Advertisement

Targeted Agents in Cervical Cancer: Beyond Bevacizumab

  • Gloria Marquina
  • Aranzazu Manzano
  • Antonio Casado
Gynecologic Cancers (NS Reed, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Gynecologic Cancers

Abstract

Cervical cancer constitutes a leading cause of morbidity and cancer deaths in women throughout the world. Approximately two thirds of the patients are diagnosed with locally advanced cervical cancer, showing disappointing survival rates despite correct multidisciplinary management. Metastatic disease implies a poor prognosis itself since diagnosis. Platinum-based chemotherapy has been the backbone treatment of metastatic cervical cancer for years with no major outstanding improvements on survival. The addition of new molecules, such as antiangiogenic agents, dramatically changed the treatment of this disease. Bevacizumab, an antiangiogenic agent that targets vascular endothelial growth factor 2 (VEGF-2), added to standard chemotherapy in cervical cancer showed significant improvement on survival; therefore, the combination of carboplatin, paclitaxel, and bevacizumab is currently the standard frontline treatment in cervical cancer. Other antiangiogenic agents have been tested in this disease with no further development nor approvals. New compounds are currently being under development with promising results in this disease as well as a number of new strategies that could potentially fulfill the unmet need of establishing effective therapeutic approaches in cervical cancer.

Keywords

Cervical carcinoma Advanced disease Bevacizumab Antiangiogenic Targeted therapy Targeted agents Immunotherapy Novel agents 

Notes

Compliance with Ethical Standards

Conflict of Interest

Gloria Marquina, Arancha Manzano, and Antonio Casado declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as:• Of importance •• Of major importance

  1. 1.
    Paavonen J. Human papillomavirus infection and the development of cervical cancer and related genital neoplasias. Int J Infect Dis. 2007;11(Suppl 2):S3–9.  https://doi.org/10.1016/S1201-9712(07)60015-0.CrossRefPubMedGoogle Scholar
  2. 2.
    Parkin DM, Bray F, Ferley J, et al. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.CrossRefPubMedGoogle Scholar
  3. 3.
    Waggoner SE. Cervical cancer. Lancet. 2003;361(9376):2217–25.  https://doi.org/10.1016/S0140-6736(03)13778-6.CrossRefPubMedGoogle Scholar
  4. 4.
    Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9.  https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F.CrossRefPubMedGoogle Scholar
  5. 5.
    Wolf JK, Ramirez PT. The molecular biology of cervical cancer. Cancer Investig. 2001;19(6):621–9.  https://doi.org/10.1081/CNV-100104290.CrossRefGoogle Scholar
  6. 6.
    Wolf JK, Franco EL, Arbeit JM, Shroyer KR, Wu TC, Runowicz CD, et al. Innovations in understanding the biology of cervical cancer. Cancer. 2003;98(9 Suppl):2064–9.  https://doi.org/10.1002/cncr.11682.CrossRefPubMedGoogle Scholar
  7. 7.
    de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11(11):1048–56.  https://doi.org/10.1016/S1470-2045(10)70230-8.CrossRefPubMedGoogle Scholar
  8. 8.
    Li N, Franceschi S, Howell-Jones R, Snijders PJ, Clifford GM, et al. Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: variation by geographical region, histological type and year of publication. Int J Cancer. 2011;128(4):927–35.  https://doi.org/10.1002/ijc.25396.CrossRefPubMedGoogle Scholar
  9. 9.
    Monk BJ, Willmott LJ, Sumner DA. Anti-angiogenesis agents in metastatic or recurrent cervical cancer. Gynecol Oncol. 2010;116(2):181–6.  https://doi.org/10.1016/j.ygyno.2009.09.033.CrossRefPubMedGoogle Scholar
  10. 10.
    Wright JD, Viviano D, Powell MA, Gibb RK, Mutch DG, Grigsby PW, et al. Bevacizumab combination therapy in heavily pretreated, recurrent cervical cancer. Gynecol Oncol. 2006;103(2):489–93.  https://doi.org/10.1016/j.ygyno.2006.03.023.CrossRefPubMedGoogle Scholar
  11. 11.
    Gaffney DK, Haslam D, Tsodikov A, Hammond E, Seaman J, Holden J, et al. Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) negatively affect overall survival in carcinoma of the cervix treated with radiotherapy. Int J Radiat Oncol Biol Phys. 2003;56(4):922–8.  https://doi.org/10.1016/S0360-3016(03)00209-8.CrossRefPubMedGoogle Scholar
  12. 12.
    Lee IJ, Park KR, Lee KK, Song JS, Lee KG, Lee JY, et al. Prognostic value of vascular endothelial growth factor in stage IB carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys. 2002;54(3):768–79.  https://doi.org/10.1016/S0360-3016(02)02970-X.CrossRefPubMedGoogle Scholar
  13. 13.
    Thigpen T, Shingleton H, Homesley H, LaGasse L, Blessing J. Cis-dichlorodiammineplatinum (II) in the treatment of gynecologic malignancies: phase II trials by the Gynecologic Oncology Group. Cancer Treat Rep. 1979;63(9–10):1549–55.PubMedGoogle Scholar
  14. 14.
    Bonomi P, Blessing JA, Stehman FB, DiSaia PJ, Walton L, Major FJ. Randomized trial of three cisplatin dose schedules in squamous-cell carcinoma of the cervix: a Gynecologic Oncology Group study. J Clin Oncol. 1985;3(8):1079–85.  https://doi.org/10.1200/JCO.1985.3.8.1079.CrossRefPubMedGoogle Scholar
  15. 15.
    Omura GA, Blessing JA, Vaccarello L, Berman ML, Clarke-Pearson DL, Mutch DG, et al. Randomized trial of cisplatin versus cisplatin plus mitolactol versus cisplatin plus ifosfamide in advanced squamous carcinoma of the cervix: a Gynecologic Oncology Group study. J Clin Oncol. 1997;15(1):165–71.  https://doi.org/10.1200/JCO.1997.15.1.165.CrossRefPubMedGoogle Scholar
  16. 16.
    Moore DH, Blessing JA, McQuellon RP, Thaler HT, Cella D, Benda J, et al. Phase III study of cisplatin with or without paclitaxel in stage IVB, recurrent, or persistent squamous cell carcinoma of the cervix: a gynecologic oncology group study. J Clin Oncol. 2004;22(15):3113–9.  https://doi.org/10.1200/JCO.2004.04.170.CrossRefPubMedGoogle Scholar
  17. 17.
    Long HJ, Bundy BN, Grendys EC Jr, Benda JA, McMeekin DS, Sorosky J, et al. Randomized phase III trial of cisplatin with or without topotecan in carcinoma of the uterine cervix: a Gynecologic Oncology Group Study. J Clin Oncol. 2005;23(21):4626–33.  https://doi.org/10.1200/JCO.2005.10.021.CrossRefPubMedGoogle Scholar
  18. 18.
    Monk BJ, Sill MW, McMeekin S. Phase III trial of four cisplatin-containing doublet combinations in stage IVB, recurrent, or persistent cervical carcinoma: a Gynecologic Oncology Group study. J Clin Oncol. 2009;27(28):4649–55.  https://doi.org/10.1200/JCO.2009.21.8909.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    • Kitagawa R, Katsumata N, Shibata T, Kamura T, Kasamatsu T, Nakanishi T, et al. Paclitaxel plus carboplatin versus paclitaxel plus cisplatin in metastatic or recurrent cervical cancer: the open-label randomized phase III trial JCOG0505. J Clin Oncol. 2015;33(19):2129–35. Carboplatin-paclitaxel not inferior to Cisplatin-paclitaxel.  https://doi.org/10.1200/JCO.2014.58.4391.CrossRefPubMedGoogle Scholar
  20. 20.
    •• Sagae S, Monk BJ, Pujade-Lauraine E, Gaffney DK, Narayan K, Ryu SY, et al. Advances and concepts in cervical cancer trials: a road map for the future. Int J Gynecol Cancer. 2016;26(1):199–207. Multidisciplinary international brain storming meeting to identify areas of priority in research.  https://doi.org/10.1097/IGC.0000000000000587.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Monk BJ, Sill MW, Burger RA, Gray HJ, Buekers TE, Roman LD. Phase II trial of bevacizumab in the treatment of persistent or recurrent squamous cell carcinoma of the cervix: a gynecologic oncology group study. J Clin Oncol. 2009;27(7):1069–74.  https://doi.org/10.1200/JCO.2008.18.9043.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    •• Tewari KS, Sill MW, Penson RT, Huang H, Ramondetta LM, Landrum LM et al. Bevacizumab for advanced cervical cancer: final overall survival and adverse event analysis of a randomized, controlled, open-label, phase 3 trial (Gynecologic Oncology Group 240). Lancet. 2017; 390(10130):1654-63. First phase 3 study showing increased overall survival adding bevacizumab to standard chemotherapy in cervical carcinoma. Google Scholar
  23. 23.
    Monk BJ, Mas Lopez L, Zarba JJ, Oaknin A, Tarpin C, Termrungruanglert W, et al. Phase II, open-label study of pazopanib or lapatinib monotherapy compared with pazopanib plus lapatinib combination therapy in patients with advanced and recurrent cervical cancer. J Clin Oncol. 2010;28(22):3562–9.  https://doi.org/10.1200/JCO.2009.26.9571.CrossRefPubMedGoogle Scholar
  24. 24.
    Monk BJ, Pandite LN. Survival data from a phase II, open-label study of pazopanib or lapatinib monotherapy in patients with advanced and recurrent cervical cancer. J Clin Oncol. 2011;29(36):4845.  https://doi.org/10.1200/JCO.2011.38.8777.CrossRefPubMedGoogle Scholar
  25. 25.
    Symonds RP, Gourley C, Davidson S, Carty K, McCartney E, Rai D, et al. Cediranib combined with carboplatin and paclitaxel in patients with metastatic or recurrent cervical cancer (CIRCCa): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Oncol. 2015;16(15):1515–24.  https://doi.org/10.1016/S1470-2045(15)00220-X.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    McLachlan J, Boussios S, Okines A, Glaessgen D, Bodlar S, Kalaitzaki R et al. The impact of systemic therapy beyond first-line treatment for advanced cervical cancer. Clin Oncol (R Coll Radiol). 2017;29(3):153-60.Google Scholar
  27. 27.
    NCT02009579. Available at: htpp//clinicaltrials.gov. Accessed 3 Nov 2017.Google Scholar
  28. 28.
    Mackay HJ, Tinker A, Winquist E, Thomas G, Swenerton K, Oza A, et al. A phase II study of sunitinib in patients with locally advanced or metastatic cervical carcinoma: NCIC CTG trial IND.184. Gynecol Oncol. 2010;116(2):163–7.  https://doi.org/10.1016/j.ygyno.2009.08.012.CrossRefPubMedGoogle Scholar
  29. 29.
    Gadducci A, Lanfredini N, Sergiampietri C. Antiangiogenic agents in gynecological cancer: state of art and perspectives of clinical research. Crit Rev Oncol Hematol. 2015;96(1):113–28.  https://doi.org/10.1016/j.critrevonc.2015.05.009.CrossRefPubMedGoogle Scholar
  30. 30.
    Piersma SJ. Immunosuppressive tumor microenvironment in cervical cancer patients. Cancer Microenviron. 2011;4(3):361–75.  https://doi.org/10.1007/s12307-011-0066-7.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    •• Menderes G, Black J, Schwab CL, Santin AD. Immunotherapy and targeted therapy for cervical cancer: an update. Expert Rev Anticancer Ther. 2016;16(1):83–98. Review of immunotherapy approaches in cervical carcinoma.  https://doi.org/10.1586/14737140.2016.1121108.CrossRefPubMedGoogle Scholar
  32. 32.
    Cortes-Perez NG, Azevedo V, Alcocer-Gonzalez JM, Rodriguez-Padilla C, Tamez-Guerra RS, Corthier G, et al. Cell-surface display of E7 antigen from human papillomavirus type-16 in Lactococcus lactis and in Lactobacillus plantarum using a new cell- wall anchor from lactobacilli. J Drug Target. 2005;13(2):89–98.  https://doi.org/10.1080/10611860400024219.CrossRefPubMedGoogle Scholar
  33. 33.
    Echchannaoui H, Bianchi M, Baud D, Bobst M, Stehle JC, Nardelli-Haefliger D. Intravaginal immunization of mice with recombinant Salmonella enterica serovar Typhimurium expressing human papillomavirus type 16 antigens as a potential route of vaccination against cervical cancer. Infect Immun. 2008;76(55):1940–51.  https://doi.org/10.1128/IAI.01484-07.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wallecha A, French C, Petit R, Singh R, Amin A, Rothman J. Lm-LLO-based immunotherapies and HPV-associated disease. J Oncol. 2012;2012:542851.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Maciag PC, Radulovic S, Rothman J. The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine. 2009;27(30):3975–83.  https://doi.org/10.1016/j.vaccine.2009.04.041.CrossRefPubMedGoogle Scholar
  36. 36.
    Petit RG, Basu P. ADXS11-001 immunotherapy targeting HPV-E7: updated survival and safety data from a phase 2 study in Indian women with recurrent/refractory cervical cancer. Journal for ImmunoTherapy of Cancer. 2013;1(Suppl 1):P231.  https://doi.org/10.1186/2051-1426-1-S1-P231.CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kaufmann AM, Stern PL, Rankin EM, Sommer H, Nuessler V, Schneider A, et al. Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin Cancer Res. 2002;8(12):3676–85.PubMedGoogle Scholar
  38. 38.
    Yang W, Song Y, Lu YL, Wang HW. Increased expression of programmed death (PD)-1 and its ligand PD-L1 correlates with impaired cell-mediated immunity in high-risk human papillomavirus-related cervical intraepithelial neoplasia. Immunology. 2013;139(4):513–22.  https://doi.org/10.1111/imm.12101.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Calarota SA, Weiner DB. Enhancement of human immunodeficiency virus type 1-DNA vaccine potency through incorporation of T-helper 1 molecular adjuvants. Immunol Rev. 2004;199(1):84–99.  https://doi.org/10.1111/j.0105-2896.2004.00150.x.CrossRefPubMedGoogle Scholar
  40. 40.
    •• Stevanovic S, Draper LM, Langman MM, Campbell TE, Kwong ML, Wunderlich JR, et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus–targeted tumor-infiltrating T cells. J Clin Oncol. 2015;33(14):1543–50. First adoptive T-cell therapy published in cervical carcinoma.  https://doi.org/10.1200/JCO.2014.58.9093.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    •• Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I, Pugh TJ, et al. Landscape of genomic alterations in cervical carcinomas. Nature. 2014;506(7488):371–5. Genome sequencing in cervical carcinoma identifying potential targets.  https://doi.org/10.1038/nature12881.CrossRefPubMedGoogle Scholar
  42. 42.
    Basu P, Jenson AB, Majhi T, Choudhury P, Mandal R, Banerjee D, et al. Phase 2 randomized controlled trial of radiation therapy plus concurrent interferon-alpha and retinoic acid versus cisplatin for stage III cervical carcinoma. Int J Radiat Oncol Biol Phys. 2016;94(1):102–10.  https://doi.org/10.1016/j.ijrobp.2015.09.040.CrossRefPubMedGoogle Scholar
  43. 43.
    Song M, DiPaola RS, Cracchiolo BM, Gibbon DG, Hellmann M, Nieves-Neira W, et al. Phase 2 trial of paclitaxel, 13-cis retinoic acid, and interferon alfa-2b in the treatment of advanced stage or recurrent cervical cancer. Int J Gynecol Cancer. 2014;24(9):1636–41.  https://doi.org/10.1097/IGC.0000000000000258.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kersemaekers AM, Fleuren GJ, Kenter GG, van den Broek L, Uljee SM, Hermans J, et al. Oncogene alterations in carci- nomas of the uterine cervix: overexpression of the epidermal growth factor receptor is associated with poor prognosis. Clin Cancer Res. 1999;5(3):577–86.PubMedGoogle Scholar
  45. 45.
    Santin AD, Sill MW, McMeekin DS, Leitao MM Jr, Brown J, Sutton GP, et al. Phase II trial of cetuximab in the treatment of persistent or recurrent squamous or non-squamous cell carcinoma of the cervix: a Gynecologic Oncology Group study. Gynecol Oncol. 2011;122(3):495–500.  https://doi.org/10.1016/j.ygyno.2011.05.040.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Goncalves A, Fabbro M, Lhomme C, Gladieff L, Extra JM, Floquet A, et al. A phase II trial to evaluate gefitinib as second- or third-line treatment in patients with recurring locoregionally advanced or metastatic cervical cancer. Gynecol Oncol. 2008;108(1):42–6.  https://doi.org/10.1016/j.ygyno.2007.07.057.CrossRefPubMedGoogle Scholar
  47. 47.
    Schilder RJ, Sill MW, Lee YC, Mannel R, et al. A phase II trial of erlotinib in recurrent squamous cell carcinoma of the cervix: a Gynecologic Oncology Group study. Int J Gynecol Cancer. 2009;19(5):929–33.  https://doi.org/10.1111/IGC.0b013e3181a83467.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tinker AV, Ellard S, Welch S, Moens F, Allo G, Tsao MS, et al. Phase II study of temsirolimus (CCI-779) in women with recurrent, unresectable, locally advanced or metastatic carcinoma of the cervix. A trial of the NCIC Clinical Trials Group (NCIC CTG IND 199). Gynecol Oncol. 2013;130(2):269–74.  https://doi.org/10.1016/j.ygyno.2013.05.008.CrossRefPubMedGoogle Scholar
  49. 49.
    Mcintyre JB, Wu JS, Craighead PS, et al. PIK3CA mutational status and overall survival in patients with cervical cancer treated with radical chemoradiotherapy. Gyn Oncol. 2013;128(3):409–14.  https://doi.org/10.1016/j.ygyno.2012.12.019.CrossRefGoogle Scholar
  50. 50.
    Fukushima M, Kuzuya K, Ota K, Ikai K. Poly (ADP-ribose) synthesis in human cervical cancer cell- diagnostic cytological usefulness. Cancer Lett. 1981;14(3):227–36.  https://doi.org/10.1016/0304-3835(81)90148-8.CrossRefPubMedGoogle Scholar
  51. 51.
    Kunos C, Deng W, Dawson D, Lea JS, Zanotti KM, Gray HJ, et al. A phase I-II evaluation of veliparib (NS737664), topotecan, and filgrastim or pegfilgrastim in the treatment of persistent or recurrent carcinoma of the cervix. Int J Gynecol Cancer. 2015;25(3):484–92.  https://doi.org/10.1097/IGC.0000000000000380.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Thaker PH, Brady WE, Lankes HA, Cohn DE, Aghajanian C, Gardner Mutch D, et al. Limited access phase I trial of paclitaxel, cisplatin and ABT-888 in the treatment of advanced, persistent, or recurrent carcinoma of the cervix: an NRG/GOG study. ASCO. 2015.Google Scholar
  53. 53.
    Burova E, Hermann A, Waite J, Potocky T, Lai V, Hong S, et al. Characterization of the anti-PD-1 antibody REGN2810 and its antitumor activity in human PD-1 knock-in mice. Mol Cancer Ther. 2017;16(5):861–70.  https://doi.org/10.1158/1535-7163.MCT-16-0665.CrossRefPubMedGoogle Scholar
  54. 54.
    Breij ECW, de Goeij BECG, Verploegen S, Schuurhuis DH, Amirkhosravi A, Francis J, et al. An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors. Cancer Res. 2013;74(4):1214–26.  https://doi.org/10.1158/0008-5472.CAN-13-2440.CrossRefPubMedGoogle Scholar
  55. 55.
    Huang RY, Francois A, McGray AJR, et al. Compensatory upregulation of PD-1, LAG-3, and CTL-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology. 2017;6(1):e1249561.  https://doi.org/10.1080/2162402X.2016.1249561.CrossRefPubMedGoogle Scholar
  56. 56.
    Anderson AC. Tim-3: an emerging target in the cancer immunotherapy landscape. Cancer Immunol Res. 2014;2(5):393–8.  https://doi.org/10.1158/2326-6066.CIR-14-0039.CrossRefPubMedGoogle Scholar
  57. 57.
    Ding H, Cai J, Mao M, Fang Y, Huang Z, Jia J, et al. Tumor-associated macrophages induce lymphangiogenesis in cervical cancer via interaction with tumor cells. APMIS. 2014;122(11):1059–69.  https://doi.org/10.1111/apm.12257.PubMedGoogle Scholar
  58. 58.
    Utrera-Barillas D, Castro Manreza M, Castellanos E, et al. The role of macrophages and mast cells in lymphangiogenesis and angiogenesis in cervical carcinogenesis. Exp Mol Pathol. 2010;89(2):190–6.  https://doi.org/10.1016/j.yexmp.2010.06.002.CrossRefPubMedGoogle Scholar
  59. 59.
    •• The Cancer Genome Atlas Research Network. Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543(7645):378–84. Comprehensive descriptions of genomic and molecular characterization of cervix cancer with discovery of new mutated genes, paving the way for therapeutic improvements. CrossRefPubMedCentralGoogle Scholar
  60. 60.
    Lee JM, Cimino-Mathews A, Peer CJ, Zimmer A, Lipkowitz S, Annunziata CM, et al. Safety and clinical activity of the programmed death-ligand I inhibitor Durvalumab in combination with poly (ADP-ribose) polymerase inhibitor olaparib or vascular endothelial growth factor receptor 1-3 inhibitor cediranib in women’s cancer: a dose-escalation, phase I study. J Clin Oncol. 2017;35(19):2193–202.  https://doi.org/10.1200/JCO.2016.72.1340.CrossRefPubMedGoogle Scholar
  61. 61.
    Weichselbaum RR, Hellman S. Oligometastases revisited. Nat Rev Clin Oncol. 2011;8(6):378–82.  https://doi.org/10.1038/nrclinonc.2011.44.CrossRefPubMedGoogle Scholar
  62. 62.
    • Reyes DK, Pienta KJ. The biology of oligometastatic cancer. Oncotarget. 2015;6(11):8491–524. Extensive and comprehensive review of the status of knowledge on oligometastatic state.  https://doi.org/10.18632/oncotarget.3455.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gloria Marquina
    • 1
  • Aranzazu Manzano
    • 1
  • Antonio Casado
    • 1
    • 2
  1. 1.Department of Medical OncologyHospital Universitario San CarlosMadridSpain
  2. 2.Complutense UniversityMadridSpain

Personalised recommendations