Skip to main content

Advertisement

Log in

Precision Medicine in Breast Cancer: Genes, Genomes, and the Future of Genomically Driven Treatments

  • Breast Cancer (B Overmoyer, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Remarkable progress in sequencing technology over the past 20 years has made it possible to comprehensively profile tumors and identify clinically relevant genomic alterations. In breast cancer, the most common malignancy affecting women, we are now increasingly able to use this technology to help specify the use of therapies that target key molecular and genetic dependencies. Large sequencing studies have confirmed the role of well-known cancer-related genes and have also revealed numerous other genes that are recurrently mutated in breast cancer. This growing understanding of patient-to-patient variability at the genomic level in breast cancer is advancing our ability to direct the appropriate treatment to the appropriate patient at the appropriate time—a hallmark of “precision cancer medicine.” This review focuses on the technological advances that have catalyzed these developments, the landscape of mutations in breast cancer, the clinical impact of genomic profiling, and the incorporation of genomic information into clinical care and clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. SEER Cancer Statistics Factsheets: Breast Cancer. National Cancer Institute, 2014. (Accessed July 3, 2014, at http://seer.cancer.gov/statfacts/html/breast.html.)

  2. Garraway LA, Lander ES. Lessons from the cancer genome. Cell. 2013;153:17–37.

    Article  CAS  PubMed  Google Scholar 

  3. Garraway LA. Genomics-driven oncology: framework for an emerging paradigm. J Clin Oncol : Off J Am Soc Clin Oncol. 2013;31:1806–14.

    Article  Google Scholar 

  4. MacConaill LE. Existing and emerging technologies for tumor genomic profiling. J Clin Oncol : Off J Am Soc Clin Oncol. 2013;31:1815–24.

    Article  CAS  Google Scholar 

  5. Knight WA, Livingston RB, Gregory EJ, McGuire WL. Estrogen receptor as an independent prognostic factor for early recurrence in breast cancer. Cancer Res. 1977;37:4669–71.

    CAS  PubMed  Google Scholar 

  6. Fisher B, Redmond C, Brown A, et al. Treatment of primary breast cancer with chemotherapy and tamoxifen. N Engl J Med. 1981;305:1–6.

    Article  CAS  PubMed  Google Scholar 

  7. Ingle JN, Ahmann DL, Green SJ, et al. Randomized clinical trial of diethylstilbestrol versus tamoxifen in postmenopausal women with advanced breast cancer. N Engl J Med. 1981;304:16–21.

    Article  CAS  PubMed  Google Scholar 

  8. Harvey JM, Clark GM, Osborne CK, Allred DC. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol : Off J Ame Soc Clin Oncol. 1999;17:1474–81.

    CAS  Google Scholar 

  9. van de Vijver MJ, Peterse JL, Mooi WJ, et al. Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med. 1988;319:1239–45.

    Article  PubMed  Google Scholar 

  10. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92.

    Article  CAS  PubMed  Google Scholar 

  11. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  12. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100:8418–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    Article  CAS  PubMed  Google Scholar 

  15. van ‘t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6.

    Article  PubMed  Google Scholar 

  16. van't Veer LJ, Bernards R. Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature. 2008;452:564–70.

    Article  Google Scholar 

  17. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344:1038–42.

    Article  CAS  PubMed  Google Scholar 

  18. Krop I, Winer EP. Further progress in HER2-directed therapy. Lancet Oncol. 2012;13:2–3.

    Article  PubMed  Google Scholar 

  19. Wagle N, Van Allen EM, Treacy DJ, et al. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Discov. 2014;4:61–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Long GV, Stroyakovskiy D, Gogas H, et al. Combined BRAF and MEK Inhibition versus BRAF Inhibition Alone in Melanoma. The New England journal of medicine 2014.

  21. Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367:1694–703.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Shaw AT, Kim DW, Mehra R, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370:1189–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Shaw AT, Ou SH, Bang YJ, et al. Crizotinib in ROS1-Rearranged Non-Small-Cell Lung Cancer. The New England journal of medicine 2014.

  24. Thomas RK, Baker AC, Debiasi RM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39:347–51.

    Article  CAS  PubMed  Google Scholar 

  25. Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499:214–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kan Z, Jaiswal BS, Stinson J, et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature. 2010;466:869–73.

    Article  CAS  PubMed  Google Scholar 

  27. Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.

    Article  CAS  PubMed  Google Scholar 

  28. Oxnard GR, Binder A, Janne PA. New targetable oncogenes in non-small-cell lung cancer. J Clin Oncol : Off J Am Soc Clin Oncol. 2013;31:1097–104.

    Article  CAS  Google Scholar 

  29. Ali SM, Alpaugh RK, Buell JK, et al. Antitumor response of an ERBB2 amplified inflammatory breast carcinoma with EGFR mutation to the EGFR-TKI erlotinib. Clin Breast Cancer. 2014;14:e14–6. In this case report, a patient with advanced HER2+ inflammatory breast cancer, that had developed resistance to HER2-targeted therapy was found by genomic profiling to have an L858R base substitution in EGFR, a well-known activating mutation in non-small cell lung cancer. Treatment with erlotinib, an EGFR-targeted therapy approved in NSCLC, was effective, with an 8-month period of cancer regression as well as symptomatic improvement. This case report is an example of how genomic profiling can identify targeted therapies that otherwise might not be considered for patients with breast cancer.

    Article  CAS  PubMed  Google Scholar 

  30. Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 2010;11:685–96.

    Article  CAS  PubMed  Google Scholar 

  31. Dias-Santagata D, Akhavanfard S, David SS, et al. Rapid targeted mutational analysis of human tumours: a clinical platform to guide personalized cancer medicine. EMBO Mol Med. 2010;2:146–58.

    Article  PubMed Central  PubMed  Google Scholar 

  32. MacConaill LE, Campbell CD, Kehoe SM, et al. Profiling critical cancer gene mutations in clinical tumor samples. PLoS One. 2009;4:e7887.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Johnson DB, Dahlman KH, Knol J, et al. Enabling a genetically informed approach to cancer medicine: a retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel. Oncologist. 2014;19:616–22.

    Article  PubMed Central  PubMed  Google Scholar 

  34. MacConaill LE, Garcia E, Shivdasani P, et al. Prospective enterprise-level molecular genotyping of a cohort of cancer patients. J Mol Diagn : JMD. 2014;16:660–72.

    Article  CAS  PubMed  Google Scholar 

  35. Van Allen EM, Wagle N, Levy MA. Clinical analysis and interpretation of cancer genome data. J Clin Oncol : Off J Am Soc Clin Oncol. 2013;31:1825–33.

    Article  Google Scholar 

  36. Wagle N, Berger MF, Davis MJ, et al. High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov. 2012;2:82–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  Google Scholar 

  38. Stephens PJ, Tarpey PS, Davies H, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486:400–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Shah SP, Roth A, Goya R, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486:395–9.

    CAS  PubMed  Google Scholar 

  40. Banerji S, Cibulskis K, Rangel-Escareno C, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486:405–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Ellis MJ, Ding L, Shen D, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012;486:353–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Polyak K, Metzger FO. SnapShot: breast cancer. Cancer Cell. 2012;22:562–e1.

    Article  CAS  PubMed  Google Scholar 

  43. Natrajan R, Mackay A, Lambros MB, et al. A whole-genome massively parallel sequencing analysis of BRCA1 mutant oestrogen receptor-negative and -positive breast cancers. J Pathol. 2012;227:29–41.

    Article  CAS  PubMed  Google Scholar 

  44. De Brot M, Andrade V, Morrogh M, et al. Novel mutations in lobular carcinoma in situ (LCIS) as uncovered by targeted parallel sequencing. Cancer research 2012;72

  45. Lim WK, Ong CK, Tan J, et al. Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma. Nat Genet. 2014;46:877–80.

    Article  CAS  PubMed  Google Scholar 

  46. Curtis C, Shah SP, Chin SF, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Bignell GR, Greenman CD, Davies H, et al. Signatures of mutation and selection in the cancer genome. Nature. 2010;463:893–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Blackwell K, Hamilton E, Marcom P, et al. Abstract S4-03: Exome sequencing reveals clinically actionable mutations in the pathogenesis and metastasis of triple negative breast cancer. Cancer Res. 2013;73:S4–S03.

    Article  Google Scholar 

  49. Wagle N, Lin NU, Richardson AL, et al. Whole-exome sequencing (WES) of HER2+ metastatic breast cancer (MBC) from patients (pts) treated with prior trastuzumab (T): A correlative analysis of TBCRC003. ASCO Meet Abstr. 2014;32:536.

    Google Scholar 

  50. Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.

    Article  CAS  PubMed  Google Scholar 

  51. Vaz-Luis I, Zeghibe CA, Frank ES, et al. Prospective clinical experience with research biopsies in breast cancer patients. Breast Cancer Res Treat. 2013;142:203–9.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Andre F, Bachelot TD, Campone M, et al. Array CGH and DNA sequencing to personalize targeted treatment of metastatic breast cancer (MBC) patients (pts): A prospective multicentric trial (SAFIR01). ASCO Meet Abstr. 2013;31:511.

    Google Scholar 

  53. Andre F, Bachelot T, Commo F, et al. Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: a multicentre, prospective trial (SAFIR01/UNICANCER). Lancet Oncol. 2014;15:267–74. The SAFIR01 study evaluated 423 patients with metastatic breast cancer, identifying a targetable genomic alteration in 195 patients (46%). While only a small subset – 55 patients (13%) received ‘personalized’ therapy, this trial provides a proof of concept for incorporating genomic analyses into clinical studies.

    Article  CAS  PubMed  Google Scholar 

  54. Roychowdhury S, Iyer MK, Robinson DR, et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med. 2011;3:111ra21.

    Article  Google Scholar 

  55. Zardavas D, Maetens M, Irrthum A, et al. The AURORA initiative for metastatic breast cancer. Br J Cancer 2014. The AURORA initiative is a prospective study that will perform next generation sequencing for a panel of cancer-related genes on tumour tissue and blood samples from patients with meastatic breast cancer, then follow them longitudinally. This multi-national study hopes to direct patients into clinical trials based on their genomic characteristics, while also collecting information about long-term outcomes for this cohort

  56. Van Allen EM, Wagle N, Stojanov P, et al. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat Med. 2014;20:682–8.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Conley BA, Doroshow JH. Molecular Analysis for Therapy Choice: NCI MATCH. Semin Oncol. 2014;41:297–9.

    Article  PubMed  Google Scholar 

  58. Everett JN, Gustafson SL, Raymond VM. Traditional roles in a non-traditional setting: genetic counseling in precision oncology. J Genet Couns. 2014;23:655–60.

    Article  PubMed  Google Scholar 

  59. Sleijfer S, Bogaerts J, Siu LL. Designing transformative clinical trials in the cancer genome era. JClin Oncol : Off J Am Soc Clin Oncol. 2013;31:1834–41.

    Article  Google Scholar 

  60. Slosberg ED, Kang B, Beck JT, et al. The signature program, a series of tissue-agnostic, mutation-specific signal finding trials. ASCO Meet Abstr. 2014;32:TPS2646.

    Google Scholar 

  61. Balko JM, Giltnane JM, Wang K, et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 2014;4:232–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Jeselsohn R, Yelensky R, Buchwalter G, et al. Emergence of constitutively active estrogen receptor-alpha mutations in pretreated advanced estrogen receptor-positive breast cancer. Cli Cancer Res : Off J Am Assoc Cancer Res. 2014;20:1757–67.

    Article  CAS  Google Scholar 

  63. Li S, Shen D, Shao J, et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 2013;4:1116–30.

    Article  CAS  PubMed  Google Scholar 

  64. Robinson DR, Wu YM, Vats P, et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet. 2013;45:1446–51. These two studies demonstrated mutations in the estrogen receptor gene, ESR1, as a novel mechanism of resistance to hormonal therapy in breast cancer. This observation illuminates the importance of genomic characterization not just for potential susceptibilities but also resistance to therapy.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Toy W, Shen Y, Won H, et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet. 2013;45:1439–45. These two studies demonstrated mutations in the estrogen receptor gene, ESR1, as a novel mechanism of resistance to hormonal therapy in breast cancer. This observation illuminates the importance of genomic characterization not just for potential susceptibilities but also resistance to therapy.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Yu M, Bardia A, Aceto N, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014;345:216–20.

    Article  CAS  PubMed  Google Scholar 

  67. Merenbakh-Lamin K, Ben-Baruch N, Yeheskel A, et al. D538G mutation in estrogen receptor-alpha: A novel mechanism for acquired endocrine resistance in breast cancer. Cancer Res. 2013;73:6856–64.

    Article  CAS  PubMed  Google Scholar 

  68. Bose R, Kavuri SM, Searleman AC, et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 2013;3:224–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol. 2012;9:16–32.

    Article  CAS  Google Scholar 

  70. Wagle N, Grabiner BC, Van Allen EM, et al. Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discov. 2014;4:546–53.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Wagle N, Grabiner BC, Van Allen EM, et al. Response and acquired resistance to everolimus in anaplastic thyroid cancer. N Engl J Med. 2014;371:1426–33.

    Article  CAS  PubMed  Google Scholar 

  72. Abrams J, Conley B, Mooney M, et al. National Cancer Institute's Precision Medicine Initiatives for the new National Clinical Trials Network. American Society of Clinical Oncology educational book / ASCO American Society of Clinical Oncology Meeting 2014:71–6

  73. Al-Ahmadie H, Iyer G, Hohl M, et al. Synthetic lethality in ATM-deficient RAD50-mutant tumors underlies outlier response to cancer therapy. Cancer Discov. 2014;4:1014–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Iyer G, Hanrahan AJ, Milowsky MI, et al. Genome sequencing identifies a basis for everolimus sensitivity. Science. 2012;338:221.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Rath MG, Masciari S, Gelman R, et al. Prevalence of germline TP53 mutations in HER2+ breast cancer patients. Breast Cancer Res Treat. 2013;139:193–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Dewey FE, Grove ME, Pan C, et al. Clinical interpretation and implications of whole-genome sequencing. JAMA. 2014;311:1035–45. An evaluation of whole genome sequencing on 12 patients reveals the challenges of sequencing the whole genome - incomplete coverage and low reproducibility of known disease-associated genetic variants with difficulty determining what findings to convey to patients. This supports a multiplexed, targeted sequencing approach of actionable genes for tumors rather than whole genome sequencing.

    Article  CAS  PubMed  Google Scholar 

  77. Swanton C, Burrell RA, Futreal PA. Breast cancer genome heterogeneity: a challenge to personalised medicine? Breast Cancer Res. 2011;13:104.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Shah SP, Morin RD, Khattra J, et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature. 2009;461:809–13.

    Article  CAS  PubMed  Google Scholar 

  79. Ding L, Ellis MJ, Li S, et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature. 2010;464:999–1005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Gerlinger M, Horswell S, Larkin J, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet. 2014;46:225–33.

    Article  CAS  PubMed  Google Scholar 

  81. Nik-Zainal S, Van Loo P, Wedge DC, et al. The life history of 21 breast cancers. Cell. 2012;149:994–1007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472:90–4.

    Article  CAS  PubMed  Google Scholar 

  83. Wang Y, Waters J, Leung ML, et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature. 2014;512:155–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Greenman C, Stephens P, Smith R, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Pleasance ED, Cheetham RK, Stephens PJ, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 2010;463:191–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Nik-Zainal S, Alexandrov LB, Wedge DC, et al. Mutational processes molding the genomes of 21 breast cancers. Cell. 2012;149:979–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Lohr JG, Adalsteinsson VA, Cibulskis K, et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol. 2014;32:479–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Aceto N, Bardia A, Miyamoto DT, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158:1110–22.

    Article  CAS  PubMed  Google Scholar 

  90. Yu M, Stott S, Toner M, Maheswaran S, Haber DA. Circulating tumor cells: approaches to isolation and characterization. J Cell Biol. 2011;192:373–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Dawson SJ, Rosenfeld N, Caldas C. Circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;369:93–4.

    Article  CAS  PubMed  Google Scholar 

  92. Dawson SJ, Tsui DW, Murtaza M, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368:1199–209.

    Article  CAS  PubMed  Google Scholar 

  93. Smerage JB, Barlow WE, Hortobagyi GN, et al. Circulating Tumor Cells and Response to Chemotherapy in Metastatic Breast Cancer: SWOG S0500. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2014.

  94. van Rooij N, van Buuren MM, Philips D, et al. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol : Off J Am Soc Clin Oncol. 2013;31:e439–42.

    Article  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Daniel G. Stover has received a grant from The Susan G. Komen Breast Cancer Foundation.

Nikhil Wagle has received consultancy fees from and has stock options in Foundation Medicine.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Wagle.

Additional information

This article is part of the Topical Collection on Breast Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stover, D.G., Wagle, N. Precision Medicine in Breast Cancer: Genes, Genomes, and the Future of Genomically Driven Treatments. Curr Oncol Rep 17, 15 (2015). https://doi.org/10.1007/s11912-015-0438-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-015-0438-0

Keywords

Navigation