Treatment of Relapsed/Refractory Acute Lymphoblastic Leukemia in Adults

  • Aharon Ronson
  • Ariella Tvito
  • Jacob M. Rowe
Leukemia (A Aguayo, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Leukemia


Patients with relapsed and refractory acute lymphoblastic leukemia (ALL) have a dismal prognosis with less than 10 % of patients surviving 5 years. Most such patients cannot be rescued with currently available therapies, whatever the initial treatment they receive. Therefore, there is an urgent need for novel treatment options. Fortunately, over the past several years, an improved understanding of the biology of the disease has allowed the identification of rational molecular targets for therapeutic endeavors and the emergence of novel therapies has sparked great interest. This review will discuss the current treatment landscape for adult patients with relapsed and/or refractory ALL.


Acute lymphoblastic leukemia Relapsed/refractory Blinatumomab Chimeric antigen receptor-T 


Compliance with Ethics Guidelines

Conflict of Interest

Aharon Ronson, Ariella Tvito, and Jacob M. Rowe declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukemia. Lancet. 2013;381:1943–55.CrossRefPubMedGoogle Scholar
  2. 2.
    Cooper SL, Brown PA. Treatment of acute lymphoblastic leukemia. Pediatr Clin North Am. 2015;62(1):61–73.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dombret H, Cluzeau T, Huguet F, Boissel N. Pediatric-like therapy for adults with ALL. Curr Hematol Malig Report. 2014;9(2):158–64.CrossRefGoogle Scholar
  4. 4.
    Rowe JM, Buck G, Burnett AK, et al. Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XІІ/ECOG E2993. Blood. 2005;106:3760–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Fielding AK, Richards SM, Chopra R, et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRCUKALL12/ECOG2993 study. Blood. 2007;109:944–50.CrossRefPubMedGoogle Scholar
  6. 6.
    Gokbuget N, Stanze D, Beck J, et al. Outcome of relapsed acute lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors and performance of stem cell transplantation. Blood. 2012;120(10):2032–41.CrossRefPubMedGoogle Scholar
  7. 7.
    Tavernier E, Boiron JM, Huguet F, et al. Outcome of treatment after first relapse in adults with acute lymphoblastic leukemia initially treated by the LALA-94 trial. Leukemia. 2007;21(9):1907–14.CrossRefPubMedGoogle Scholar
  8. 8.
    Thomas X, Boiron JM, Huguet F, et al. Outcome of treatment in adults with acute lymphoblastic leukemia: analysis of the LALA-94 trial. J Clin Oncol. 2004;22(20):4075–86.CrossRefPubMedGoogle Scholar
  9. 9.
    Forman SJ, Rowe JM. The myth of the second remission of acute leukemia in the adult. Blood. 2013;121(7):1077–82.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Garcia-Manero G, Thomas DA. Salvage therapy for refractory or relapsed acute lymphocytic leukemia. Hematol Oncol Clin North Am. 2001;15(1):163–205.CrossRefPubMedGoogle Scholar
  11. 11.
    Fielding AK. Current therapeutic strategies in adult lymphoblastic leukemia. Hematol Oncol Clin N Am. 2011;25:1255–79.CrossRefGoogle Scholar
  12. 12.
    Duval M, Klein JP, He W, et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J Clin Oncol. 2010;28(23):3730–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jeha S, Gandhi V, Chan KW, et al. Clofarabine, a novel nucleoside analogue, is active in pediatric patients with advanced leukemia. Blood. 2004;103(3):784–9.CrossRefPubMedGoogle Scholar
  14. 14.
    O’Connor D, Sibson K, Caswell M, et al. Early UK experience in the use of clofarabine in the treatment of relapsed and refractory paediatric acute lymphoblastic leukemia. Br J Haematol. 2011;154(4):482–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Kantarjian HM, Gandhi V, Kozuch P, et al. Phase 1 clinical and pharmacology study of clofarabine in patients with solid and hematologic cancers. J Clin Oncol. 2003;21(6):1167–73.CrossRefPubMedGoogle Scholar
  16. 16.
    Kantarjian HM, Gandhi V, Cortes J, et al. Phase 2 clinical and pharmacologic study of clofarabine in patients with refractory or relapsed acute leukemia. Blood. 2003;102(7):2379–86.CrossRefPubMedGoogle Scholar
  17. 17.
    Faderl S, Gandhi V, O’Brien S, et al. Results of a phase 1–2 study of clofarabine in combination with cytarabine (ara-C) in relapsed and refractory acute leukemias. Blood. 2005;105(3):940–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Advani AS, Gundacker HM, Sala-Torra O, et al. Southwest Oncology Group Study S0530: a phase 2 trial of clofarabine and cytarabine for relapsed or refractory acute lymphocytic leukaemia. Br J Haematol. 2010;151(5):430–4.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.•
    Lee L, Fielding AK. Emerging pharmacotherapies for adult patients with acute lymphoblastic leukemia. Clinical Medicine Insights: Oncology. 2012;6:85–100. A good early review of the emerging novel therapies in ALL.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Gokbuget N, Basara N, Baurmann H, et al. High single-drug activity of nelarabine in relapsed T-lymphoblastic leukemia/lymphoma offers curative option with subsequent stem cell transplantation. Blood. 2011;118(13):3504–16.CrossRefPubMedGoogle Scholar
  21. 21.•
    Said R, Tsimberidou AM. Pharmacokinetic evaluation of vincristine for the treatment of lymphoid malignancies. Expert Opin Drug Metab Toxicol. 2014;10(3):483–94. A comprehensive review of the pharmacokinetics of vincristine and the rationale for liposomal formulas to reduce toxicities.CrossRefPubMedGoogle Scholar
  22. 22.
    Weiden P, Wright S. Vincristine neurotoxicity. N Engl J Med. 1972;286:1369–70.PubMedGoogle Scholar
  23. 23.
    Allen T, Cullis P. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Del Rev. 2013;65:36–48.CrossRefGoogle Scholar
  24. 24.
    Boman NL, Bally BB, Cullis PR. Encapsulation of vincristine in liposomes reduces its toxicity and improves its anti-tumor efficacy. J Liposome Res. 1995;5(3):523–41.CrossRefGoogle Scholar
  25. 25.
    Webb MS, Harasym TO, Masin D, et al. Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models. Br J Cancer. 1995;72:896–904.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    O’Brien S, Schiller G, Lister J, et al. High dose vincristine sulfate liposome injection for advanced, relapsed and refractory adult Philadelphia chromosome-negative acute lymphoblastic leukemia. J Clin Oncol. 2013;31(6):676–83.CrossRefPubMedGoogle Scholar
  27. 27.
    Davis T, Farag SS. Treating relapsed or refractory Philadelphia chromosome-negative acute lymphoblastic leukemia: liposome-encapsulated vincristine. Int J Nanomedicine. 2013;8:3479–88.PubMedPubMedCentralGoogle Scholar
  28. 28.••
    Pathak P, Hess R, Weiss MA. Liposomal vincristine for relapsed or refractory Ph-negative acute lymphoblastic leukemia: a review of literature. Ther Adv Hematol. 2014;5(1):18–24. The definitive clinical study that led to the approval of liposomal vincristine for use in relapsed and refractory ALL.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Curran MP, McKeage K. Bortezomib: a review of its use in patients with multiple myeloma. Drugs. 2009;69(7):859–88.CrossRefPubMedGoogle Scholar
  30. 30.
    McCormack PL. Bortezomib: a review in mantle cell lymphoma in previously untreated patients unsuitable for stem cell transplantation. BioDrugs. 2015;29(3):207–14.CrossRefPubMedGoogle Scholar
  31. 31.•
    Xiao-Li D, Qi C. Recent advancements of bortezomib in acute lymphocytic leukemia treatment. Acta Haematologica. 2013;129:207–14. One of the few papers to describe the use of bortezomib in ALL.CrossRefGoogle Scholar
  32. 32.
    Cortes J, Thomas D, Koller C, et al. Phase 1 study of bortezomib in refractory or relapsed acute leukemias. Clin Cancer Res. 2004;10(10):3371–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Smaglo BG, Aldeghaither D, Weiner LM. The development of immunoconjugates for targeted cancer therapy. Nat Rev Clin Oncol. 2014;11(11):637–48.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tedder TF, Tuscano J, Sato S, Kehrl JH. CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annu Rev Immunol. 1997;15(481):504.Google Scholar
  35. 35.
    Tedder TF, Poe JC, Haas KM. CD22: a multifunctional receptor that regulates B lymphocyte survival and signal transduction. Adv Immunol. 2005;88:1–50.CrossRefPubMedGoogle Scholar
  36. 36.
    Ohanian M, Kantarjian H, Guy D, et al. Inotuzumab ozogamicin in B-cell acute lymphoblastic leukemias and non-Hodgkin’s lymphomas. Expert Opin Biol Ther. 2015;15(4):601–11.CrossRefPubMedGoogle Scholar
  37. 37.
    Hinman LM, Hamann PR, Wallace R, Menendez AT, et al. Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res. 1993;53:3336–42.PubMedGoogle Scholar
  38. 38.
    Damle NK, Philip F. Antibody-targeted chemotherapy with immunoconjugates of calicheamicin. Current Opinion in Pharmacology. 2003;3:386–90.CrossRefPubMedGoogle Scholar
  39. 39.
    Walter RB, Raden BW, Kamikura DM, Cooper JA, Bernstein ID, et al. Influence of CD33 expression levels and ITIM-dependent internalization of gemtuzumab ozogamicin-induced cytotoxicity. Blood. 2005;105:1295–302.CrossRefPubMedGoogle Scholar
  40. 40.
    Rowe JM, Lowenberg B. Gemtuzumab ozogamicin in acute myeloid leukemia: a remarkable saga about an active drug. Blood. 2013;121(24):4838–341.Google Scholar
  41. 41.
    de Vries JK, Zwaan CM, De Bie M, Voerman JSA, den Boer ML, et al. The novel calicheamicin-conjugated CD22 antibody inotuzumab ozogamicin (CMC-544) effectively kills primary pediatric acute lymphoblastic leukemia cells. Leukemia. 2012;26:255–64.CrossRefPubMedGoogle Scholar
  42. 42.
    JF DiJoseph JF, Armellino DC, Boghaert ER, Khandke K, et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood. 2004;103:1807–14.CrossRefGoogle Scholar
  43. 43.
    DiJoseph JF, Popplewell A, Tickle S, et al. Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22. Cancer Immunol Immunother. 2005;54:11–24.CrossRefPubMedGoogle Scholar
  44. 44.
    DiJoseph JF, Goad ME, Dougher MM, et al. Potent and specific antitumor efficacy of CMC-544, a CD22-targeted immunoconjugate of calicheamicin, against systemically disseminated B-cell lymphoma. Clin Cancer Res. 2004;10:8620–9.CrossRefPubMedGoogle Scholar
  45. 45.
    DiJoseph JF, Dougher MM, Evans DY, Zhou BB, Damle NK. Preclinical anti-tumor activity of antibody targeted chemotherapy with CMC-544 (inotuzumab ozogamicin), a CD22-specific immunoconjugate of calicheamicin, compared with non-targeted combination chemotherapy with CVP or CHOP. Cancer Chemother Pharmacol. 2011;67(4):741–9.CrossRefPubMedGoogle Scholar
  46. 46.
    DiJoseph JF, Dougher MM, Armellino DC, Evans DY, Damle NK. Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia. 2007;21(11):2240–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Advani A, Gine E, Gisselbrecht C, et al. Preliminary report of a Phase 1 study of CMC-544, an antibody-targeted chemotherapy agent, in patients with B-cell non-Hodgkin’s lymphoma. ASH Annual Meeting Abstracts (abstract 230). Blood. 2005;106:70a.Google Scholar
  48. 48.
    Advani A, Coiffier B, Czuczman MS, et al. Safety, pharmacokinetics and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin’s lymphoma: results of a Phase 1 study. J Clin Oncol. 2010;28(12):2085–93.CrossRefPubMedGoogle Scholar
  49. 49.
    Goy A et al. Inotuzumab ozogamicin (INO, CMC-544) in patients with indolent B-cell NHL refractory to rituximab. 11th International Conference of Malignant Lymphoma, Abstract 069. Lugano, Switzerland, 15–18 June 2011Google Scholar
  50. 50.
    Kantarjian H, Thomas D, Jorgensen J, et al. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukemia: a phase 2 study. Lancet Oncol. 2012;13(4):403–11.CrossRefPubMedGoogle Scholar
  51. 51.
    Kantarjian H, Thomas D, Jorgensen J, et al. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer. 2013;119(15):2728–36.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    DeAngelo D, Stock W, Petersdorf S, et al. Weekly inotuzumab ozogamicin in adult patients with relapsed or refractory CD22-positive acute lymphoblastic leukemia. Blood. 2012;120 Suppl 1:2612.Google Scholar
  53. 53.••
    De Angelo DJ, Stelljes M, Martinelli G, et al. Efficacy and safety of inotuzumab ozogamicin versus standard of care in salvage 1 or 2 patients with acute lymphoblastic leukemia (ALL): an ongoing global phase 3 study. EHA 2015 Abstract#LB2073. Although only an abstract form, this publication may be the forerunner of the most important study demonstrating remarkable efficacy of inotuzumab ozogamicin.Google Scholar
  54. 54.
    Le Jeune C, Thomas X. Antibody-based therapies in B-cell lineage acute lymphoblastic leukaemia. Eur J Haematol. 2015;94(2):99–108.CrossRefPubMedGoogle Scholar
  55. 55.•
    Hoelzer D, Gokbuget N. Chemoimmunotherapy in acute lymphoblastic leukemia. Blood Reviews. 2012;26:25–32. An excellent basic review of novel chemoimmunotherapeutic agents in ALL.CrossRefPubMedGoogle Scholar
  56. 56.••
    Jabbour E, O’Brien S, Ravandi F, Kantarjian H. Monoclonal antibodies in acute lymphoblastic leukemia. Blood. 2015;125:4010–6. An important review of monoclonal antibodies in ALL.CrossRefPubMedGoogle Scholar
  57. 57.
    Thomas DA, O’Brien S, Faderl S, et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol. 2010;28:3880–9.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kochuparambil ST, Litzow MR. Novel antibody therapy in acute lymphoblastic leukemia. Curr Hematol Malig Rep. 2014;9:165–73.CrossRefPubMedGoogle Scholar
  59. 59.
    Wierda WG, Kipps TJ, Mayer J, et al. Ofatumumab as a single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J Clin Oncol. 2010;28:1749–55.CrossRefPubMedGoogle Scholar
  60. 60.
    Jabbour E, Kantarjian H, Thomas D, et al. Phase 2 study of the hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with CD-20 positive acute lymphoblastic leukemia (abstract). J Clin Oncol. 2014 Abstract 2065.Google Scholar
  61. 61.
    Micallef IN, Maurer MJ, Wiseman GA, et al. Epratuzumab with rituzimab, cyclophosphamide, doxorubicin, vincristine and prednisone chemotherapy in patients with previously untreated diffuse large B-cell lymphoma. Blood. 2011;118(15):4053–61.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Advani A, MC Donough S, Coutre S, et al. SWOG S0910: a phase 2 trial of clofarabine/cytarabine/epratuzumab for relapsed/refractory acute lymphocytic leukemia. Brit J Haematol. 2014;165:504–9.CrossRefGoogle Scholar
  63. 63.
    Chevallier P, Huguet F, Raffoux E, et al. Vincristine, dexamethasone and epratuzumab for older relapsed/refractory CD22+ B-acute lymphoblastic leukemia patients: a phase 2 study. Haematologica. 2015;100:128–31.CrossRefGoogle Scholar
  64. 64.
    Warner JL, Arnason J. Alemtuzumab use in relapsed and refractory chronic lymphocytic leukemia: a history and discussion of future rationale use. Ther Adv Hematol. 2012;3(6):375–89.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Silva-Fernandez L, Loza E, Martinez-Taboada VM, et al. Biological therapy for systemic vasculitis: a systematic review. Semin Arthritis Rheum. 2014;43(4):542–57.CrossRefPubMedGoogle Scholar
  66. 66.
    Coles AJ. Alemtuzumab therapy for multiple sclerosis. Neurotherapeutics. 2013;10(1):29–33.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Tibes R, Keating MJ, Ferrajoli A, et al. Activity of alemtuzumab in patients with CD52-positive acute leukemia. Cancer. 2006;106:2645–51.CrossRefPubMedGoogle Scholar
  68. 68.
    Angiolillo AL, Yu AL, Reaman G, et al. A phase II study of Campath-1H in children with relapsed or refractory acute lymphoblastic leukemia: a Children’s Oncology Group report. Pediatr Blood Cancer. 2009;53:978–83.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Stock W, Sanford B, Losanski G, et al. Alemtuzumab can be incorporated into front-line therapy of adult acute lymphoblastic leukemia (ALL): final phase 1 results of a Cancer and Leukemia Group B study (CALGB 10102). Blood. 2009;114(1):838.Google Scholar
  70. 70.
    Gorin NC, Isnard F, Garderet L, et al. Administration of alemtuzumab and G-CSF to adults with relapsed or refractory acute lymphoblastic leukemia: results of phase 2 study. Eur J Hematol. 2013;91(4):315–21.Google Scholar
  71. 71.
    Weiland J, Elder A, Forster V, Heidenreich O, et al. CD19: a multifunctional immunological target molecule and its implications for bilineage acute lymphoblastic leukemia. Pediatr Blood Cancer. 2015;62:1144–8.CrossRefPubMedGoogle Scholar
  72. 72.
    Scheuermann RH, Racila E, et al. CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma. 1995;18:385–97.CrossRefPubMedGoogle Scholar
  73. 73.
    Klener Jr P, Otahal P, Lateckova L, Klener P. Immunotherapy approaches in cancer treatment. Curr Pharm Biotechnol. 2015;16(9):771–81.CrossRefPubMedGoogle Scholar
  74. 74.
    Advani AS (2013). New immune strategies for the treatment of acute lymphoblastic leukemia: antibodies and chimeric antigen receptors. Hematol Am Soc Hematol Educ Program 2013:131–137.Google Scholar
  75. 75.••
    Topp MS, Kufer P, Gokbuget N, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29(18):2493–8. The first paper to demonstrate significant clinical activities of the BiTE antibodies.CrossRefPubMedGoogle Scholar
  76. 76.••
    Teachey DT, Rheingold SR, Maude SL, et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood. 2013;121(26):5154–7. Important description of the cytokine release system following some of the novel anti-CD19 therapies.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Topp M, Gokbuget N, Zugmaier G, et al. Effect of anti-CD19 BiTE blinatumomab on complete remission rate and overall survival in adult patients with relapsed/refractory B-precursor ALL. J Clin Oncol. 2012;30:6500.Google Scholar
  78. 78.••
    Topp MS, Gokbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukemia: a multicenter, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66. Very important paper on the use of blinatumomab for relapsed or refractory ALL describing the study that led to this agent.CrossRefPubMedGoogle Scholar
  79. 79.••
    Maude SL, Teachey DT, Porter DL, et al. CD 19 targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015;125(26):4017–23. Very important paper summarizing the data for CAR-T therapy in ALL.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA. 1989;86(24):10024–8.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.••
    Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17. A detailed state-of-the-art review of CAR-T cells in leukemia.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra25.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of HematologyShaare Zedek Medical CenterJerusalemIsrael
  2. 2.Technion, Israel Institute of TechnologyHaifaIsrael

Personalised recommendations