Advertisement

Development and Application of Liquid Biopsies in Metastatic Prostate Cancer

  • Gareth J. Morrison
  • Amir Goldkorn
Genitourinary Cancers (DP Petrylak and JW Kim, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Genitourinary Cancers

Abstract

Purpose of Review

Metastatic prostate cancer is a lethal and highly heterogeneous malignancy, associated with a broad spectrum of potentially actionable molecular alterations. In the past decade, disease profiling has expanded to include not only traditional tumor tissue, but also liquid biopsies of cells and genetic material circulating in the blood. These liquid biopsies offer a minimally invasive, repeatable source of tumor material for longitudinal disease profiling but also raise new technical and biological challenges. Here we will summarize recent advances in liquid biopsy strategies and the role they have played in biomarker development and disease management.

Recent Findings

Technologies for analysis of circulating tumor cells (CTCs) continue to evolve rapidly, and the latest high content scanning platforms have underscored the phenotypic heterogeneity of CTC populations. Among liquid biopsies, CTC enumeration remains the most extensively validated prognostic marker to date, but other clinically relevant phenotypes like androgen receptor (AR) localization or presence of AR-V7 splice variant are important new predictors of therapy response. Serial genomic profiling of CTCs or circulating tumor DNA (ctDNA) is helping to define primary and acquired resistance mechanisms and helping to guide patient selection for targeted therapies such as poly(adenosine diphosphate [ADP] ribose) polymerase (PARP) inhibition.

Summary

The era of liquid biopsy-based biomarkers has arrived, driven by powerful new enrichment and analysis techniques. As new blood-based markers are identified, their biological significance as disease drivers must be elucidated to advance new therapeutic strategies, and their clinical impact must be translated through assay standardization, followed by analytical and clinical validation. These efforts, already ongoing on multiple fronts, constitute the critical steps toward more effective precision management of advanced prostate cancer.

Keywords

Circulating tumor DNA Circulating tumor cell Liquid biopsy Prostate cancer Biomarkers Resistance 

Notes

Compliance with Ethical Standards

Conflict of Interest

Gareth J. Morrison and Amir Goldkorn declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Sweeney CJ, Chen YH, Carducci M, Liu G, Jarrard DF, Eisenberger M, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate Cancer. N Engl J Med. 2015;373(8):737–46.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY, et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate Cancer. N Engl J Med. 2017;377(4):352–60.CrossRefPubMedGoogle Scholar
  4. 4.
    James ND, de Bono JS, Spears MR, Clarke NW, Mason MD, Dearnaley DP, et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med. 2017;377(4):338–51.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    The Molecular Taxonomy of Primary Prostate Cancer. Cell. 2015;163(4):1011–25.CrossRefGoogle Scholar
  6. 6.
    •• Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;162(2):454. Whole exome and transcriptome sequencing of metastatic biopsies identify clinically actionable targets enriched in metastatic prostate cancer. CrossRefPubMedGoogle Scholar
  7. 7.
    Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JMC, Papaemmanuil E, et al. The evolutionary history of lethal metastatic prostate cancer. Nature. 2015;520(7547):353–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Boutros PC, Fraser M, Harding NJ, de Borja R, Trudel D, Lalonde E, et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat Genet. 2015;47(7):736–45.CrossRefPubMedGoogle Scholar
  9. 9.
    Cooper CS, Eeles R, Wedge DC, Van Loo P, Gundem G, Alexandrov LB, et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet. 2015;47(4):367–72.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ashworth TR. A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Aust Med J. 1869;14:146–9.Google Scholar
  11. 11.
    de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clinical Cancer Res. 2008;14(19):6302–9.CrossRefGoogle Scholar
  12. 12.
    Winer-Jones JP, Vahidi B, Arquilevich N, Fang C, Ferguson S, Harkins D, et al. Circulating tumor cells: clinically relevant molecular access based on a novel CTC flow cell. PLoS One. 2014;9(1):e86717.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Todenhofer T, Hennenlotter J, Feyerabend S, Aufderklamm S, Mischinger J, Kuhs U, et al. Preliminary experience on the use of the Adnatest(R) system for detection of circulating tumor cells in prostate cancer patients. Anticancer Res. 2012;32(8):3507–13.PubMedGoogle Scholar
  14. 14.
    Sperger JM, Strotman LN, Welsh A, Casavant BP, Chalmers Z, Horn S, et al. Integrated analysis of multiple biomarkers from circulating tumor cells enabled by exclusion-based analyte isolation. Clin Cancer Res 2016.Google Scholar
  15. 15.
    Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014;20(8):897–903.CrossRefPubMedGoogle Scholar
  16. 16.
    Peeters DJ, De Laere B, Van den Eynden GG, Van Laere SJ, Rothe F, Ignatiadis M, et al. Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from CellSearch enriched blood samples using dielectrophoretic cell sorting. Br J Cancer. 2013;108(6):1358–67.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Poklepovic AS, Wan W, Wu W, Woo J, Melnikova V, Jouravleva E, et al. ApoStream, an antibody-independent platform, compared to CellSearch for enumeration of circulating tumor cells (CTCs) in patients with metastatic prostate cancer. J Clin Oncol. 2012;30:abstr e21058.Google Scholar
  18. 18.
    Xu L, Mao X, Imrali A, Syed F, Mutsvangwa K, Berney D, et al. Optimization and evaluation of a novel size based circulating tumor cell isolation system. PLoS One. 2015;10(9):e0138032.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA, Tan DS, et al. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep. 2013;3:1259.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Massard C, Oulhen M, Le Moulec S, Auger N, Foulon S, Abou-Lovergne A, et al. Phenotypic and genetic heterogeneity of tumor tissue and circulating tumor cells in patients with metastatic castration-resistant prostate cancer: a report from the PETRUS prospective study. Oncotarget. 2016;7(34):55069–82.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Goldkorn A, Ely B, Quinn DI, Tangen CM, Fink LM, Xu T, et al. Circulating tumor cell counts are prognostic of overall survival in SWOG S0421: a phase III trial of docetaxel with or without atrasentan for metastatic castration-resistant prostate cancer. J Clin Oncol. 2014;32(11):1136–42.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Xu T, Lu B, Tai YC, Goldkorn A. A cancer detection platform which measures telomerase activity from live circulating tumor cells captured on microfilter. Cancer Res. 2010;70(16):6420–6.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    • Miyamoto DT, Zheng Y, Wittner BS, Lee RJ, Zhu H, Broderick KT, et al. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science (New York, NY). 2015;349(6254):1351–6. Single-CTC RNA-seq implicates novel resistance mechanism. CrossRefGoogle Scholar
  24. 24.
    Kirby BJ, Jodari M, Loftus MS, Gakhar G, Pratt ED, Chanel-Vos C, et al. Functional characterization of circulating tumor cells with a prostate-cancer-specific microfluidic device. PLoS One. 2012;7(4):e35976.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Campton DE, Ramirez AB, Nordberg JJ, Drovetto N, Clein AC, Varshavskaya P, et al. High-recovery visual identification and single-cell retrieval of circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining. BMC Cancer. 2015;15:360.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Werner SL, Graf RP, Landers M, Valenta DT, Schroeder M, Greene SB, et al. Analytical validation and capabilities of the epic CTC platform: enrichment-free circulating tumour cell detection and characterization. J Circ Biomark. 2015;4:3.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Scher HI, Graf RP, Schreiber NA, McLaughlin B, Lu D, Louw J, et al. Nuclear-specific AR-V7 protein localization is necessary to guide treatment selection in metastatic castration-resistant prostate Cancer. Eur Urol. 2017;71(6):874–82.CrossRefPubMedGoogle Scholar
  28. 28.
    Goodman OB Jr, Symanowski JT, Loudyi A, Fink LM, Ward DC, Vogelzang NJ. Circulating tumor cells as a predictive biomarker in patients with hormone-sensitive prostate cancer. Clin Genitourin Cancer. 2011;9(1):31–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Yu EY, Li H, Higano CS, Agarwal N, Pal SK, Alva A, et al. SWOG S0925: a randomized phase II study of androgen deprivation combined with cixutumumab versus androgen deprivation alone in patients with new metastatic hormone-sensitive prostate Cancer. J Clin Oncol. 2015;33(14):1601–8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Goldkorn A, Plets M, Agarwal N, Hussain M, Lara P, Vaena DA, et al. Circulating tumor cells (CTCs) in SWOG S1216: A phase 3 multicenter trial in metastatic hormone sensitive prostate cancer (mHSPC). J Clin Oncol. 2016;34(suppl; abstr 11516).Google Scholar
  31. 31.
    •• Scher HI, Heller G, Molina A, Attard G, Danila DC, Jia X, et al. Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J Clin Oncol. 2015;33(12):1348–55. Utility of CTCs as a surrogate biomarker for survival in mCRPC patients undergoing abiraterone treatment. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lorente D, Olmos D, Mateo J, Bianchini D, Seed G, Fleisher M, et al. Decline in circulating tumor cell count and treatment outcome in advanced prostate cancer. Eur Urol. 2016;70(6):985–92.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Prentice RL. Surrogate endpoints in clinical trials: definition and operational criteria. Stat Med. 1989;8(4):431–40.CrossRefPubMedGoogle Scholar
  34. 34.
    Smerage JB, Barlow WE, Hortobagyi GN, Winer EP, Leyland-Jones B, Srkalovic G, et al. Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J Clin Oncol. 2014;32(31):3483–9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Danila DC, Anand A, Sung CC, Heller G, Leversha MA, Cao L, et al. TMPRSS2-ERG status in circulating tumor cells as a predictive biomarker of sensitivity in castration-resistant prostate cancer patients treated with abiraterone acetate. Eur Urol. 2011;60(5):897–904.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Punnoose EA, Ferraldeschi R, Szafer-Glusman E, Tucker EK, Mohan S, Flohr P, et al. PTEN loss in circulating tumour cells correlates with PTEN loss in fresh tumour tissue from castration-resistant prostate cancer patients. Br J Cancer. 2015;113(8):1225–33.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Goldkorn A, Ely B, Tangen CM, Tai YC, Xu T, Li H, et al. Circulating tumor cell telomerase activity as a prognostic marker for overall survival in SWOG 0421: a phase III metastatic castration resistant prostate cancer trial. Int J Cancer. 2015;136(8):1856–62.CrossRefPubMedGoogle Scholar
  38. 38.
    Satelli A, Batth I, Brownlee Z, Mitra A, Zhou S, Noh H, et al. EMT circulating tumor cells detected by cell-surface vimentin are associated with prostate cancer progression. Oncotarget. 2017;8(30):49329–37.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Beltran H, Jendrisak A, Landers M, Mosquera JM, Kossai M, Louw J, et al. The initial detection and partial characterization of circulating tumor cells in neuroendocrine prostate cancer. Clin Cancer Res. 2016;22(6):1510–9.CrossRefPubMedGoogle Scholar
  40. 40.
    McDaniel AS, Ferraldeschi R, Krupa R, Landers M, Graf R, Louw J, et al. Phenotypic diversity of circulating tumour cells in patients with metastatic castration-resistant prostate cancer. BJU Int. 2016. ;120(5B):E30–E44Google Scholar
  41. 41.
    Scher HI, Graf RP, Schreiber N, McLaughlin B, Jendrisak A, Wang Y, et al. Phenotypic heterogeneity of circulating tumor cells informs clinical decisions between AR signaling inhibitors and taxanes in metastatic prostate cancer. Cancer Res. 2017;77:5687–98.CrossRefPubMedGoogle Scholar
  42. 42.
    Magbanua MJM, Sosa EV, Scott JH, Simko J, Collins C, Pinkel D, et al. Isolation and genomic analysis of circulating tumor cells from castration resistant metastatic prostate cancer. BMC Cancer. 2012;12:78.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Jiang Y, Palma JF, Agus DB, Wang Y, Gross ME. Detection of androgen receptor mutations in circulating tumor cells in castration-resistant prostate cancer. Clin Chem. 2010;56(9):1492–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Darshan MS, Loftus MS, Thadani-Mulero M, Levy BP, Escuin D, Zhou XK, et al. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res. 2011;71(18):6019–29.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Miyamoto DT, Lee RJ, Stott SL, Ting DT, Wittner BS, Ulman M, et al. Androgen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer. Cancer Discov. 2012;2(11):995–1003.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    •• Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Nakazawa M, et al. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol. 2015;1(5):582–91. Potential for predictive treatment biomarker in mCRPC, detection of AR-V7 in CTCs not associated with resistance to taxane chemotherapy. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Onstenk W, Sieuwerts AM, Kraan J, Van M, Nieuweboer AJ, Mathijssen RH, et al. Efficacy of cabazitaxel in castration-resistant prostate cancer is independent of the presence of AR-V7 in circulating tumor cells. Eur Urol. 2015;68(6):939–45.CrossRefPubMedGoogle Scholar
  48. 48.
    Antonarakis ES. Lu C, Luber B, Wang H, Chen Y, Zhu Y, et al. Clinical significance of androgen receptor splice variant-7 mRNA detection in circulating tumor cells of men with metastatic castration-resistant prostate cancer treated with first- and second-line abiraterone and enzalutamide. J Clin Oncol. 2017;35(19):2149–56.CrossRefPubMedGoogle Scholar
  49. 49.
    •• Scher HI, Lu D, Schreiber NA, Louw J, Graf RP, Vargas HA, et al. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol. 2016;2(11):1441–9. Nuclear AR-V7 expression in mCRPC CTCs associated with better survival on chemotherapy versus novel anti-androgen therapy. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    De Laere B, van Dam PJ, Whitington T, Mayrhofer M, Diaz EH, Van den Eynden G, et al. Comprehensive profiling of the androgen receptor in liquid biopsies from castration-resistant prostate cancer reveals novel intra-AR structural variation and splice variant expression patterns. Eur Urol. 2017;72(2):192–200.CrossRefPubMedGoogle Scholar
  51. 51.
    Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P, et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol. 2014;32(5):479–84.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Greene SB, Dago AE, Leitz LJ, Wang Y, Lee J, Werner SL, et al. Chromosomal instability estimation based on next generation sequencing and single cell genome wide copy number variation analysis. PLoS One. 2016;11(11):e0165089.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jiang R, Lu YT, Ho H, Li B, Chen JF, Lin M, et al. A comparison of isolated circulating tumor cells and tissue biopsies using whole-genome sequencing in prostate cancer. Oncotarget. 2015;6(42):44781–93.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Cann GM, Gulzar ZG, Cooper S, Li R, Luo S, Tat M, et al. mRNA-Seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer. PLoS One. 2012;7(11):e49144.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Gorges TM, Kuske A, Rock K, Mauermann O, Muller V, Peine S, et al. Accession of tumor heterogeneity by multiplex transcriptome profiling of single circulating tumor cells. Clin Chem. 2016;62(11):1504–15.CrossRefPubMedGoogle Scholar
  56. 56.
    Danila DC, Anand A, Schultz N, Heller G, Wan M, Sung CC, et al. Analytic and clinical validation of a prostate cancer-enhanced messenger RNA detection assay in whole blood as a prognostic biomarker for survival. Eur Urol. 2014;65(6):1191–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Danila DC, Samoila A, Patel C, Schreiber N, Herkal A, Anand A, et al. Clinical validity of detecting circulating tumor cells by AdnaTest assay compared with direct detection of tumor mRNA in stabilized whole blood, as a biomarker predicting overall survival for metastatic castration-resistant prostate cancer patients. Cancer J (Sudbury, Mass). 2016;22(5):315–20.CrossRefGoogle Scholar
  58. 58.
    Olmos D, Brewer D, Clark J, Danila DC, Parker C, Attard G, et al. Prognostic value of blood mRNA expression signatures in castration-resistant prostate cancer: a prospective, two-stage study. Lancet Oncol. 2012;13(11):1114–24.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ross RW, Galsky MD, Scher HI, Magidson J, Wassmann K, Lee GS, et al. A whole-blood RNA transcript-based prognostic model in men with castration-resistant prostate cancer: a prospective study. Lancet Oncol. 2012;13(11):1105–13.CrossRefPubMedGoogle Scholar
  60. 60.
    Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell. 2014;159(1):176–87.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–86.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    • Ulz P, Belic J, Graf R, Auer M, Lafer I, Fischereder K, et al. Whole-genome plasma sequencing reveals focal amplifications as a driving force in metastatic prostate cancer. Nat Commun. 2016;7:12008. Whole-genome sequencing analysis of ctDNA from mCRPC patients reveals driver mutations. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    •• Carreira S, Romanel A, Goodall J, Grist E, Ferraldeschi R, Miranda S, et al. Tumor clone dynamics in lethal prostate cancer. Sci Transl Med. 2014;6(254):254ra125. Longitudinal monitoring of mCRPC plasma samples identified temporal abiraterone associated resistance mechanism. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    •• Romanel A, Gasi Tandefelt D, Conteduca V, Jayaram A, Casiraghi N, Wetterskog D, et al. Plasma AR and abiraterone-resistant prostate cancer. Sci Transl Med. 2015;7(312):312re10. Plasma next generation sequencing identified AR gain, T878A and L702H mutations as primary abiraterone resistance mechanism. CrossRefPubMedGoogle Scholar
  65. 65.
    Wyatt AW, Annala M, Aggarwal R, Beja K, Feng F, Youngren J, et al. Concordance of circulating tumor DNA and matched metastatic tissue biopsy in prostate cancer. JNCI: J Natl Cancer Inst. 2017;109(12).Google Scholar
  66. 66.
    Conteduca V, Wetterskog D, Sharabiani MTA, Grande E, Fernandez-Perez MP, Jayaram A, et al. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: a multi-institution correlative biomarker study. Ann Oncol. 2017;28(7):1508–16.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lallous N, Volik SV, Awrey S, Leblanc E, Tse R, Murillo J, et al. Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol. 2016;17:10.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wyatt AW, Azad AA, Volik SV, Annala M, Beja K, McConeghy B, et al. Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol. 2016;2(12):1598–606.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    • Azad AA, Volik SV, Wyatt AW, Haegert A, Le Bihan S, Bell RH, et al. Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res. 2015;21(10):2315–24. Comprehensive cfDNA sequencing of AR exon 8 and AR copy number analysis identified resistance mechanisms to novel anti-androgens. CrossRefPubMedGoogle Scholar
  70. 70.
    • Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 2016;375(5):443–53. Study determining the frequency of DNA-repair germline mutations in mCRPC. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kumar A, Coleman I, Morrissey C, Zhang X, True LD, Gulati R, et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med. 2016;22(4):369–78.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Mateo J, Boysen G, Barbieri CE, Bryant HE, Castro E, Nelson PS, et al. DNA repair in prostate cancer: biology and clinical implications. Eur Urol. 2017;71(3):417–25.CrossRefPubMedGoogle Scholar
  73. 73.
    Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–34.CrossRefPubMedGoogle Scholar
  74. 74.
    •• Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015;373(18):1697–708. Clinical study evaluating the efficacy of PARP inhibitor olaparib in mCPRC patients, identifying high response rates in patients with deficient DNA-repair. CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Goodall J, Mateo J, Yuan W, Mossop H, Porta N, Miranda S, et al. Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov. 2017;7(9):1006–17.CrossRefPubMedGoogle Scholar
  76. 76.
    Annala M, Struss WJ, Warner EW, Beja K, Vandekerkhove G, Wong A, et al. Treatment outcomes and tumor loss of heterozygosity in germline DNA repair-deficient prostate cancer. Eur Urol. 2017;72(1):34–42.CrossRefPubMedGoogle Scholar
  77. 77.
    Minciacchi VR, Zijlstra A, Rubin MA, Di Vizio D. Extracellular vesicles for liquid biopsy in prostate cancer: where are we and where are we headed? Prostate Cancer Prostatic Dis. 2017;20(3):251–8.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Soekmadji C, Corcoran NM, Oleinikova I, Jovanovic L, Ramm GA, Nelson CC, et al. Extracellular vesicles for personalized therapy decision support in advanced metastatic cancers and its potential impact for prostate cancer. Prostate. 2017;77(14):1416–23.CrossRefPubMedGoogle Scholar
  79. 79.
    Di Vizio D, Morello M, Dudley AC, Schow PW, Adam RM, Morley S, et al. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol. 2012;181(5):1573–84.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Minciacchi VR, Spinelli C, Reis-Sobreiro M, Cavallini L, You S, Zandian M, et al. MYC mediates large oncosome-induced fibroblast reprogramming in prostate cancer. Cancer Res. 2017;77(9):2306–17.CrossRefPubMedGoogle Scholar
  81. 81.
    Del Re M, Biasco E, Crucitta S, Derosa L, Rofi E, Orlandini C, et al. The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNA strongly predicts resistance to hormonal therapy in metastatic prostate cancer patients. Eur Urol. 2017;71(4):680–7.CrossRefPubMedGoogle Scholar
  82. 82.
    Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol. 2015;67(1):33–41.CrossRefPubMedGoogle Scholar
  83. 83.
    Lin HM, Castillo L, Mahon KL, Chiam K, Lee BY, Nguyen Q, et al. Circulating microRNAs are associated with docetaxel chemotherapy outcome in castration-resistant prostate cancer. Br J Cancer. 2014;110(10):2462–71.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations