoma. Int J Cancer. 2011;129(7):1564–75. https://doi.org/10.1002/ijc.25829.

    Article  CAS  PubMed  Google Scholar 

  94. Trautmann M, Sievers E, Aretz S, Kindler D, Michels S, Friedrichs N, et al. SS18-SSX fusion protein-induced Wnt/beta-catenin signaling is a therapeutic target in synovial sarcoma. Oncogene. 2014;33(42):5006–16. https://doi.org/10.1038/onc.2013.443.

    Article  CAS  PubMed  Google Scholar 

  95. Jones KB, Su L, Jin H, Lenz C, Randall RL, Underhill TM, et al. SS18-SSX2 and the mitochondrial apoptosis pathway in mouse and human synovial sarcomas. Oncogene. 2013;32(18):2365-71, 75 e1-5. https://doi.org/10.1038/onc.2012.247.

    Article  CAS  Google Scholar 

  96. Antonescu CR, Kawai A, Leung DH, Lonardo F, Woodruff JM, Healey JH, et al. Strong association of SYT-SSX fusion type and morphologic epithelial differentiation in synovial sarcoma. Diagn Mol Pathol. 2000;9(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  97. Kawauchi S, Fukuda T, Oda Y, Saito T, Oga A, Takeshita M, et al. Prognostic significance of apoptosis in synovial sarcoma: correlation with clinicopathologic parameters, cell proliferative activity, and expression of apoptosis-related proteins. Mod Pathol. 2000;13(7):755–65. https://doi.org/10.1038/modpathol.3880131.

    Article  CAS  PubMed  Google Scholar 

  98. Barbashina V, Benevenia J, Aviv H, Tsai J, Patterson F, Aisner S, et al. Oncoproteins and proliferation markers in synovial sarcomas: a clinicopathologic study of 19 cases. J Cancer Res Clin Oncol. 2002;128(11):610–6. https://doi.org/10.1007/s00432-002-0389-3.

    Article  CAS  PubMed  Google Scholar 

  99. Pelmus M, Guillou L, Hostein I, Sierankowski G, Lussan C, Coindre JM. Monophasic fibrous and poorly differentiated synovial sarcoma: immunohistochemical reassessment of 60 t(X;18)(SYT-SSX)-positive cases. Am J Surg Pathol. 2002;26(11):1434–40.

    Article  PubMed  Google Scholar 

  100. Nielsen TO, Hsu FD, O'Connell JX, Gilks CB, Sorensen PH, Linn S, et al. Tissue microarray validation of epidermal growth factor receptor and SALL2 in synovial sarcoma with comparison to tumors of similar histology. Am J Pathol. 2003;163(4):1449–56. https://doi.org/10.1016/S0002-9440(10)63502-X.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sun B, Sun Y, Wang J, Zhao X, Wang X, Hao X. Extent, relationship and prognostic significance of apoptosis and cell proliferation in synovial sarcoma. Eur J Cancer Prev. 2006;15(3):258–65. https://doi.org/10.1097/01.cej.0000198896.02185.68.

    Article  CAS  PubMed  Google Scholar 

  102. Knosel T, Heretsch S, Altendorf-Hofmann A, Richter P, Katenkamp K, Katenkamp D, et al. TLE1 is a robust diagnostic biomarker for synovial sarcomas and correlates with t(X;18): analysis of 319 cases. Eur J Cancer. 2010;46(6):1170–6. https://doi.org/10.1016/j.ejca.2010.01.032.

    Article  CAS  PubMed  Google Scholar 

  103. Joyner DE, Albritton KH, Bastar JD, Randall RL. G3139 antisense oligonucleotide directed against antiapoptotic Bcl-2 enhances doxorubicin cytotoxicity in the FU-SY-1 synovial sarcoma cell line. J Orthop Res. 2006;24(3):474–80. https://doi.org/10.1002/jor.20087.

    Article  CAS  PubMed  Google Scholar 

  104. Barrott JJ, Zhu JF, Smith-Fry K, Susko AM, Nollner D, Burrell LD, et al. The influential role of BCL2 family members in synovial sarcomagenesis. Mol Cancer Res. 2017;15(12):1733–40. https://doi.org/10.1158/1541-7786.MCR-17-0315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Saito T, Oda Y, Sugimachi K, Kawaguchi K, Tamiya S, Tanaka K, et al. E-cadherin gene mutations frequently occur in synovial sarcoma as a determinant of histological features. Am J Pathol. 2001;159(6):2117–24. https://doi.org/10.1016/s0002-9440(10)63063-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee YF, John M, Edwards S, Clark J, Flohr P, Maillard K, et al. Molecular classification of synovial sarcomas, leiomyosarcomas and malignant fibrous histiocytomas by gene expression profiling. Br J Cancer. 2003;88(4):510–5. https://doi.org/10.1038/sj.bjc.6600766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Baird K, Davis S, Antonescu CR, Harper UL, Walker RL, Chen Y, et al. Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Res. 2005;65(20):9226–35. https://doi.org/10.1158/0008-5472.CAN-05-1699.

    Article  CAS  PubMed  Google Scholar 

  108. Saito T, Oda Y, Sakamoto A, Tamiya S, Kinukawa N, Hayashi K, et al. Prognostic value of the preserved expression of the E-cadherin and catenin families of adhesion molecules and of beta-catenin mutations in synovial sarcoma. J Pathol. 2000;192(3):342–50. https://doi.org/10.1002/1096-9896(2000)9999:9999<::AID-PATH705>3.0.CO;2-R.

    Article  CAS  PubMed  Google Scholar 

  109. Saito T, Oda Y, Sakamoto A, Kawaguchi K, Tanaka K, Matsuda S, et al. APC mutations in synovial sarcoma. J Pathol. 2002;196(4):445–9. https://doi.org/10.1002/path.1066.

    Article  CAS  PubMed  Google Scholar 

  110. Saito T, Oda Y, Kawaguchi K, Sugimachi K, Yamamoto H, Tateishi N, et al. E-cadherin mutation and Snail overexpression as alternative mechanisms of E-cadherin inactivation in synovial sarcoma. Oncogene. 2004;23(53):8629–38. https://doi.org/10.1038/sj.onc.1207960.

    Article  CAS  PubMed  Google Scholar 

  111. Subramaniam MM, Calabuig-Farinas S, Pellin A, Llombart-Bosch A. Mutational analysis of E-cadherin, beta-catenin and APC genes in synovial sarcomas. Histopathology. 2010;57(3):482–6. https://doi.org/10.1111/j.1365-2559.2010.03626.x.

    Article  PubMed  Google Scholar 

  112. Barham W, Frump AL, Sherrill TP, Garcia CB, Saito-Diaz K, VanSaun MN, et al. Targeting the Wnt pathway in synovial sarcoma models. Cancer Discov. 2013;3(11):1286–301. https://doi.org/10.1158/2159-8290.CD-13-0138.

    Article  CAS  PubMed  Google Scholar 

  113. Andersson C, Fagman H, Hansson M, Enlund F. Profiling of potential driver mutations in sarcomas by targeted next generation sequencing. Cancer Genet. 2016;209(4):154–60. https://doi.org/10.1016/j.cancergen.2016.02.004.

    Article  CAS  PubMed  Google Scholar 

  114. Hasegawa T, Yokoyama R, Matsuno Y, Shimoda T, Hirohashi S. Prognostic significance of histologic grade and nuclear expression of beta-catenin in synovial sarcoma. Hum Pathol. 2001;32(3):257–63. https://doi.org/10.1053/hupa.2001.22764.

    Article  CAS  PubMed  Google Scholar 

  115. Sato H, Hasegawa T, Kanai Y, Tsutsumi Y, Osamura Y, Abe Y, et al. Expression of cadherins and their undercoat proteins (alpha-, beta-, and gamma-catenins and p120) and accumulation of beta-catenin with no gene mutations in synovial sarcoma. Virchows Arch. 2001;438(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  116. Wakamatsu T, Naka N, Sasagawa S, Tanaka T, Takenaka S, Araki N, et al. Deflection of vascular endothelial growth factor action by SS18-SSX and composite vascular endothelial growth factor- and chemokine (C-X-C motif) receptor 4-targeted therapy in synovial sarcoma. Cancer Sci. 2014;105(9):1124–34. https://doi.org/10.1111/cas.12469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kimura T, Wang L, Tabu K, Tsuda M, Tanino M, Maekawa A, et al. Identification and analysis of CXCR4-positive synovial sarcoma-initiating cells. Oncogene. 2016;35(30):3932–43. https://doi.org/10.1038/onc.2015.461.

    Article  CAS  PubMed  Google Scholar 

  118. Nagayama S, Katagiri T, Tsunoda T, Hosaka T, Nakashima Y, Araki N, et al. Genome-wide analysis of gene expression in synovial sarcomas using a cDNA microarray. Cancer Res. 2002;62(20):5859–66.

    CAS  PubMed  Google Scholar 

  119. Fleuren EDG, Vlenterie M, van der Graaf WTA, Hillebrandt-Roeffen MHS, Blackburn J, Ma X, et al. Phosphoproteomic profiling reveals ALK and MET as novel actionable targets across synovial sarcoma subtypes. Cancer Res. 2017;77(16):4279–92. https://doi.org/10.1158/0008-5472.CAN-16-2550.

    Article  CAS  PubMed  Google Scholar 

  120. Hayakawa K, Ikeya M, Fukuta M, Woltjen K, Tamaki S, Takahara N, et al. Identification of target genes of synovial sarcoma-associated fusion oncoprotein using human pluripotent stem cells. Biochem Biophys Res Commun. 2013;432(4):713–9. https://doi.org/10.1016/j.bbrc.2013.01.003.

    Article  CAS  PubMed  Google Scholar 

  121. Allander SV, Illei PB, Chen Y, Antonescu CR, Bittner M, Ladanyi M, et al. Expression profiling of synovial sarcoma by cDNA microarrays: association of ERBB2, IGFBP2, and ELF3 with epithelial differentiation. Am J Pathol. 2002;161(5):1587–95. https://doi.org/10.1016/S0002-9440(10)64437-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sihto H, Puputti M, Pulli L, Tynninen O, Koskinen W, Aaltonen LM, et al. Epidermal growth factor receptor domain II, IV, and kinase domain mutations in human solid tumors. J Mol Med (Berl). 2005;83(12):976–83. https://doi.org/10.1007/s00109-005-0699-4.

    Article  CAS  PubMed  Google Scholar 

  123. Terry J, Lubieniecka JM, Kwan W, Liu S, Nielsen TO. Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin prevents synovial sarcoma proliferation via apoptosis in in vitro models. Clin Cancer Res. 2005;11(15):5631–8. https://doi.org/10.1158/1078-0432.CCR-05-0398.

    Article  CAS  PubMed  Google Scholar 

  124. Thomas DG, Giordano TJ, Sanders D, Biermann S, Sondak VK, Trent JC, et al. Expression of receptor tyrosine kinases epidermal growth factor receptor and HER-2/neu in synovial sarcoma. Cancer. 2005;103(4):830–8. https://doi.org/10.1002/cncr.20847.

    Article  CAS  PubMed  Google Scholar 

  125. Tawbi H, Thomas D, Lucas DR, Biermann JS, Schuetze SM, Hart AL, et al. Epidermal growth factor receptor expression and mutational analysis in synovial sarcomas and malignant peripheral nerve sheath tumors. Oncologist. 2008;13(4):459–66. https://doi.org/10.1634/theoncologist.2007-0166.

    Article  CAS  PubMed  Google Scholar 

  126. Bode B, Frigerio S, Behnke S, Senn B, Odermatt B, Zimmermann DR, et al. Mutations in the tyrosine kinase domain of the EGFR gene are rare in synovial sarcoma. Mod Pathol. 2006;19(4):541–7. https://doi.org/10.1038/modpathol.3800560.

    Article  CAS  PubMed  Google Scholar 

  127. Dobashi Y, Suzuki S, Sugawara H, Ooi A. Involvement of epidermal growth factor receptor and downstream molecules in bone and soft tissue tumors. Hum Pathol. 2007;38(6):914–25. https://doi.org/10.1016/j.humpath.2006.12.005.

    Article  CAS  PubMed  Google Scholar 

  128. Ho AL, Vasudeva SD, Lae M, Saito T, Barbashina V, Antonescu CR, et al. PDGF receptor alpha is an alternative mediator of rapamycin-induced Akt activation: implications for combination targeted therapy of synovial sarcoma. Cancer Res. 2012;72(17):4515–25. https://doi.org/10.1158/0008-5472.CAN-12-1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hosaka S, Horiuchi K, Yoda M, Nakayama R, Tohmonda T, Susa M, et al. A novel multi-kinase inhibitor pazopanib suppresses growth of synovial sarcoma cells through inhibition of the PI3K-AKT pathway. J Orthop Res. 2012;30(9):1493–8. https://doi.org/10.1002/jor.22091.

    Article  CAS  PubMed  Google Scholar 

  130. Yasui H, Naka N, Imura Y, Outani H, Kaneko K, Hamada K, et al. Tailored therapeutic strategies for synovial sarcoma: receptor tyrosine kinase pathway analyses predict sensitivity to the mTOR inhibitor RAD001. Cancer Lett. 2014;347(1):114–22. https://doi.org/10.1016/j.canlet.2014.01.027.

    Article  CAS  PubMed  Google Scholar 

  131. Sato O, Wada T, Kawai A, Yamaguchi U, Makimoto A, Kokai Y, et al. Expression of epidermal growth factor receptor, ERBB2 and KIT in adult soft tissue sarcomas: a clinicopathologic study of 281 cases. Cancer. 2005;103(9):1881–90. https://doi.org/10.1002/cncr.20986.

    Article  CAS  PubMed  Google Scholar 

  132. Teng HW, Wang HW, Chen WM, Chao TC, Hsieh YY, Hsih CH, et al. Prevalence and prognostic influence of genomic changes of EGFR pathway markers in synovial sarcoma. J Surg Oncol. 2011;103(8):773–81. https://doi.org/10.1002/jso.21852.

    Article  CAS  PubMed  Google Scholar 

  133. Ishibe T, Nakayama T, Okamoto T, Aoyama T, Nishijo K, Shibata KR, et al. Disruption of fibroblast growth factor signal pathway inhibits the growth of synovial sarcomas: potential application of signal inhibitors to molecular target therapy. Clin Cancer Res. 2005;11(7):2702–12. https://doi.org/10.1158/1078-0432.CCR-04-2057.

    Article  CAS  PubMed  Google Scholar 

  134. Oda Y, Sakamoto A, Saito T, Kinukawa N, Iwamoto Y, Tsuneyoshi M. Expression of hepatocyte growth factor (HGF)/scatter factor and its receptor c-MET correlates with poor prognosis in synovial sarcoma. Hum Pathol. 2000;31(2):185–92.

    Article  CAS  PubMed  Google Scholar 

  135. Movva S, Wen W, Chen W, Millis SZ, Gatalica Z, Reddy S, et al. Multi-platform profiling of over 2000 sarcomas: identification of biomarkers and novel therapeutic targets. Oncotarget. 2015;6(14):12234–47. https://doi.org/10.18632/oncotarget.3498.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Fukuda T, Ichimura E, Shinozaki T, Sano T, Kashiwabara K, Oyama T, et al. Coexpression of HGF and c-Met/HGF receptor in human bone and soft tissue tumors. Pathol Int. 1998;48(10):757–62.

    Article  CAS  PubMed  Google Scholar 

  137. Kuhnen C, Tolnay E, Steinau HU, Voss B, Muller KM. Expression of c-Met receptor and hepatocyte growth factor/scatter factor in synovial sarcoma and epithelioid sarcoma. Virchows Arch. 1998;432(4):337–42.

    Article  CAS  PubMed  Google Scholar 

  138. Motoi T, Ishida T, Kuroda M, Horiuchi H, Oka T, Matsumoto K, et al. Coexpression of hepatocyte growth factor and c-Met proto-oncogene product in synovial sarcoma. Pathol Int. 1998;48(10):769–75.

    Article  CAS  PubMed  Google Scholar 

  139. Imura Y, Nakai T, Yamada S, Outani H, Takenaka S, Hamada K, et al. Functional and therapeutic relevance of hepatocyte growth factor/c-MET signaling in synovial sarcoma. Cancer Sci. 2016;107(12):1867–76. https://doi.org/10.1111/cas.13092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Watanabe T, Tsuda M, Makino Y, Ichihara S, Sawa H, Minami A, et al. Adaptor molecule Crk is required for sustained phosphorylation of Grb2-associated binder 1 and hepatocyte growth factor-induced cell motility of human synovial sarcoma cell lines. Mol Cancer Res. 2006;4(7):499–510. https://doi.org/10.1158/1541-7786.MCR-05-0141.

    Article  CAS  PubMed  Google Scholar 

  141. Xie Y, Skytting B, Nilsson G, Brodin B, Larsson O. Expression of insulin-like growth factor-1 receptor in synovial sarcoma: association with an aggressive phenotype. Cancer Res. 1999;59(15):3588–91.

    CAS  PubMed  Google Scholar 

  142. Sun Y, Gao D, Liu Y, Huang J, Lessnick S, Tanaka S. IGF2 is critical for tumorigenesis by synovial sarcoma oncoprotein SYT-SSX1. Oncogene. 2006;25(7):1042–52. https://doi.org/10.1038/sj.onc.1209143.

    Article  CAS  PubMed  Google Scholar 

  143. Hernando E, Charytonowicz E, Dudas ME, Menendez S, Matushansky I, Mills J, et al. The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat Med. 2007;13(6):748–53. https://doi.org/10.1038/nm1560.

    Article  CAS  PubMed  Google Scholar 

  144. Friedrichs N, Kuchler J, Endl E, Koch A, Czerwitzki J, Wurst P, et al. Insulin-like growth factor-1 receptor acts as a growth regulator in synovial sarcoma. J Pathol. 2008;216(4):428–39. https://doi.org/10.1002/path.2438.

    Article  CAS  PubMed  Google Scholar 

  145. • Isfort I, Cyra M, Elges S, Kailayangiri S, Altvater B, Rossig C, et al. SS18-SSX-dependent YAP/TAZ signaling in synovial sarcoma. Clin Cancer Res. 2019. https://doi.org/10.1158/1078-0432.CCR-17-3553This preclinical investigation examines the oncogenic function of the Hippo pathway in synovial sarcoma by providing in vitro and in vivo evidence of cellular growth alteration upon YAP/TAZ modulation.

  146. Steigen SE, Schaeffer DF, West RB, Nielsen TO. Expression of insulin-like growth factor 2 in mesenchymal neoplasms. Mod Pathol. 2009;22(7):914–21. https://doi.org/10.1038/modpathol.2009.48.

    Article  CAS  PubMed  Google Scholar 

  147. Michels S, Trautmann M, Sievers E, Kindler D, Huss S, Renner M, et al. SRC signaling is crucial in the growth of synovial sarcoma cells. Cancer Res. 2013;73(8):2518–28. https://doi.org/10.1158/0008-5472.CAN-12-3023.

    Article  CAS  PubMed  Google Scholar 

  148. Palmerini E, Benassi MS, Quattrini I, Pazzaglia L, Donati D, Benini S, et al. Prognostic and predictive role of CXCR4, IGF-1R and Ezrin expression in localized synovial sarcoma: is chemotaxis important to tumor response? Orphanet J Rare Dis. 2015;10:6. https://doi.org/10.1186/s13023-014-0222-5.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Benassi MS, Pazzaglia L, Novello C, Quattrini I, Pollino S, Magagnoli G, et al. Tissue and serum IGFBP7 protein as biomarker in high-grade soft tissue sarcoma. Am J Cancer Res. 2015;5(11):3446–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Lopez-Guerrero JA, Navarro S, Noguera R, Carda C, Farinas SC, Pellin A, et al. Mutational analysis of the c-KIT AND PDGFRalpha in a series of molecularly well-characterized synovial sarcomas. Diagn Mol Pathol. 2005;14(3):134–9. https://doi.org/10.1097/01.pas.0000176766.33671.b6.

    Article  CAS  PubMed  Google Scholar 

  151. Tamborini E, Bonadiman L, Greco A, Gronchi A, Riva C, Bertulli R, et al. Expression of ligand-activated KIT and platelet-derived growth factor receptor beta tyrosine kinase receptors in synovial sarcoma. Clin Cancer Res. 2004;10(3):938–43.

    Article  CAS  PubMed  Google Scholar 

  152. Arber DA, Tamayo R, Weiss LM. Paraffin section detection of the c-kit gene product (CD117) in human tissues: value in the diagnosis of mast cell disorders. Hum Pathol. 1998;29(5):498–504.

    Article  CAS  PubMed  Google Scholar 

  153. Hornick JL, Fletcher CD. Immunohistochemical staining for KIT (CD117) in soft tissue sarcomas is very limited in distribution. Am J Clin Pathol. 2002;117(2):188–93. https://doi.org/10.1309/LX9U-F7P0-UWDH-8Y6R.

    Article  PubMed  Google Scholar 

  154. Segal NH, Pavlidis P, Antonescu CR, Maki RG, Noble WS, DeSantis D, et al. Classification and subtype prediction of adult soft tissue sarcoma by functional genomics. Am J Pathol. 2003;163(2):691–700. https://doi.org/10.1016/S0002-9440(10)63696-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Saito T, Oda Y, Yamamoto H, Kawaguchi K, Tanaka K, Matsuda S, et al. Nuclear beta-catenin correlates with cyclin D1 expression in spindle and pleomorphic sarcomas but not in synovial sarcoma. Hum Pathol. 2006;37(6):689–97. https://doi.org/10.1016/j.humpath.2006.01.017.

    Article  CAS  PubMed  Google Scholar 

  156. Xing Z, Wei L, Jiang X, Conroy J, Glenn S, Bshara W, et al. Analysis of mutations in primary and metastatic synovial sarcoma. Oncotarget. 2018;9(96):36878–88. https://doi.org/10.18632/oncotarget.26416.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Vijayakumar S, Liu G, Rus IA, Yao S, Chen Y, Akiri G, et al. High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/beta-catenin target gene, CDC25A. Cancer Cell. 2011;19(5):601–12. https://doi.org/10.1016/j.ccr.2011.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Laporte AN, Ji JX, Ma L, Nielsen TO, Brodin BA. Identification of cytotoxic agents disrupting synovial sarcoma oncoprotein interactions by proximity ligation assay. Oncotarget. 2016;7(23):34384–94. https://doi.org/10.18632/oncotarget.8882.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ng TL, Gown AM, Barry TS, Cheang MC, Chan AK, Turbin DA, et al. Nuclear beta-catenin in mesenchymal tumors. Mod Pathol. 2005;18(1):68–74. https://doi.org/10.1038/modpathol.3800272.

    Article  CAS  PubMed  Google Scholar 

  160. Fukukawa C, Nagayama S, Tsunoda T, Toguchida J, Nakamura Y, Katagiri T. Activation of the non-canonical Dvl-Rac1-JNK pathway by Frizzled homologue 10 in human synovial sarcoma. Oncogene. 2009;28(8):1110–20. https://doi.org/10.1038/onc.2008.467.

    Article  CAS  PubMed  Google Scholar 

  161. El Beaino M, Jupiter DC, Assi T, Rassy E, Lazar AJ, Araujo DM, et al. Diagnostic value of TLE1 in synovial sarcoma: a systematic review and meta-analysis. Sarcoma. 2020;2020. https://doi.org/10.1155/2020/7192347.

  162. Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008;2(4):313–9. https://doi.org/10.1016/j.stem.2008.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Marx V. Cell-line authentication demystified. Nat Methods. 2014;11(5):483–8. https://doi.org/10.1038/nmeth.2932.

    Article  CAS  PubMed  Google Scholar 

  164. Tatiparti K, Sau S, Kashaw SK, Iyer AK. siRNA Delivery strategies: a comprehensive review of recent developments. Nanomaterials (Basel). 2017;7(4). https://doi.org/10.3390/nano7040077.

  165. • Burslem GM, Crews CM. Proteolysis-trgeting chimeras as therapeutics and tools for biological discovery. Cell. 2020;181(1):102–14. https://doi.org/10.1016/j.cell.2019.11.031This review provides a comprehensive summary of the proteolysis-targeting chimeras (PROTACs)-mediated proteasomal degradation and documents the superiority of this technology over siRNA in drug discovery.

    Article  CAS  PubMed  Google Scholar 

  166. Ito T, Ouchida M, Morimoto Y, Yoshida A, Jitsumori Y, Ozaki T, et al. Significant growth suppression of synovial sarcomas by the histone deacetylase inhibitor FK228 in vitro and in vivo. Cancer Lett. 2005;224(2):311–9. https://doi.org/10.1016/j.canlet.2004.10.030.

    Article  CAS  PubMed  Google Scholar 

  167. • Remillard D, Buckley DL, Paulk J, Brien GL, Sonnett M, Seo HS, et al. Degradation of the BAF complex factor BRD9 by heterobifunctional ligands. Angew Chem Int Ed Engl. 2017;56(21):5738–43. https://doi.org/10.1002/anie.201611281This study uses the proteolysis-targeting chimeras (PROTACs) technology to develop degraders of BRD9, a component of the SWI/SNF chromatin remodeling complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. •• Brien GL, Remillard D, Shi J, Hemming ML, Chabon J, Wynne K, et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. Elife. 2018;7. https://doi.org/10.7554/eLife.41305This investigation uses BRD9 degraders to demonstrate the potential clinical benefits associated with direct SWI/SNF inhibition in synovial sarcoma.

  169. Farnaby W, Koegl M, Roy MJ, Whitworth C, Diers E, Trainor N, et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat Chem Biol. 2019;15(7):672–80. https://doi.org/10.1038/s41589-019-0294-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sleijfer S, Ray-Coquard I, Papai Z, Le Cesne A, Scurr M, Schoffski P, et al. Pazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: a phase II study from the European organisation for research and treatment of cancer-soft tissue and bone sarcoma group (EORTC study 62043). J Clin Oncol. 2009;27(19):3126–32. https://doi.org/10.1200/JCO.2008.21.3223.

    Article  CAS  PubMed  Google Scholar 

  171. van der Graaf WT, Blay JY, Chawla SP, Kim DW, Bui-Nguyen B, Casali PG, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2012;379(9829):1879–86. https://doi.org/10.1016/S0140-6736(12)60651-5.

    Article  CAS  PubMed  Google Scholar 

  172. Kasper B, Sleijfer S, Litiere S, Marreaud S, Verweij J, Hodge RA, et al. Long-term responders and survivors on pazopanib for advanced soft tissue sarcomas: subanalysis of two European Organisation for Research and Treatment of Cancer (EORTC) clinical trials 62043 and 62072. Ann Oncol. 2014;25(3):719–24. https://doi.org/10.1093/annonc/mdt586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc El Beaino.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sarcomas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Beaino, M., Rassy, E., Hadid, B. et al. Synovial Sarcoma: A Complex Disease with Multifaceted Signaling and Epigenetic Landscapes. Curr Oncol Rep 22, 124 (2020). https://doi.org/10.1007/s11912-020-00985-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11912-020-00985-w

Keywords

Navigation