Skip to main content
Log in

Toward a Risk-Tailored Therapeutic Policy in Mantle Cell Lymphoma

  • Lymphomas (MR Smith, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Mantle cell lymphoma (MCL) prognosis is strictly related to the characteristics of the disease, which can range from very indolent cases to highly aggressive and refractory ones. Here we will review the current knowledge on MCL biomarkers.

Recent Findings

Biomarker-informed diagnosis is essential for differentiating MCL from other mature B cell tumors. Diagnosis of MCL relies on the identification of the t(11;14) translocation by FISH or the consequently aberrant expression of cyclin D1 by immunohistochemistry. For the few cases staining negative for cyclin D1, SOX11 may help to define the diagnosis. Prognostic biomarkers have been proposed to stratify MCL patients, including baseline clinical aspects (leukemic non-nodal presentation, in situ presentation, Mantle cell International Prognostic Index—MIPI), pathological aspects (blastoid morphology, Ki-67 proliferation index, SOX11 expression), genetic aspects (immunoglobulin gene mutation status, TP53 deletion or mutation, CDKN2A deletion), and depth of response after treatment (PET imaging, molecular minimal residual disease). Such tools are increasingly used as a guide for therapeutic decisions. Watchful waiting approach is recommended for patients harboring favorable clinico-biological features, such as leukemic non-nodal presentation, low MIPI score, non-blastoid disease, low Ki-67 proliferation rate, mutated immunoglobulin genes, and the lack of SOX11 expression. For patients in need of frontline therapy, the decision of whether to undertake intensive regimens is based upon patient’s age and comorbidities. Central nervous system prophylaxis is recommended for cases showing blastoid morphology. The duration of remission is tightly correlated to the depth of response. With the aim of achieving a longer duration of remission and survival, younger patients may pursue more intensive regimens incorporating high-dose cytarabine, followed by myeloablative consolidation chemotherapy, autologous stem cell transplantation, and rituximab maintenance. Older patients could, on the other hand, benefit from lower intensity immunochemotherapy followed or not by a maintenance therapy depending on which frontline regimen is used.

Summary

Despite the identification of several potential useful biomarkers that may inform the treatment decisions and the design of clinical trials, the treatment choice remains nowadays determined by the patient age and fitness rather than by the individual patient characteristics. Tailoring therapy toward a risk-adapted strategy to accommodate the wide spectrum of disease is an urgent challenge, and clinical trials may explore the feasibility of a biomarker-defined therapeutic policy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Swerdlow SH, Campo E, Seto M, Muller-Hermelink HK. Mantle cell lymphoma. In: Swerdlow S, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (revised 4th edition). Lyon: IARC; 2017. p. 285–90.

    Google Scholar 

  2. Barna G, Reiniger L, Tatrai P, Kopper L, Matolcsy A. The cut-off levels of CD23 expression in the differential diagnosis of MCL and CLL. Hematol Oncol. 2008;26(3):167–70.

    Article  Google Scholar 

  3. Jares P, Campo E. Advances in the understanding of mantle cell lymphoma. Br J Haematol. 2008;142:149–65.

    Article  CAS  Google Scholar 

  4. Salaverria I, Royo C, Carvajal-Cuenca A, Clot G, Navarro A, Valera A, et al. CCND2 rearrangements are the most frequent genetic events in cyclin D1(−) mantle cell lymphoma. Blood. 2013;121(8):1394–402.

    Article  CAS  Google Scholar 

  5. Mozos A, Royo C, Hartmann E, De Jong D, Baro C, Valera A, et al. SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype. Haematologica. 2009;94(11):1555–62.

    Article  CAS  Google Scholar 

  6. Metcalf RA, Zhao S, Anderson MW, Lu ZS, Galperin I, Marinelli RJ, et al. Characterization of D-cyclin proteins in hematolymphoid neoplasms: lack of specificity of cyclin-D2 and D3 expression in lymphoma subtypes. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2010;23(3):420–33.

    Article  CAS  Google Scholar 

  7. Dreyling M, Campo E, Hermine O, Jerkeman M, Le Gouill S, Rule S, et al. Newly diagnosed and relapsed mantle cell lymphoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Annals of oncology : official journal of the European Society for Medical Oncology. 2017;28(suppl_4):iv62–71.

    Article  CAS  Google Scholar 

  8. Conconi A, Franceschetti S, Lobetti-Bodoni C, Stathis A, Margiotta-Casaluci G, Ramponi A, et al. Risk factors of central nervous system relapse in mantle cell lymphoma. Leukemia & lymphoma. 2013;54(9):1908–14.

    Article  CAS  Google Scholar 

  9. Ghielmini M, Zucca E. How I treat mantle cell lymphoma. Blood. 2009;114(8):1469–76.

    Article  CAS  Google Scholar 

  10. Hoster E, Dreyling M, Klapper W, Gisselbrecht C, van Hoof A, Kluin-Nelemans HC, et al. A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood. 2008;111(2):558–65.

    Article  CAS  Google Scholar 

  11. Geisler CH, Kolstad A, Laurell A, Raty R, Jerkeman M, Eriksson M, et al. The mantle cell lymphoma international prognostic index (MIPI) is superior to the international prognostic index (IPI) in predicting survival following intensive first-line immunochemotherapy and autologous stem cell transplantation (ASCT). Blood. 2010;115(8):1530–3.

    Article  CAS  Google Scholar 

  12. Hoster E, Klapper W, Hermine O, Kluin-Nelemans HC, Walewski J, van Hoof A, et al. Confirmation of the mantle-cell lymphoma international prognostic index in randomized trials of the European mantle-cell lymphoma network. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2014;32(13):1338–46.

    Article  Google Scholar 

  13. Geisler CH, Kolstad A, Laurell A, Andersen NS, Pedersen LB, Jerkeman M, et al. Long-term progression-free survival of mantle cell lymphoma after intensive front-line immunochemotherapy with in vivo-purged stem cell rescue: a nonrandomized phase 2 multicenter study by the Nordic Lymphoma Group. Blood. 2008;112(7):2687–93.

    Article  CAS  Google Scholar 

  14. Determann O, Hoster E, Ott G, Wolfram Bernd H, Loddenkemper C, Leo Hansmann M, et al. Ki-67 predicts outcome in advanced-stage mantle cell lymphoma patients treated with anti-CD20 immunochemotherapy: results from randomized trials of the European MCL network and the German low grade lymphoma study group. Blood. 2008;111(4):2385–7.

    Article  CAS  Google Scholar 

  15. Merli F, Luminari S, Ilariucci F, Petrini M, Visco C, Ambrosetti A, et al. Rituximab plus HyperCVAD alternating with high dose cytarabine and methotrexate for the initial treatment of patients with mantle cell lymphoma, a multicentre trial from Gruppo Italiano studio Linfomi. Br J Haematol. 2012;156(3):346–53.

    Article  CAS  Google Scholar 

  16. •• Hoster E, Rosenwald A, Berger F, Bernd HW, Hartmann S, Loddenkemper C, et al. Prognostic value of Ki-67 index, cytology, and growth pattern in mantle-cell lymphoma: results from randomized trials of the European mantle cell lymphoma network. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2016;34(12):1386–94. This study aimed at defining the prognostic value of histopathologic prognostic features in MCL. The prognostic role of Ki-67 index was assessed, showing shorter OS (HR, 1.24 for a 10% increase) and PFS (HR, 1.17) for patients with higher Ki-67 rates (30% cutoff value), independent of MIPI score. The modified combination of the Ki-67 index and MIPI separated four groups with 5-year OS of 85%, 72%, 43%, and 17% respectively.

    Article  CAS  Google Scholar 

  17. Cheung M, Abu-Elmagd M, Clevers H, Scotting PJ. Roles of Sox4 in central nervous system development. Brain Res Mol Brain Res. 2000;79(1–2):180–91.

    Article  CAS  Google Scholar 

  18. Vegliante MC, Palomero J, Perez-Galan P, Roue G, Castellano G, Navarro A, et al. SOX11 regulates PAX5 expression and blocks terminal B-cell differentiation in aggressive mantle cell lymphoma. Blood. 2013;121(12):2175–85.

    Article  CAS  Google Scholar 

  19. Navarro A, Clot G, Royo C, Jares P, Hadzidimitriou A, Agathangelidis A, et al. Molecular subsets of mantle cell lymphoma defined by the IGHV mutational status and SOX11 expression have distinct biologic and clinical features. Cancer Res. 2012;72(20):5307–16.

    Article  CAS  Google Scholar 

  20. Fernandez V, Salamero O, Espinet B, Sole F, Royo C, Navarro A, et al. Genomic and gene expression profiling defines indolent forms of mantle cell lymphoma. Cancer Res. 2010;70(4):1408–18.

    Article  CAS  Google Scholar 

  21. Nygren L, Baumgartner Wennerholm S, Klimkowska M, Christensson B, Kimby E, Sander B. Prognostic role of SOX11 in a population-based cohort of mantle cell lymphoma. Blood. 2012;119(18):4215–23.

    Article  CAS  Google Scholar 

  22. Nordstrom L, Sernbo S, Eden P, Gronbaek K, Kolstad A, Raty R, et al. SOX11 and TP53 add prognostic information to MIPI in a homogenously treated cohort of mantle cell lymphoma--a Nordic lymphoma group study. Br J Haematol. 2014;166(1):98–108.

    Article  Google Scholar 

  23. Aukema SM, Hoster E, Rosenwald A, Canoni D, Delfau-Larue MH, Rymkiewicz G, et al. Expression of TP53 is associated with the outcome of MCL independent of MIPI and Ki-67 in trials of the European MCL network. Blood. 2018;131(4):417–20.

    Article  CAS  Google Scholar 

  24. Eskelund CW, Dahl C, Hansen JW, Westman M, Kolstad A, Pedersen LB, et al. TP53 mutations identify younger mantle cell lymphoma patients who do not benefit from intensive chemoimmunotherapy. Blood. 2017;130(17):1903–10.

    Article  CAS  Google Scholar 

  25. Halldorsdottir AM, Lundin A, Murray F, Mansouri L, Knuutila S, Sundstrom C, et al. Impact of TP53 mutation and 17p deletion in mantle cell lymphoma. Leukemia. 2011;25(12):1904–8.

    Article  CAS  Google Scholar 

  26. Delfau-Larue MH, Klapper W, Berger F, Jardin F, Briere J, Salles G, et al. High-dose cytarabine does not overcome the adverse prognostic value of CDKN2A and TP53 deletions in mantle cell lymphoma. Blood. 2015;126(5):604–11.

    Article  CAS  Google Scholar 

  27. Yemelyanova A, Vang R, Kshirsagar M, Lu D, Marks MA, Shih Ie M, et al. Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2011;24(9):1248–53.

    Article  CAS  Google Scholar 

  28. Murnyak B, Hortobagyi T. Immunohistochemical correlates of TP53 somatic mutations in cancer. Oncotarget. 2016;7(40):64910–20.

    Article  Google Scholar 

  29. Pinyol M, Hernandez L, Cazorla M, Balbin M, Jares P, Fernandez PL, et al. Deletions and loss of expression of p16INK4a and p21Waf1 genes are associated with aggressive variants of mantle cell lymphomas. Blood. 1997;89(1):272–80.

    CAS  PubMed  Google Scholar 

  30. Rosenwald A, Wright G, Wiestner A, Chan WC, Connors JM, Campo E, et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell. 2003;3(2):185–97.

    Article  CAS  Google Scholar 

  31. Rubio-Moscardo F, Climent J, Siebert R, Piris MA, Martin-Subero JI, Nielander I, et al. Mantle-cell lymphoma genotypes identified with CGH to BAC microarrays define a leukemic subgroup of disease and predict patient outcome. Blood. 2005;105(11):4445–54.

    Article  CAS  Google Scholar 

  32. Salaverria I, Zettl A, Bea S, Moreno V, Valls J, Hartmann E, et al. Specific secondary genetic alterations in mantle cell lymphoma provide prognostic information independent of the gene expression-based proliferation signature. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2007;25(10):1216–22.

    Article  CAS  Google Scholar 

  33. Katzenberger T, Kienle D, Stilgenbauer S, Holler S, Schilling C, Mader U, et al. Delineation of distinct tumour profiles in mantle cell lymphoma by detailed cytogenetic, interphase genetic and morphological analysis. Br J Haematol. 2008;142(4):538–50.

    Article  Google Scholar 

  34. Wang X, Asplund AC, Porwit A, Flygare J, Smith CI, Christensson B, et al. The subcellular Sox11 distribution pattern identifies subsets of mantle cell lymphoma: correlation to overall survival. Br J Haematol. 2008;143(2):248–52.

    Article  Google Scholar 

  35. Jardin F, Picquenot JM, Parmentier F, Ruminy P, Cornic M, Penther D, et al. Detection of gene copy number aberrations in mantle cell lymphoma by a single quantitative multiplex PCR assay: clinicopathological relevance and prognosis value. Br J Haematol. 2009;146(6):607–18.

    Article  CAS  Google Scholar 

  36. Dreyling MH, Bullinger L, Ott G, Stilgenbauer S, Muller-Hermelink HK, Bentz M, et al. Alterations of the cyclin D1/p16-pRB pathway in mantle cell lymphoma. Cancer Res. 1997;57(20):4608–14.

    CAS  PubMed  Google Scholar 

  37. Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J, et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med. 2011;208(7):1389–401.

    Article  CAS  Google Scholar 

  38. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475(7354):101–5.

    Article  CAS  Google Scholar 

  39. Rossi D, Rasi S, Spina V, Bruscaggin A, Monti S, Ciardullo C, et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood. 2013;121(8):1403–12.

    Article  CAS  Google Scholar 

  40. Rossi D, Spina V, Bomben R, Rasi S, Dal-Bo M, Bruscaggin A, et al. Association between molecular lesions and specific B-cell receptor subsets in chronic lymphocytic leukemia. Blood. 2013;121(24):4902–5.

    Article  CAS  Google Scholar 

  41. Schroeter EH, Kisslinger JA, Kopan R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 1998;393(6683):382–6.

    Article  CAS  Google Scholar 

  42. Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A. Signalling downstream of activated mammalian Notch. Nature. 1995;377(6547):355–8.

    Article  CAS  Google Scholar 

  43. Klinakis A, Szabolcs M, Politi K, Kiaris H, Artavanis-Tsakonas S, Efstratiadis A. Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proc Natl Acad Sci U S A. 2006;103(24):9262–7.

    Article  CAS  Google Scholar 

  44. Pozzo F, Bittolo T, Arruga F, Bulian P, Macor P, Tissino E, et al. NOTCH1 mutations associate with low CD20 level in chronic lymphocytic leukemia: evidence for a NOTCH1 mutation-driven epigenetic dysregulation. Leukemia. 2016;30(1):182–9.

    Article  CAS  Google Scholar 

  45. Pozzo F, Bittolo T, Vendramini E, Bomben R, Bulian P, Rossi FM, et al. NOTCH1-mutated chronic lymphocytic leukemia cells are characterized by a MYC-related overexpression of nucleophosmin 1 and ribosome-associated components. Leukemia. 2017;31(11):2407–15.

    Article  CAS  Google Scholar 

  46. Kridel R, Meissner B, Rogic S, Boyle M, Telenius A, Woolcock B, et al. Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood. 2012;119(9):1963–71.

    Article  CAS  Google Scholar 

  47. Smith SM, Anastasi J, Cohen KS, Godley LA. The impact of MYC expression in lymphoma biology: beyond Burkitt lymphoma. Blood Cells Mol Dis. 2010;45(4):317–23.

    Article  CAS  Google Scholar 

  48. Barrans S, Crouch S, Smith A, Turner K, Owen R, Patmore R, et al. Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2010;28(20):3360–5.

    Article  CAS  Google Scholar 

  49. •• Choe JY, Yun JY, Na HY, Huh J, Shin SJ, Kim HJ, et al. MYC overexpression correlates with MYC amplification or translocation, and is associated with poor prognosis in mantle cell lymphoma. Histopathology. 2016;68(3):442–9. This study assessed the clinical significance of MYC expression and chromosomal aberration in MCL, describing the association of higher MYC expression in blastoid/pleomorphic MCL variants (19%) than in classic MCL (1.9%). MYC overexpression is an independent negative predictor of clinical outcome, with shorter overall survival and progression-free survival.

    Article  Google Scholar 

  50. Oberley MJ, Rajguru SA, Zhang C, Kim K, Shaw GR, Grindle KM, et al. Immunohistochemical evaluation of MYC expression in mantle cell lymphoma. Histopathology. 2013;63(4):499–508.

    PubMed  PubMed Central  Google Scholar 

  51. Chisholm KM, Bangs CD, Bacchi CE, Molina-Kirsch H, Cherry A, Natkunam Y. Expression profiles of MYC protein and MYC gene rearrangement in lymphomas. Am J Surg Pathol. 2015;39(3):294–303.

    Article  Google Scholar 

  52. Sarkozy C, Terre C, Jardin F, Radford I, Roche-Lestienne C, Penther D, et al. Complex karyotype in mantle cell lymphoma is a strong prognostic factor for the time to treatment and overall survival, independent of the MCL international prognostic index. Genes, chromosomes & cancer. 2014;53(1):106–16.

    Article  CAS  Google Scholar 

  53. Hadzidimitriou A, Agathangelidis A, Darzentas N, Murray F, Delfau-Larue MH, Pedersen LB, et al. Is there a role for antigen selection in mantle cell lymphoma? Immunogenetic support from a series of 807 cases. Blood. 2011;118(11):3088–95.

    Article  CAS  Google Scholar 

  54. Orchard J, Garand R, Davis Z, Babbage G, Sahota S, Matutes E, et al. A subset of t(11,14) lymphoma with mantle cell features displays mutated IgVH genes and includes patients with good prognosis, nonnodal disease. Blood. 2003;101(12):4975–81.

    Article  CAS  Google Scholar 

  55. Husby S, Geisler C, Gronbaek K. MicroRNAs in mantle cell lymphoma. Leukemia & lymphoma. 2013;54(9):1867–75.

    Article  CAS  Google Scholar 

  56. Goswami RS, Atenafu EG, Xuan Y, Waldron L, Reis PP, Sun T, et al. MicroRNA signature obtained from the comparison of aggressive with indolent non-Hodgkin lymphomas: potential prognostic value in mantle-cell lymphoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2013;31(23):2903–11.

    Article  Google Scholar 

  57. Navarro A, Clot G, Prieto M, Royo C, Vegliante MC, Amador V, et al. microRNA expression profiles identify subtypes of mantle cell lymphoma with different clinicobiological characteristics. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013;19(12):3121–9.

    Article  CAS  Google Scholar 

  58. Husby S, Ralfkiaer U, Garde C, Zandi R, Ek S, Kolstad A, et al. miR-18b overexpression identifies mantle cell lymphoma patients with poor outcome and improves the MIPI-B prognosticator. Blood. 2015;125(17):2669–77.

    Article  CAS  Google Scholar 

  59. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 2006;25(3):315–22.

    Article  Google Scholar 

  60. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8(8):618–31.

    Article  CAS  Google Scholar 

  61. Allavena P, Mantovani A. Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol. 2012;167(2):195–205.

    Article  CAS  Google Scholar 

  62. Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362(10):875–85.

    Article  CAS  Google Scholar 

  63. Wada N, Zaki MA, Hori Y, Hashimoto K, Tsukaguchi M, Tatsumi Y, et al. Tumour-associated macrophages in diffuse large B-cell lymphoma: a study of the Osaka lymphoma study group. Histopathology. 2012;60(2):313–9.

    Article  Google Scholar 

  64. Farinha P, Masoudi H, Skinnider BF, Shumansky K, Spinelli JJ, Gill K, et al. Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood. 2005;106(6):2169–74.

    Article  CAS  Google Scholar 

  65. Wilcox RA, Ristow K, Habermann TM, Inwards DJ, Micallef IN, Johnston PB, et al. The absolute monocyte and lymphocyte prognostic score predicts survival and identifies high-risk patients in diffuse large-B-cell lymphoma. Leukemia. 2011;25(9):1502–9.

    Article  CAS  Google Scholar 

  66. Wilcox RA, Ristow K, Habermann TM, Inwards DJ, Micallef IN, Johnston PB, et al. The absolute monocyte count is associated with overall survival in patients newly diagnosed with follicular lymphoma. Leukemia & lymphoma. 2012;53(4):575–80.

    Article  Google Scholar 

  67. Porrata LF, Ristow K, Colgan JP, Habermann TM, Witzig TE, Inwards DJ, et al. Peripheral blood lymphocyte/monocyte ratio at diagnosis and survival in classical Hodgkin’s lymphoma. Haematologica. 2012;97(2):262–9.

    Article  Google Scholar 

  68. Koh YW, Kang HJ, Park C, Yoon DH, Kim S, Suh C, et al. Prognostic significance of the ratio of absolute neutrophil count to absolute lymphocyte count in classic Hodgkin lymphoma. Am J Clin Pathol. 2012;138(6):846–54.

    Article  Google Scholar 

  69. Burger JA, Ford RJ. The microenvironment in mantle cell lymphoma: cellular and molecular pathways and emerging targeted therapies. Semin Cancer Biol. 2011;21(5):308–12.

    Article  CAS  Google Scholar 

  70. Coupland SE. The challenge of the microenvironment in B-cell lymphomas. Histopathology. 2011;58(1):69–80.

    Article  Google Scholar 

  71. Koh YW, Shin SJ, Park C, Yoon DH, Suh C, Huh J. Absolute monocyte count predicts overall survival in mantle cell lymphomas: correlation with tumour-associated macrophages. Hematol Oncol. 2014;32(4):178–86.

    Article  CAS  Google Scholar 

  72. von Hohenstaufen KA, Conconi A, de Campos CP, Franceschetti S, Bertoni F, Margiotta Casaluci G, et al. Prognostic impact of monocyte count at presentation in mantle cell lymphoma. Br J Haematol. 2013;162(4):465–73.

    Article  Google Scholar 

  73. Brepoels L, Stroobants S, De Wever W, Dierickx D, Vandenberghe P, Thomas J, et al. Positron emission tomography in mantle cell lymphoma. Leukemia & lymphoma. 2008;49(9):1693–701.

    Article  Google Scholar 

  74. Alavi A, Shrikanthan S, Aydin A, Talanow R, Schuster S. Fluorodeoxyglucose-positron-emission tomography findings in mantle cell lymphoma. Clinical lymphoma, myeloma & leukemia. 2011;11(3):261–6.

    Article  Google Scholar 

  75. Kolstad A, Laurell A, Jerkeman M, Gronbaek K, Elonen E, Raty R, et al. Nordic MCL3 study: 90Y-ibritumomab-tiuxetan added to BEAM/C in non-CR patients before transplant in mantle cell lymphoma. Blood. 2014;123(19):2953–9.

    Article  CAS  Google Scholar 

  76. Magnusson E, Cao Q, Linden MA, Frolich J, Anand V, Burns LJ, et al. Hematopoietic cell transplantation for mantle cell lymphoma: predictive value of pretransplant positron emission tomography/computed tomography and bone marrow evaluations for outcomes. Clinical lymphoma, myeloma & leukemia. 2014;14(2):114–21.

    Article  Google Scholar 

  77. Cohen JB, Hall NC, Ruppert AS, Jones JA, Porcu P, Baiocchi R, et al. Association of pre-transplantation positron emission tomography/computed tomography and outcome in mantle cell lymphoma. Bone Marrow Transplant. 2013;48(9):1212–7.

    Article  CAS  Google Scholar 

  78. Mato AR, Svoboda J, Feldman T, Zielonka T, Agress H, Panush D, et al. Post-treatment (not interim) positron emission tomography-computed tomography scan status is highly predictive of outcome in mantle cell lymphoma patients treated with R-HyperCVAD. Cancer. 2012;118(14):3565–70.

    Article  Google Scholar 

  79. Bodet-Milin C, Touzeau C, Leux C, Sahin M, Moreau A, Maisonneuve H, et al. Prognostic impact of 18F-fluoro-deoxyglucose positron emission tomography in untreated mantle cell lymphoma: a retrospective study from the GOELAMS group. Eur J Nucl Med Mol Imaging. 2010;37(9):1633–42.

    Article  CAS  Google Scholar 

  80. Kedmi M, Avivi I, Ribakovsky E, Benyamini N, Davidson T, Goshen E, et al. Is there a role for therapy response assessment with 2-[fluorine-18] fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography in mantle cell lymphoma? Leukemia & lymphoma. 2014;55(11):2484–9.

    Article  CAS  Google Scholar 

  81. • Lamonica D, Graf DA, Munteanu MC, Czuczman MS. 18F-FDG PET for measurement of response and prediction of outcome to relapsed or refractory mantle cell lymphoma therapy with Bendamustine-rituximab. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2017;58(1):62–8. This is a secondary analysis from a phase II study including relapsed/refractory nonblastoid 32 MCL evaluable patients, treated with 6 courses of bendamustine-rituximab. Complete metabolic response was associated with a greater 1-year progression-free survival of 91.5% (vs. 12.5%), with a longer median duration of response of 20.6 months (vs. 7.8 months), and with an improved overall survival at 1 year.

    Article  CAS  Google Scholar 

  82. Corradini P, Astolfi M, Cherasco C, Ladetto M, Voena C, Caracciolo D, et al. Molecular monitoring of minimal residual disease in follicular and mantle cell non-Hodgkin's lymphomas treated with high-dose chemotherapy and peripheral blood progenitor cell autografting. Blood. 1997;89(2):724–31.

    CAS  Google Scholar 

  83. Andersen NS, Donovan JW, Borus JS, Poor CM, Neuberg D, Aster JC, et al. Failure of immunologic purging in mantle cell lymphoma assessed by polymerase chain reaction detection of minimal residual disease. Blood. 1997;90(10):4212–21.

    CAS  PubMed  Google Scholar 

  84. Pott C, Hoster E, Delfau-Larue MH, Beldjord K, Bottcher S, Asnafi V, et al. Molecular remission is an independent predictor of clinical outcome in patients with mantle cell lymphoma after combined immunochemotherapy: a European MCL intergroup study. Blood. 2010;115(16):3215–23.

    Article  CAS  Google Scholar 

  85. Geisler CH, Kolstad A, Laurell A, Jerkeman M, Raty R, Andersen NS, et al. Nordic MCL2 trial update: six-year follow-up after intensive immunochemotherapy for untreated mantle cell lymphoma followed by BEAM or BEAC + autologous stem-cell support: still very long survival but late relapses do occur. Br J Haematol. 2012;158(3):355–62.

    Article  CAS  Google Scholar 

  86. • Le Gouill S, Thieblemont C, Oberic L, Moreau A, Bouabdallah K, Dartigeas C, et al. Rituximab after autologous stem-cell transplantation in mantle-cell lymphoma. N Engl J Med. 2017;377(13):1250–60. This is a phase III trial aiming at assessing the role of rituximab maintenance (375 mg/m2 every 2 months for 3 years) after transplantation for MCL. The rate of event-free survival at 4 years was 79% for the rituximab arm (vs. 61%), with a progression-free survival at 4 years of 83% (vs. 64%), and an overall survival of 89% (vs. 80%).

    Article  Google Scholar 

  87. Kaplan LD, Jung S-H, Stock W, Bartlett NL, Pitcher B, Byrd JC, et al. Bortezomib maintenance (BM) versus consolidation (BC) following aggressive Immunochemotherapy and autologous stem cell transplant (ASCT) for untreated mantle cell lymphoma (MCL): CALGB (alliance) 50403. Blood. 2015;126(23):337.

    Google Scholar 

  88. Martin P, Chadburn A, Christos P, Weil K, Furman RR, Ruan J, et al. Outcome of deferred initial therapy in mantle-cell lymphoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2009;27(8):1209–13.

    Article  Google Scholar 

  89. Hermine O, Hoster E, Walewski J, Bosly A, Stilgenbauer S, Thieblemont C, et al. Addition of high-dose cytarabine to immunochemotherapy before autologous stem-cell transplantation in patients aged 65 years or younger with mantle cell lymphoma (MCL younger): a randomised, open-label, phase 3 trial of the European mantle cell lymphoma network. Lancet (London, England). 2016;388(10044):565–75.

    Article  CAS  Google Scholar 

  90. Smith MR, Hong F, Li H, Gordon LI, Gascoyne RD, Paietta EM, Advani RH, Forero-Torres A, Horning SJ, Kahl BS Mantle cell lymphoma initial therapy with abbreviated R-CHOP followed by (90)Y-ibritumomab tiuxetan: 10-year follow-up of the phase 2 ECOG-ACRIN study E1499. Leukemia 2017;31(2):517–519.

  91. Dreyling M, Ferrero S. The role of targeted treatment in mantle cell lymphoma: is transplant dead or alive? Haematologica 2016;101(2):104–114.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Cavalli.

Ethics declarations

Conflict of Interest

Adalgisa Condoluci, Davide Rossi, Emanuele Zucca, and Franco Cavalli declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Lymphomas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Condoluci, A., Rossi, D., Zucca, E. et al. Toward a Risk-Tailored Therapeutic Policy in Mantle Cell Lymphoma. Curr Oncol Rep 20, 79 (2018). https://doi.org/10.1007/s11912-018-0728-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-018-0728-4

Keywords

Navigation