Skip to main content

Immune Checkpoint Inhibitors in Gliomas


Purpose of Review

Malignant gliomas result in disproportionately high morbidity and mortality compared with other primary tumors, and progression of disease is inevitable. Novel therapies to improve outcomes are needed and immune checkpoint inhibitors hold significant promise.

Recent Findings

A limited body of preclinical evidence suggests that checkpoint inhibitors may be effective treatment for gliomas. Biomarkers to identify characteristics of gliomas responsive to these therapies will be essential. These may include mismatch repair deficiency and high mutational load that might be germline, somatic, or acquired after therapy. Evidence on the use of immune checkpoint inhibitors in gliomas is evolving. Clinical trials are underway and results are eagerly awaited.


Understanding the role of immune checkpoint inhibitors in combination with other treatment modalities for gliomas is crucial to the improvement of outcomes. The design and conduct of future clinical trials need to account for increasingly complex treatment options.

This is a preview of subscription content, access via your institution.

Fig. 1


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.

    Khasraw M, Lassman AB. Advances in the treatment of malignant gliomas. Curr Oncol Rep. 2010;12(1):26–33. doi:10.1007/s11912-009-0077-4.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66. doi:10.1016/s1470-2045(09)70025-7.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi:10.1016/j.cell.2011.02.013.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(17):1974–82. doi:10.1200/jco.2014.59.4358.

    CAS  Article  Google Scholar 

  5. 5.

    Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–84. doi:10.1016/s1470-2045(15)70076-8.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Motzer RJ, Rini BI, McDermott DF, Redman BG, Kuzel TM, Harrison MR, et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(13):1430–7. doi:10.1200/jco.2014.59.0703.

    CAS  Article  Google Scholar 

  7. 7.

    Westin JR, Chu F, Zhang M, Fayad LE, Kwak LW, Fowler N, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol. 2014;15(1):69–77. doi:10.1016/s1470-2045(13)70551-5.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44. doi:10.1056/NEJMoa1305133.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39. doi:10.1056/NEJMoa1507643.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Rizvi NA, Mazieres J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16(3):257–65. doi:10.1016/s1470-2045(15)70054-9.

    CAS  Article  PubMed  Google Scholar 

  11. 11.•

    Nduom EK, Wei J, Yaghi NK, Huang N, Kong L-Y, Gabrusiewicz K, et al. PD-L1 expression and prognostic impact in glioblastoma. J Neuro-Oncol. 2016;18(2):195–205. doi:10.1093/neuonc/nov172. This study demonstrates the rates of PD-L1 expression in glioblastoma, which is increasingly used for eligibility criteria in clinical trials.

  12. 12.

    Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 2012;12(9):623–35. doi:10.1038/nri3265.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Brooks WH, Markesbery WR, Gupta GD, Roszman TL. Relationship of lymphocyte invasion and survival of brain tumor patients. Ann Neurol. 1978;4(3):219–24. doi:10.1002/ana.410040305.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Boker DK, Kalff R, Gullotta F, Weekes-Seifert S, Mohrer U. Mononuclear infiltrates in human intracranial tumors as a prognostic factor. Influence of preoperative steroid treatment. I. Glioblastoma. Clin Neuropathol. 1984;3(4):143–7.

    CAS  PubMed  Google Scholar 

  15. 15.

    Palma L, Di Lorenzo N, Guidetti B. Lymphocytic infiltrates in primary glioblastomas and recidivous gliomas. Incidence, fate, and relevance to prognosis in 228 operated cases. J Neurosurg. 1978;49(6):854–61. doi:10.3171/jns.1978.49.6.0854.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Rossi ML, Jones NR, Candy E, Nicoll JA, Compton JS, Hughes JT, et al. The mononuclear cell infiltrate compared with survival in high-grade astrocytomas. Acta Neuropathol. 1989;78(2):189–93.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Safdari H, Hochberg FH, Richardson Jr EP. Prognostic value of round cell (lymphocyte) infiltration in malignant gliomas. Surg Neurol. 1985;23(3):221–6.

    CAS  Article  PubMed  Google Scholar 

  18. 18.•

    Han S, Zhang C, Li Q, Dong J, Liu Y, Huang Y, et al. Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. Br J Cancer. 2014;110(10):2560–8. doi:10.1038/bjc.2014.162. This paper is important in revealing different populations of TILs which may correlate with prognosis.

  19. 19.

    Heimberger AB, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Sun W, Qiao W, et al. Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res. 2008;14(16):5166–72. doi:10.1158/1078-0432.ccr-08-0320.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    El Andaloussi A, Lesniak MS. An increase in CD4 + CD25 + FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro-Oncology. 2006;8(3):234–43. doi:10.1215/15228517-2006-006.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Garber ST, Hashimoto Y, Weathers SP, Xiu J, Gatalica Z, Verhaak RG, et al. Immune checkpoint blockade as a potential therapeutic target: surveying CNS malignancies. Neuro-Oncology. 2016. doi:10.1093/neuonc/now132.

    PubMed  Google Scholar 

  22. 22.

    Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275–87. doi:10.1038/nrc.2016.36.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT. Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res. 2013;19(12):3165–75. doi:10.1158/1078-0432.ccr-12-3314.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Berghoff AS, Kiesel B, Widhalm G, Rajky O, Ricken G, Wohrer A, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro-Oncology. 2015;17(8):1064–75. doi:10.1093/neuonc/nou307.

    Article  PubMed  Google Scholar 

  25. 25.

    Reardon DA, Gokhale PC, Klein SR, Ligon KL, Rodig SJ, Ramkissoon SH, et al. Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol Res. 2016;4(2):124–35. doi:10.1158/2326-6066.cir-15-0151.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Wainwright DA, Chang AL, Dey M, Balyasnikova IV, Kim CK, Tobias A, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res. 2014;20(20):5290–301. doi:10.1158/1078-0432.ccr-14-0514.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Fecci PE, Ochiai H, Mitchell DA, Grossi PM, Sweeney AE, Archer GE, et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res. 2007;13(7):2158–67. doi:10.1158/1078-0432.ccr-06-2070.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    vom Berg J, Vrohlings M, Haller S, Haimovici A, Kulig P, Sledzinska A, et al. Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell-mediated glioma rejection. J Exp Med. 2013;210(13):2803–11. doi:10.1084/jem.20130678.

    Article  Google Scholar 

  29. 29.

    Agarwalla P, Barnard Z, Fecci P, Dranoff G, Curry Jr WT. Sequential immunotherapy by vaccination with GM-CSF-expressing glioma cells and CTLA-4 blockade effectively treats established murine intracranial tumors. J Immunother (Hagerstown, Md : 1997). 2012;35(5):385–9. doi:10.1097/CJI.0b013e3182562d59.

    CAS  Google Scholar 

  30. 30.

    Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86(2):343–9. doi:10.1016/j.ijrobp.2012.12.025.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Hodges TR, Ferguson SD, Caruso HG, Kohanbash G, Zhou S, Cloughesy TF et al. Prioritization schema for immunotherapy clinical trials in glioblastoma. OncoImmunology. 2016 (just-accepted):00-.

  32. 32.

    Reardon DA, Okada H. Re-defining response and treatment effects for neuro-oncology immunotherapy clinical trials. J Neuro-Oncol. 2015;123(3):339–46. doi:10.1007/s11060-015-1748-7.

    CAS  Article  Google Scholar 

  33. 33.

    Blumenthal DT, Yalon M, Vainer GW, Lossos A, Yust S, Tzach L, et al. Pembrolizumab: first experience with recurrent primary central nervous system (CNS) tumors. J Neuro-Oncol. 2016. doi:10.1007/s11060-016-2190-1.

    PubMed  Google Scholar 

  34. 34.

    Carter T, Shaw H, Cohn-Brown D, Chester K, Mulholland P. Ipilimumab and bevacizumab in glioblastoma. Clinical oncology (Royal College of Radiologists (Great Britain)). 2016. doi:10.1016/j.clon.2016.04.042.

  35. 35.

    Schaff LR, Lassman AB, Goldlust SA, Cloughesy T, Singer S, Schwartz GK, et al. ET-53 ipilimumab for recurrent glioblastoma (GBM). Neuro-Oncology. 2014;16 suppl 5:v90. doi:10.1093/neuonc/nou255.50.

    Article  PubMed Central  Google Scholar 

  36. 36.

    Hu J, Yu J, Black K, Rudnick J. IT-13Ipilimumab for recurrent high-grade glioma: a single-institution case series. Neuro-Oncology. 2014;16 suppl 5:v112. doi:10.1093/neuonc/nou258.11.

    Article  PubMed Central  Google Scholar 

  37. 37.

    Brown NF, Carter T, Shaw HM, Cohn-Brown D, Chester K, Mulholland PJ, et al. Sequential immune checkpoint inhibition with concurrent bevacizumab for relapsed glioblastoma: a single centre experience. ASCO Meeting Abs. 2016;34:e13514.

    Google Scholar 

  38. 38.•

    Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol Off J Am Soc Clin Oncol. 2016. doi:10.1200/jco.2016.66.6552. This report of two pediatric patients with extraordinary high mutational loads responding to nivolumab suggests the hypermutator phenotype may be sensitive to immune checkpoint inhibitors.

    Google Scholar 

  39. 39.

    Margolin K, Ernstoff MS, Hamid O, Lawrence D, McDermott D, Puzanov I, et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 2012;13(5):459–65. doi:10.1016/s1470-2045(12)70090-6.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Goldberg SB, Gettinger SN, Mahajan A, Chiang AC, Herbst RS, Sznol M, et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016;17(7):976–83. doi:10.1016/s1470-2045(16)30053-5.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Sampson JH, Vlahovic G, Desjardins A, Friedman HS, Baehring JM, Hafler D et al. Randomized phase IIb study of nivolumab (anti-PD-1; BMS-936558, ONO-4538) alone or in combination with ipilimumab versus bevacizumab in patients (pts) with recurrent glioblastoma (GBM). ASCO Meeting Abstracts. 2014;32(15_suppl):TPS2101.

  42. 42.

    Sampson JH, Vlahovic G, Sahebjam S, Omuro AMP, Baehring JM, Hafler DA et al. Preliminary safety and activity of nivolumab and its combination with ipilimumab in recurrent glioblastoma (GBM): CHECKMATE-143. ASCO Meeting Abstracts. 2015;33(15_suppl):3010.

  43. 43.

    Reardon DA, Sampson JH, Sahebjam S, Lim M, Baehring JM, Vlahovic G et al. Safety and activity of nivolumab (nivo) monotherapy and nivo in combination with ipilimumab (ipi) in recurrent glioblastoma (GBM): Updated results from checkmate-143. ASCO Meeting Abstracts. 2016;34(15_suppl):2014.

  44. 44.

    Wick W, Brandes AA, Gorlia T, Bendszus M, Sahm F, Taal W et al. EORTC 26101 phase III trial exploring the combination of bevacizumab and lomustine in patients with first progression of a glioblastoma. ASCO Meeting Abstracts. 2016;34(15_suppl):2001.

  45. 45.

    Reardon DA, Schuster J, Tran DD, Fink KL, Nabors LB, Li G et al. ReACT: Overall survival from a randomized phase II study of rindopepimut (CDX-110) plus bevacizumab in relapsed glioblastoma. ASCO Meeting Abstracts. 2015;33(15_suppl):2009.

  46. 46.

    Reardon DA, De Groot JF, Colman H, Jordan JT, Daras M, Clarke JL et al. Safety of pembrolizumab in combination with bevacizumab in recurrent glioblastoma (rGBM). ASCO Meeting Abstracts. 2016;34(15_suppl):2010.

  47. 47.

    Reardon DA, Kaley TJ, Dietrich J, Lim M, Dunn GP, Gan HK et al. Phase 2 study to evaluate the clinical efficacy and safety of MEDI4736 (durvalumab) in patients with glioblastoma (GBM). ASCO Meeting Abstracts. 2016;34(15_suppl):TPS2080.

  48. 48.

    Sampson JH, Omuro AMP, Preusser M, Lim M, Butowski NA, Cloughesy TF et al. A randomized, phase 3, open-label study of nivolumab versus temozolomide (TMZ) in combination with radiotherapy (RT) in adult patients (pts) with newly diagnosed, O-6-methylguanine DNA methyltransferase (MGMT)-unmethylated glioblastoma (GBM): CheckMate-498. ASCO Meeting Abstracts. 2016;34(15_suppl):TPS2079.

  49. 49.

    Binder DC, Davis AA, Wainwright DA. Immunotherapy for cancer in the central nervous system: current and future directions. Oncoimmunol. 2016;5(2), e1082027. doi:10.1080/2162402x.2015.1082027.

    Article  Google Scholar 

  50. 50.

    Sahebjam S, Johnstone PA, Forsyth PAJ, Arrington J, Vrionis FD, Etame AB et al. Safety and antitumor activity of hypofractionated stereotactic irradiation (HFSRT) with pembrolizumab (Pembro) and bevacizumab (Bev) in patients (pts) with recurrent high grade gliomas: Preliminary results from phase I study. ASCO Meeting Abstracts. 2016;34(15_suppl):2041.

  51. 51.

    Fried I, Weintraub M, Ben Ami T, Shen R, Benifla M, Mordechai A, et al. IT-11A PHASE I/II clinical trial of CT-011 (PIDILIZUMAB) in diffuse intrinsic pontine glioma and relapsed high grade glioma: a preliminary report. Neuro-Oncology. 2014;16 suppl 5:v111–2. doi:10.1093/neuonc/nou258.9.

    Article  PubMed Central  Google Scholar 

  52. 52.

    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54. doi:10.1056/NEJMoa1200690.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Ma W, Gilligan BM, Yuan J, Li T. Current status and perspectives in translational biomarker research for PD-1/PD-L1 immune checkpoint blockade therapy. J Hematol Oncol. 2016;9(1):47. doi:10.1186/s13045-016-0277-y.

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Berghoff AS, Pajenda S, Ilhan-Mutlu A, Widhalm G, Dieckmann K, Hainfellner JA et al. Correlation of plasma PD-L1 detectability with age in glioma patients. ASCO Meeting Abstracts. 2015;33(15_suppl):e13039.

  55. 55.

    Jacobs JF, Idema AJ, Bol KF, Nierkens S, Grauer OM, Wesseling P, et al. Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors. Neuro-Oncology. 2009;11(4):394–402. doi:10.1215/15228517-2008-104.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Hamid O, Schmidt H, Nissan A, Ridolfi L, Aamdal S, Hansson J, et al. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med. 2011;9:204. doi:10.1186/1479-5876-9-204.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Ruffini E, Asioli S, Filosso PL, Lyberis P, Bruna MC, Macri L, et al. Clinical significance of tumor-infiltrating lymphocytes in lung neoplasms. Ann Thorac Surg. 2009;87(2):365–71. doi:10.1016/j.athoracsur.2008.10.067. discussion 71–2.

    Article  PubMed  Google Scholar 

  58. 58.

    Schumacher Ton N, Kesmir C, van Buuren Marit M. Biomarkers in cancer immunotherapy. Cancer Cell. 2015;27(1):12–4.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Champiat S, Ferté C, Lebel-Binay S, Eggermont A, Soria JC. Exomics and immunogenics: bridging mutational load and immune checkpoints efficacy. Oncoimmunol. 2014;3(1), e27817.

    Article  Google Scholar 

  60. 60.

    Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189–99. doi:10.1056/NEJMoa1406498.

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ, Nelson BH, et al. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res. 2014;24(5):743–50.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Howitt BE, Shukla SA, Sholl LM, Ritterhouse LL, Watkins JC, Rodig S, et al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA oncol. 2015;1(9):1319–23.

    Article  PubMed  Google Scholar 

  63. 63.

    Maby P, Tougeron D, Hamieh M, Mlecnik B, Kora H, Bindea G, et al. Correlation between density of CD8+ T-cell infiltrate in microsatellite unstable colorectal cancers and frameshift mutations: a rationale for personalized immunotherapy. Cancer Res. 2015;75(17):3446–55.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Tiffany R. Hodges, Martina Ott, Joanne Xiu, Zoran Gatalica, Jeff Swensen, Shouhao Zhou, Jason T. Huse, et al. Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neurooncology 2017 [in press]

  65. 65.

    Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti–programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–75. doi:10.1200/jco.2009.26.7609.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 65.•

    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20. doi:10.1056/NEJMoa1500596. This trial importantly shows a correlation between benefit to anti-PD1 antibody (pembrolizumab) and mismatch-repair status.

  67. 67.

    Network NCC. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) genetic/familial high-risk assessment: colorectal, Version 2.2015. 2016.

  68. 68.

    Leung SY, Chan TL, Chung LP, Chan ASY, Fan YW, Hung KN, et al. Microsatellite instability and mutation of DNA mismatch repair genes in gliomas. Am J Pathol. 1998;153(4):1181–8. doi:10.1016/S0002-9440(10)65662-3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Johanns TM, Miller CA, Dorward IG, Tsien C, Chang E, Perry A, et al. Immunogenomics of hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov. 2016;6(11):1230–6. doi:10.1158/

    Article  PubMed  Google Scholar 

  70. 70.

    Lee V, Murphy A, Le DT, Diaz Jr LA. Mismatch repair deficiency and response to immune checkpoint blockade. Oncologist. 2016. doi:10.1634/theoncologist.2016-0046.

    Google Scholar 

  71. 71.

    Cahill DP, Levine KK, Betensky RA, Codd PJ, Romany CA, Reavie LB, et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res. 2007;13(7):2038–45. doi:10.1158/1078-0432.ccr-06-2149.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8. doi:10.1038/nature07385.

    Article  Google Scholar 

  73. 73.

    Yip S, Miao J, Cahill DP, Iafrate AJ, Aldape K, Nutt CL, et al. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin Cancer Res. 2009;15(14):4622–9. doi:10.1158/1078-0432.ccr-08-3012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Xie C, Sheng H, Zhang N, Li S, Wei X, Zheng X. Association of MSH6 mutation with glioma susceptibility, drug resistance and progression. Mol Clin Oncol. 2016;5(2):236–40. doi:10.3892/mco.2016.907.

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science (New York, NY). 2014;343(6167):189–93. doi:10.1126/science.1239947.

    CAS  Article  Google Scholar 

  76. 76.

    van Thuijl HF, Mazor T, Johnson BE, Fouse SD, Aihara K, Hong C, et al. Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment. Acta Neuropathol. 2015;129(4):597–607. doi:10.1007/s00401-015-1403-6.

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Rodriguez-Hernandez I, Garcia JL, Santos-Briz A, Hernandez-Lain A, Gonzalez-Valero JM, Gomez-Moreta JA, et al. Integrated analysis of mismatch repair system in malignant astrocytomas. PLoS One. 2013;8(9), e76401. doi:10.1371/journal.pone.0076401.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Manson G, Norwood J, Marabelle A, Kohrt H, Houot R. Biomarkers associated with checkpoint inhibitors. Ann Oncol Off J Eur Soc Med Oncol/ESMO. 2016;27(7):1199–206. doi:10.1093/annonc/mdw181.

    CAS  Article  Google Scholar 

  79. 79.

    Sims JS, Ung TH, Neira JA, Canoll P, Bruce JN. Biomarkers for glioma immunotherapy: the next generation. J Neuro-Oncol. 2015;123(3):359–72. doi:10.1007/s11060-015-1746-9.

    CAS  Article  Google Scholar 

  80. 80.

    Jackson CM, Lim M, Drake CG. Immunotherapy for brain cancer: recent progress and future promise. Clin Cancer Res. 2014;20(14):3651–9. doi:10.1158/1078-0432.ccr-13-2057.

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Sanmamed MF, Chester C, Melero I, Kohrt H. Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies. Ann Oncol Off J Eur Soc Med Oncol/ESMO. 2016;27(7):1190–8. doi:10.1093/annonc/mdw041.

    CAS  Article  Google Scholar 

  82. 82.

    Postel-Vinay S, Aspeslagh S, Lanoy E, Robert C, Soria JC, Marabelle A. Challenges of phase 1 clinical trials evaluating immune checkpoint-targeted antibodies. Ann Oncol Off J Eur Soc Med Oncol/ESMO. 2016;27(2):214–24. doi:10.1093/annonc/mdv550.

    CAS  Article  Google Scholar 

  83. 83.

    Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(10):1020–30. doi:10.1200/jco.2013.53.0105.

    CAS  Article  Google Scholar 

  84. 84.

    Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst. 2013;105(4):256–65. doi:10.1093/jnci/djs629.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Okada H, Weller M, Huang R, Finocchiaro G, Gilbert MR, Wick W, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol. 2015;16(15):e534–42. doi:10.1016/s1470-2045(15)00088-1.

    Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Heimberger AB, Sampson JH. Immunotherapy coming of age: what will it take to make it standard of care for glioblastoma? Neuro-Oncology. 2011;13(1):3–13. doi:10.1093/neuonc/noq169.

    Article  PubMed  Google Scholar 

  87. 87.

    Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol Off J Eur Soc Med Oncol/ESMO. 2015;26(12):2375–91. doi:10.1093/annonc/mdv383.

    CAS  Google Scholar 

  88. 88.

    Chen TW, Razak AR, Bedard PL, Siu LL, Hansen AR. A systematic review of immune-related adverse event reporting in clinical trials of immune checkpoint inhibitors. Ann Oncol Off J Eur Soc Med Oncol/ESMO. 2015;26(9):1824–9. doi:10.1093/annonc/mdv182.

    CAS  Article  Google Scholar 

Download references


The authors extend special thanks to Rhana Pike for her editorial assistance.

Author information



Corresponding author

Correspondence to Mustafa Khasraw.

Ethics declarations

Conflict of Interest

Aaron C. Tan declares that he has no conflict of interest.

Amy B. Heimberger has received clinical trial funding from Merck Sharp and Dohme (MSD) and owns stock and serves on the advisory board of Caris Life Sciences.

Mustafa Khasraw has received research funding from AbbVie and Specialised Therapeutics Australia (STA) and serves on the advisory board of AbbVie, STA, Eli Lilly and BMS.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tan, A.C., Heimberger, A.B. & Khasraw, M. Immune Checkpoint Inhibitors in Gliomas. Curr Oncol Rep 19, 23 (2017).

Download citation


  • Glioma
  • Glioblastoma
  • Anti-PD-1
  • Anti-PD-L1
  • Anti-CTLA-4
  • Immune checkpoint inhibitors