Management of Adrenocortical Carcinoma

Abstract

Purpose of Review

Adrenocortical carcinoma (ACC) is a rare endocrine malignancy typically with poor prognosis. This review aims to summarize the current knowledge regarding the clinical management of ACC.

Recent Findings

Surgery remains the cornerstone for localized ACC management. In more advanced cases, debulking surgery when feasible can help with hormonal control and may allow the initiation of systemic therapy. Over the last few years, our understanding of ACC molecular pathogenesis has expanded with no significant change in treatment options. Platinum-based chemotherapy is the gold standard in metastatic ACC despite suboptimal efficacy. Tyrosine kinase inhibitor use did not result in meaningful benefit in ACC patients. Multiple clinical trials are currently exploring the role of immunotherapy in ACC.

Summary

Despite the remarkable improvement in our understanding of the molecular signature and pathways in ACC, this knowledge did not yield a major breakthrough in management of advanced ACC. Multi-institutional and international collaborations are needed to identify promising treatments and new therapeutic targets to improve the care of ACC patients.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Else T, et al. Adrenocortical carcinoma. Endocr Rev. 2014;35(2):282–326.

    CAS  PubMed  Google Scholar 

  2. 2.

    Kebebew E, et al. Extent of disease at presentation and outcome for adrenocortical carcinoma: have we made progress? World J Surg. 2006;30(5):872–8.

    PubMed  Google Scholar 

  3. 3.

    Datta J, Roses RE. Surgical management of adrenocortical carcinoma: an evidence-based approach. Surg Oncol Clin N Am. 2016;25(1):153–70.

    PubMed  Google Scholar 

  4. 4.

    Fassnacht M, et al. Limited prognostic value of the 2004 International Union Against Cancer staging classification for adrenocortical carcinoma: proposal for a Revised TNM Classification. Cancer. 2009;115(2):243–50.

    PubMed  Google Scholar 

  5. 5.

    Ayala-Ramirez M, et al. Adrenocortical carcinoma: clinical outcomes and prognosis of 330 patients at a tertiary care center. Eur J Endocrinol. 2013;169(6):891–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Michalkiewicz E, et al. Clinical and outcome characteristics of children with adrenocortical tumors: a report from the International Pediatric Adrenocortical Tumor Registry. J Clin Oncol. 2004;22(5):838–45.

    CAS  PubMed  Google Scholar 

  7. 7.

    Asare EA, et al. A novel staging system for adrenocortical carcinoma better predicts survival in patients with stage I/II disease. Surgery. 2014;156(6):1378–85 discussion 1385–6.

    PubMed  Google Scholar 

  8. 8.

    Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17(4):233–47.

    CAS  PubMed  Google Scholar 

  9. 9.

    Berruti A, et al. Prognostic role of overt hypercortisolism in completely operated patients with adrenocortical cancer. Eur Urol. 2014;65(4):832–8.

    CAS  PubMed  Google Scholar 

  10. 10.

    Jouinot A, Bertherat J. Management of endocrine disease: adrenocortical carcinoma: differentiating the good from the poor prognosis tumors. Eur J Endocrinol. 2018;178(5):R215–30.

    CAS  PubMed  Google Scholar 

  11. 11.

    •• Beuschlein F, et al. Major prognostic role of Ki67 in localized adrenocortical carcinoma after complete resection. J Clin Endocrinol Metab. 2015;100(3):841–9 This work established the significance of Ki67 as a prognostic marker after localized ACC resction and this is now an adopted test by many centers with clinical use to classify ACC patients and determine adjuvant therapy and trial participation.

    CAS  PubMed  Google Scholar 

  12. 12.

    Pinto EM, et al. Genomic landscape of paediatric adrenocortical tumours. Nat Commun. 2015;6:6302.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Miller BS, Else T, Committee AAS. Personalized care of patients with adrenocortical carcinoma: a comprehensive approach. Endocr Pract. 2017;23(6):705–15.

    PubMed  Google Scholar 

  14. 14.

    Assie G, et al. Integrated genomic characterization of adrenocortical carcinoma. Nat Genet. 2014;46(6):607–12.

    CAS  PubMed  Google Scholar 

  15. 15.

    •• Zheng S, et al. Comprehensive pan-genomic characterization of adrenocortical carcinoma. Cancer Cell. 2016;29(5):723–36 A comprehensive genomic analysis that identified 3 ACC subtypes with different outcomes and molecular signature. It also illustrated the underlying pathways and mutations in ACC.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Libe R, et al. Somatic TP53 mutations are relatively rare among adrenocortical cancers with the frequent 17p13 loss of heterozygosity. Clin Cancer Res. 2007;13(3):844–50.

    CAS  PubMed  Google Scholar 

  17. 17.

    Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst. 2000;92(18):1472–89.

    CAS  PubMed  Google Scholar 

  18. 18.

    Lehmann T, Wrzesinski T. The molecular basis of adrenocortical cancer. Cancer Gene Ther. 2012;205(4):131–7.

    CAS  Google Scholar 

  19. 19.

    Giordano TJ, et al. Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am J Pathol. 2003;162(2):521–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Varghese J, Habra MA. Update on adrenocortical carcinoma management and future directions. Curr Opin Endocrinol Diabetes Obes. 2017;24(3):208–14.

    CAS  PubMed  Google Scholar 

  21. 21.

    Kim AC, et al. Targeted disruption of beta-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex. Development. 2008;135(15):2593–602.

    CAS  PubMed  Google Scholar 

  22. 22.

    Mazzuco TL, et al. Genetic aspects of adrenocortical tumours and hyperplasias. Clin Endocrinol. 2012;77(1):1–10.

    CAS  Google Scholar 

  23. 23.

    Gaujoux S, et al. beta-Catenin activation is associated with specific clinical and pathologic characteristics and a poor outcome in adrenocortical carcinoma. Clin Cancer Res. 2011;17(2):328–36.

    CAS  PubMed  Google Scholar 

  24. 24.

    •• Phan LM, et al. Hepatocyte growth factor/cmet pathway activation enhances cancer hallmarks in adrenocortical carcinoma. Cancer Res. 2015;75(19):4131–42 This study explored the roles and contribution of HGF and cMET to ACC resistance to traditional therapy. It also provided preclinical data about the usefulness of targeting cMET as potential ACC therapy.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Dong G, et al. Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma. Cancer Res. 2001;61(15):5911–8.

    CAS  PubMed  Google Scholar 

  26. 26.

    Saucier C, et al. The Shc adaptor protein is critical for VEGF induction by Met/HGF and ErbB2 receptors and for early onset of tumor angiogenesis. Proc Natl Acad Sci U S A. 2004;101(8):2345–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Ando K, et al. Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation. J Biol Chem. 2004;279(24):25549–61.

    CAS  PubMed  Google Scholar 

  28. 28.

    Bourdeau I, MacKenzie-Feder J, Lacroix A. Recent advances in adrenocortical carcinoma in adults. Curr Opin Endocrinol Diabetes Obes. 2013;20(3):192–7.

    CAS  PubMed  Google Scholar 

  29. 29.

    • Fassnacht M, et al. European Society of Endocrinology Clinical Practice Guidelines on the management of adrenocortical carcinoma in adults, in collaboration with the European Network for the study of adrenal tumors. Eur J Endocrinol. 2018; This is a recent comprehensive clinical practice guidelines in managing ACC.

  30. 30.

    Claps M, et al. Adding metyrapone to chemotherapy plus mitotane for Cushing’s syndrome due to advanced adrenocortical carcinoma. Endocrine. 2018;61(1):169–72.

    CAS  PubMed  Google Scholar 

  31. 31.

    Castinetti F, et al. Merits and pitfalls of mifepristone in Cushing’s syndrome. Eur J Endocrinol. 2009;160(6):1003–10.

    CAS  PubMed  Google Scholar 

  32. 32.

    Seccia TM, et al. Aldosterone-producing adrenocortical carcinoma: an unusual cause of Conn’s syndrome with an ominous clinical course. Endocr Relat Cancer. 2005;12(1):149–59.

    PubMed  Google Scholar 

  33. 33.

    Moreno S, et al. Feminizing adreno-cortical carcinomas in male adults. A dire prognosis. Three cases in a series of 801 adrenalectomies and review of the literature. Ann Endocrinol (Paris). 2006;67(1):32–8.

    CAS  Google Scholar 

  34. 34.

    Donatini G, et al. Long-term survival after adrenalectomy for stage I/II adrenocortical carcinoma (ACC): a retrospective comparative cohort study of laparoscopic versus open approach. Ann Surg Oncol. 2014;21(1):284–91.

    PubMed  Google Scholar 

  35. 35.

    Lombardi CP, et al. Open versus endoscopic adrenalectomy in the treatment of localized (stage I/II) adrenocortical carcinoma: results of a multiinstitutional Italian survey. Surgery. 2012;152(6):1158–64.

    PubMed  Google Scholar 

  36. 36.

    Cooper AB, et al. Does laparoscopic adrenalectomy jeopardize oncologic outcomes for patients with adrenocortical carcinoma? Surg Endosc. 2013;27(11):4026–32.

    PubMed  Google Scholar 

  37. 37.

    Gonzalez RJ, et al. Laparoscopic resection of adrenal cortical carcinoma: a cautionary note. Surgery. 2005;138(6):1078–85 discussion 1085–6.

    PubMed  Google Scholar 

  38. 38.

    Miller BS, et al. Resection of adrenocortical carcinoma is less complete and local recurrence occurs sooner and more often after laparoscopic adrenalectomy than after open adrenalectomy. Surgery. 2012;152(6):1150–7.

    PubMed  Google Scholar 

  39. 39.

    Fassnacht M, et al. Management of adrenal incidentalomas: European Society of Endocrinology Clinical Practice Guideline in collaboration with the European Network for the study of adrenal tumors. Eur J Endocrinol. 2016;175(2):G1–G34.

    CAS  PubMed  Google Scholar 

  40. 40.

    Kulke MH, et al. Neuroendocrine tumors. J Natl Compr Cancer Netw. 2012;10(6):724–64.

    CAS  Google Scholar 

  41. 41.

    Gaujoux S, Brennan MF. Recommendation for standardized surgical management of primary adrenocortical carcinoma. Surgery. 2012;152(1):123–32.

    PubMed  Google Scholar 

  42. 42.

    Reibetanz J, et al. Impact of lymphadenectomy on the oncologic outcome of patients with adrenocortical carcinoma. Ann Surg. 2012;255(2):363–9.

    PubMed  Google Scholar 

  43. 43.

    Gerry JM, et al. Lymphadenectomy for adrenocortical carcinoma: is there a therapeutic benefit? Ann Surg Oncol. 2016;23(Suppl 5):708–13.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Bednarski BK, et al. Borderline resectable adrenal cortical carcinoma: a potential role for preoperative chemotherapy. World J Surg. 2014;38(6):1318–27.

    PubMed  Google Scholar 

  45. 45.

    Hermsen IG, et al. Surgery in adrenocortical carcinoma: Importance of national cooperation and centralized surgery. Surgery. 2012;152(1):50–6.

    PubMed  Google Scholar 

  46. 46.

    Tang Y, et al. Benefits of adjuvant mitotane after resection of adrenocortical carcinoma: a systematic review and meta-analysis. Biomed Res Int. 2018;2018:9362108.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    • Berruti A, et al. Long-term outcomes of adjuvant mitotane therapy in patients with radically resected adrenocortical carcinoma. J Clin Endocrinol Metab. 2017;102(4):1358–65 This retrospective study has long follow up and found an improved recurrence free survival in patients treated with adjuvant mitotane after surgery.

    PubMed  Google Scholar 

  48. 48.

    Srougi V, et al. Adjuvant radiotherapy for the primary treatment of adrenocortical carcinoma: Are we offering the best? Int Braz J Urol. 2017;43(5):841–8.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    •• Nelson DW, et al. Adjuvant radiation is associated with improved survival for select patients with non-metastatic adrenocortical carcinoma. Ann Surg Oncol. 2018;25(7):2060–6 Recent retrospective data analysis that found survival benefit with adjuvant radiation therapy only in ACC patients who had positive resection margins.

    PubMed  Google Scholar 

  50. 50.

    Livhits M, et al. Surgery is associated with improved survival for adrenocortical cancer, even in metastatic disease. Surgery. 2014;156(6):1531–40 discussion 1540–1.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Fay AP, et al. Adrenocortical carcinoma: the management of metastatic disease. Crit Rev Oncol Hematol. 2014;92(2):123–32.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Gaujoux S, et al. European Society of Endocrine Surgeons (ESES) and European Network for the Study of Adrenal Tumors (ENSAT) recommendations for the surgical management of adrenocortical carcinoma. Br J Surg. 2017;104(4):358–76.

    CAS  PubMed  Google Scholar 

  53. 53.

    Wang S, et al. Primary site surgery for metastatic adrenocortical carcinoma improves survival outcomes: an analysis of a population-based database. Onco Targets Ther. 2017;10:5311–5.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Megerle F, et al. Mitotane monotherapy in patients with advanced adrenocortical carcinoma. J Clin Endocrinol Metab. 2018;103(4):1686–95.

    PubMed  Google Scholar 

  55. 55.

    Hermsen IG, et al. Plasma concentrations of o,p'DDD, o,p'DDA, and o,p'DDE as predictors of tumor response to mitotane in adrenocortical carcinoma: results of a retrospective ENS@T multicenter study. J Clin Endocrinol Metab. 2011;96(6):1844–51.

    CAS  PubMed  Google Scholar 

  56. 56.

    Fassnacht M, et al. Combination chemotherapy in advanced adrenocortical carcinoma. N Engl J Med. 2012;366(23):2189–97.

    CAS  PubMed  Google Scholar 

  57. 57.

    • Henning JEK, et al. Gemcitabine-based chemotherapy in adrenocortical carcinoma: a multicenter study of efficacy and predictive factors. J Clin Endocrinol Metab. 2017;102(11):4323–32 This study showed a limited clinical benefit of gemcitabine-based chemotherapy in patients with advanced ACC.

    PubMed  Google Scholar 

  58. 58.

    Lerario AM, et al. The combination of insulin-like growth factor receptor 1 (IGF1R) antibody cixutumumab and mitotane as a first-line therapy for patients with recurrent/metastatic adrenocortical carcinoma: a multi-institutional NCI-sponsored trial. Horm Cancer. 2014;5(4):232–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Naing A, et al. Insulin growth factor receptor (IGF-1R) antibody cixutumumab combined with the mTOR inhibitor temsirolimus in patients with metastatic adrenocortical carcinoma. Br J Cancer. 2013;108(4):826–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Haluska P, et al. Safety, tolerability, and pharmacokinetics of the anti-IGF-1R monoclonal antibody figitumumab in patients with refractory adrenocortical carcinoma. Cancer Chemother Pharmacol. 2010;65(4):765–73.

    CAS  PubMed  Google Scholar 

  61. 61.

    Jones RL, et al. Phase I study of intermittent oral dosing of the insulin-like growth factor-1 and insulin receptors inhibitor OSI-906 in patients with advanced solid tumors. Clin Cancer Res. 2015;21(4):693–700.

    CAS  PubMed  Google Scholar 

  62. 62.

    •• Fassnacht M, et al. Linsitinib (OSI-906) versus placebo for patients with locally advanced or metastatic adrenocortical carcinoma: a double-blind, randomized, phase 3 study. Lancet Oncol. 2015;16(4):426–35 This double-blind, randomized, multicenter phase III study did not find a significant improvement in clinical outcomes in ACC patients who received linsitinib vs. placebo. The study was terminated early because of lack of efficacy.

    CAS  PubMed  Google Scholar 

  63. 63.

    Xu YZ, et al. Significance of heparanase-1 and vascular endothelial growth factor in adrenocortical carcinoma angiogenesis: potential for therapy. Endocrine. 2011;40(3):445–51.

    CAS  PubMed  Google Scholar 

  64. 64.

    Rosen LS. Inhibitors of the vascular endothelial growth factor receptor. Hematol Oncol Clin North Am. 2002;16(5):1173–87.

    PubMed  Google Scholar 

  65. 65.

    Wortmann S, et al. Bevacizumab plus capecitabine as a salvage therapy in advanced adrenocortical carcinoma. Eur J Endocrinol. 2010;162(2):349–56.

    CAS  PubMed  Google Scholar 

  66. 66.

    Butler C, Butler WM, Rizvi AA. Sustained remission with the kinase inhibitor sorafenib in stage IV metastatic adrenocortical carcinoma. Endocr Pract. 2010;16(3):441–5.

    PubMed  Google Scholar 

  67. 67.

    Berruti A, et al. Phase II study of weekly paclitaxel and sorafenib as second/third-line therapy in patients with adrenocortical carcinoma. Eur J Endocrinol. 2012;166(3):451–8.

    CAS  PubMed  Google Scholar 

  68. 68.

    Kroiss M, et al. Sunitinib in refractory adrenocortical carcinoma: a phase II, single-arm, open-label trial. J Clin Endocrinol Metab. 2012;97(10):3495–503.

    CAS  PubMed  Google Scholar 

  69. 69.

    Gaccia-Donas J, e.a., Phase II study of dovitinib in first line metastatic or (nonresectable primary) adrenocortical carcinoma (ACC). 2014. SOGUG study 2011–03. JCO 2014. 32(5 s):Suppl; abstr 4588.

  70. 70.

    O’Sullivan C, et al. The VEGF inhibitor axitinib has limited effectiveness as a therapy for adrenocortical cancer. J Clin Endocrinol Metab. 2014;99(4):1291–7.

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Adam P, et al. Epidermal growth factor receptor in adrenocortical tumors: analysis of gene sequence, protein expression and correlation with clinical outcome. Mod Pathol. 2010;23(12):1596–604.

    CAS  PubMed  Google Scholar 

  72. 72.

    Samnotra V, V.-S.R, Fojo AT, Oh WK, LaRocca RV, Ernstoff MS, et al. A phase II trial of gefitinib monotherapy in patients with unresectable adrenocortical carcinoma (ACC). ASCO Meeting Abstracts 2007. 2007;25(18_suppl):15527.

    Google Scholar 

  73. 73.

    Quinkler M, et al. Treatment of advanced adrenocortical carcinoma with erlotinib plus gemcitabine. J Clin Endocrinol Metab. 2008;93(6):2057–62.

    CAS  PubMed  Google Scholar 

  74. 74.

    De Martino MC, et al. The role of mTOR inhibitors in the inhibition of growth and cortisol secretion in human adrenocortical carcinoma cells. Endocr Relat Cancer. 2012;19(3):351–64.

    PubMed  Google Scholar 

  75. 75.

    Ganesan P, et al. Phase I clinical trial of lenalidomide in combination with temsirolimus in patients with advanced cancer. Investig New Drugs. 2013;31(6):1505–13.

    CAS  Google Scholar 

  76. 76.

    Wagle N, et al. Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discov. 2014;4(5):546–53.

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev. 2018;62:50–60.

    CAS  PubMed  Google Scholar 

  78. 78.

    Maharjan R, et al. Comprehensive analysis of CTNNB1 in adrenocortical carcinomas: Identification of novel mutations and correlation to survival. Sci Rep. 2018;8(1):8610.

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Leal LF, et al. Inhibition of the Tcf/beta-catenin complex increases apoptosis and impairs adrenocortical tumor cell proliferation and adrenal steroidogenesis. Oncotarget. 2015;6(40):43016–32.

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Tissier F, et al. Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res. 2005;65(17):7622–7.

    CAS  PubMed  Google Scholar 

  81. 81.

    • Fay AP, et al. Programmed death ligand-1 expression in adrenocortical carcinoma: an exploratory biomarker study. J Immunother Cancer. 2015;3:3 This study is the first to formally explore the expression of select immune markers in ACC.

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Jain M, et al. Interleukin-13 receptor alpha2 is a novel therapeutic target for human adrenocortical carcinoma. Cancer. 2012;118(22):5698–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Liu-Chittenden Y, et al. Phase I trial of systemic intravenous infusion of interleukin-13-pseudomonas exotoxin in patients with metastatic adrenocortical carcinoma. Cancer Med. 2015;4(7):1060–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    • Le Tourneau C, et al. Avelumab in patients with previously treated metastatic adrenocortical carcinoma: phase 1b results from the JAVELIN solid tumor trial. J Immunother Cancer. 2018;6(1):111 A phase Ib trial on the use of the immuntherapy agent, avelumab, a monoclonal antibody that targets PD-L1, in ACC. The response rate was 6% and half of the study participants received mitotane.

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Ludimila Cavalcante, B.A.C., Ricardo Lima Barros Costa, Young Kwang Chae, Alfred Rademaker, Francis J. Giles, Preliminary results from a phase II study of nivolumab for patients with metastatic adrenocortical carcinoma J Clin Oncol 35, no. 7_suppl (March 12,017) 96–96, 2017.

  86. 86.

    Kreissl MC, et al. [(1)(2)(3)I]Iodometomidate imaging in adrenocortical carcinoma. J Clin Endocrinol Metab. 2013;98(7):2755–64.

    CAS  PubMed  Google Scholar 

  87. 87.

    Hahner S, et al. [123 I]Iodometomidate for molecular imaging of adrenocortical cytochrome P450 family 11B enzymes. J Clin Endocrinol Metab. 2008;93(6):2358–65.

    CAS  PubMed  Google Scholar 

  88. 88.

    Hahner S, et al. [131I]iodometomidate for targeted radionuclide therapy of advanced adrenocortical carcinoma. J Clin Endocrinol Metab. 2012;97(3):914–22.

    CAS  PubMed  Google Scholar 

  89. 89.

    Milgrom SA, Goodman KA. The role of radiation therapy in the management of adrenal carcinoma and adrenal metastases. J Surg Oncol. 2012;106(5):647–50.

    PubMed  Google Scholar 

  90. 90.

    Glover AR, et al. Current management options for recurrent adrenocortical carcinoma. Onco Targets Ther. 2013;6:635–43.

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Wood BJ, et al. Radiofrequency ablation of adrenal tumors and adrenocortical carcinoma metastases. Cancer. 2003;97(3):554–60.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mouhammed Amir Habra.

Ethics declarations

Conflict of Interest

Sina Jasim declares that she has no conflict of interest. Mouhammed Amir Habra has received research funding from Exelixis and has received compensation from HRA Pharma and Eisai for service as a consultant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Genitourinary Cancers

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jasim, S., Habra, M.A. Management of Adrenocortical Carcinoma. Curr Oncol Rep 21, 20 (2019). https://doi.org/10.1007/s11912-019-0773-7

Download citation

Keywords

  • Adrenocortical carcinoma
  • Mitotane
  • Targeted therapy
  • Immunotherapy
  • Genomic profiling