Current Oncology Reports

, 16:367 | Cite as

Etirinotecan Pegol: Development of a Novel Conjugated Topoisomerase I Inhibitor

Evolving Therapies (R Bukowski, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Evolving Therapies


Irinotecan is a very active chemotherapeutic agent used for the treatment of several malignancies, including colorectal cancer, gastroesophageal tumors, lung cancer, breast cancer, ovarian cancer, and primary brain tumors. Irinotecan exerts its antineoplastic effects through its active metabolite 7-ethyl-10-hydroxycamptothecin. This metabolite is also responsible for the classic side effects associated with irinotecan that include diarrhea and neutropenia. A pegylated form of this agent, etirinotecan pegol, is undergoing clinical development with the main goal of increasing its therapeutic efficacy and its safety. This agent decreases the maximal exposure to 7-ethyl-10-hydroxycamptothecin while providing continuous exposure to the treated tumor. The half-life of etirinotecan pegol is 50 days and it has been studied in different schedules: weekly, every other week, and once every 3 weeks. The maximum tolerated dose of etirinotecan pegol was found to be 145 mg/m2. There have already been two phase II clinical trials published showing the efficacy of this novel agent in the treatment of metastatic ovarian and breast cancer. The side effect profile was acceptable for most patients, with a number of patients experiencing diarrhea and even neutropenia.


Chemotherapeutic agent Etirinotecan pegol Irinotecan Evolving therapies Conjugated topoisomerase I inhibitor Topotecan Cancer 


  1. 1.
    Xie R, Mathijssen R, Sparreboom A, Verweij J, Karlsson M. Clinical pharmacokinetics of irinotecan and its metabolites: a population analysis. J Clin Oncol. 2002;20(15):3293–301.PubMedCrossRefGoogle Scholar
  2. 2.
    Rivory LP, Haaz MC, Canal P, Lokiec F, Armand JP, Robert J. Pharmacokinetic interrelationships of irinotecan (CPT-11) and its three major plasma metabolites in patients enrolled in phase I/II trials. Clin Cancer Res. 1997;3:1261–6.PubMedGoogle Scholar
  3. 3.
    Chabot GG. Clinical pharmacokinetics of irinotecan. Clin Pharmacokinet. 1997;33(4):245–59.PubMedCrossRefGoogle Scholar
  4. 4.
    Saliba F, Hagipantelli R, Misset JL, Bastian G, Vassal G, Bonnay M, et al. Pathophysiology and therapy of irinotecan-induced delayed-onset diarrhea in patients with advanced colorectal cancer: a prospective assessment. J Clin Oncol. 1998;16(8):2745–51.PubMedGoogle Scholar
  5. 5.
    Abigerges D, Chabot G, Armand JP, Herait P, Gouyette A, Gandia D. Phase 1 and pharmacologic studies of the camptothecin analog irinotecan administered every 3 weeks in cancer patients. J Clin Oncol. 1995;13(1):210–21.PubMedGoogle Scholar
  6. 6.
    Gupta E, Lestingi T, Mick R, Ramirez J, Vokes E, Ratain M. Metabolic fate of irinotecan in humans: correlation of glucoroidation with diarrhea. Cancer Res. 1994;54:3723–5.PubMedGoogle Scholar
  7. 7.
    Rothenberg ML, Kuhn JG, Rodriguez FI, Eckhardt SG, Villalona-Calero MA, Rinaldi DA, et al. Phase 1 dose-finding and pharmacokinetic trial of irinotecan (CPT-11) administered every two weeks. Ann Oncol. 2001;12:1631–41.PubMedCrossRefGoogle Scholar
  8. 8.
    Kawato Y, Aonuma M, Hirota Y, Kuga H, Sato K. Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res. 1991;51:4187–91.PubMedGoogle Scholar
  9. 9.
    Conti JA, Kemeny NE, Saltz LB, Huang Y, Tong WP, Chou TC, et al. Irinotecan is an active agent in untreated patients with metastatic colorectal cancer. J Clin Oncol. 1996;14(3):709–15.PubMedGoogle Scholar
  10. 10.
    Rothenberg ML, Eckardt JR, Kuhn JG, Burris HA, Nelson J, Hilsenbeck SG, et al. Phase II trial of irinotecan in patients with progressive or rapidly recurrent colorectal cancer. J Clin Oncol. 1996;14(4):1128–35.PubMedGoogle Scholar
  11. 11.
    Vanhoefer U, Harstrick A, Vanhoefer U, Harstrick A, Achterrath W, Cao S, et al. Irinotecan in the treatment of colorectal cancer: clinical overview. J Clin Oncol. 2001;19(5):1501–18.PubMedGoogle Scholar
  12. 12.
    Bodurka DC, Levenback C, Wolf JK, Wharton JT, Kavanagh JJ, Gershenson DM. Phase II trial of irinotecan in patient with metastatic epithelial ovarian cancer or peritoneal cancer. J Clin Oncol. 2003;21(2):291–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud MD, Becouam Y, et al. N Engl J Med. 2001;364:1817–25.CrossRefGoogle Scholar
  14. 14.
    Kudoh S, Fujiwara Y, Takada Y, Yamamoto H, Kinoshita A, Ariyoshi Y, et al. Phase II study of irinotecan combined with cisplatin in patients with previously untreated small-cell lung cancer. West Japan Lung Cancer Group. J Clin Oncol. 1998;16(3):1068–74.PubMedGoogle Scholar
  15. 15.
    Chen G, Huynh M, Fehrenbacher L, West H, Lara PN, Yavorkovsky LL, et al. Goldstein Dd, Gandara D. Lau D J Clin Oncol. 2009;27(9):1401–4.CrossRefGoogle Scholar
  16. 16.
    Moulder S, Valkov N, Neuger A, Choi J, Lee JH, Minton S, et al. Cancer. 2008;113(10):2646–54.PubMedCrossRefGoogle Scholar
  17. 17.
    Perez EA, Hillman DW, Mailliard JA, Ingle JN, Ryan JM, Fitch TR, et al. Randomized phase II study of two irinotecan schedules for patients with metastatic breast cancer refractory to an anthracycline, a taxane, or both. J Clin Oncol. 2004;15(22):2849–55.CrossRefGoogle Scholar
  18. 18.
    Vassal G, Couanet D, Stockdale E, Geoffray A, Geoerger B, Orbach D, et al. Phase II trial of irinotecan in children with relapsed or refractory rhabdomyosarcoma: a joint study of the French Society of Pediatric Oncology and the United Kingdom Children’s Cancer Study Group. J Clin Oncol. 2007;25(4):356–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Friedman HS, Petros WP, Friedman AH, Schaaf LJ, Kerby T, Lawyer J, et al. Irinotecan therapy in adults with recurrent or progressive malignant glioma. J Clin Oncol. 1999;17(5):1516–25.PubMedGoogle Scholar
  20. 20.
    Shah MA, Ramanathan RK, Ilson DH, Levnor A, D’Adamo D, O’Reilly E, et al. Multicenter phase II study of irinotecan, cisplatin, and bevacizumab in patients with metastatic gastric or gastroesophageal junction adenocarcinoma. J Clin Oncol. 2006;24(33):5201–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Ilson DH, Saltz L, Enzinger P, Huang Y, Kornblith A, Gollub M, et al. Phase II trial of weekly irinotecan plus cisplatin in advanced esophageal cancer. J Clin Oncol. 1999;17(10):3270–5.PubMedGoogle Scholar
  22. 22.
    DeVore RF, Johnson DH, Crawford J, Garst J, Dimery IW, Eckardt J, et al. Phase II study of irinotecan plus cisplatin in patients with advanced non small-cell lung cancer. J Clin Oncol. 1999;17(9):2710–20.PubMedGoogle Scholar
  23. 23.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.PubMedCrossRefGoogle Scholar
  24. 24.
    Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351:337–45.PubMedCrossRefGoogle Scholar
  25. 25.
    Wilke H, Flynne-Jones R, Thaler J, Adenis A, Preusser P, Aguilar EA, et al. Cetuximab plus irinotecan in heavily pretreated metastatic colorectal cancer progressing on irinotecan: MABEL study. J Clin Oncol. 2008;26(33):5335–43.PubMedCrossRefGoogle Scholar
  26. 26.
    Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 2009;27(5):740–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Peeters M, Price TJ, Cervantes A, Sobrero AF, Ducreux M, Hotko Y, et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol. 2010;28(31):4706–13.PubMedCrossRefGoogle Scholar
  28. 28.
    Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausova J, Macarulla T, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol. 2012;30(28):3499–506.PubMedCrossRefGoogle Scholar
  29. 29.
    Mross K, Steinbild S, Baas F, Fmehling D, Radtke M, Voliotis D, et al. Results from an in vitro and a clinical/pharmacological phase I study with the combination of irinotecan and sorafenib. Eur J Cancer. 2007;43(1):55–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Innocenti F, Undevia SD, Lyer L, Chen PX, Das S, Kocherginsky M, et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol. 2004;22(8):1382–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Toffoli G, Cecchin E, Corona G, Russo A, Buonadonna A, D’Andrea M, et al. The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J Clin Oncol. 2006;24(19):3061–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Han JY, Lim HS, Shin ES, Yoo YK, Park YH, Lee JE, et al. Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol. 2006;24(15):2237–44.PubMedCrossRefGoogle Scholar
  33. 33.
    Cecchin E, Innocenti F, D’Andrea M, Corona G, De Mattia E, Biason P, et al. Predictive role of the UGT1A1, UGT1A7, and UGT1A9 genetic variants and the their haplotype on the outcome of metastatic colorectal cancer patients treated with fluorouracil, leucovorin, and irinotecan. J Clin Oncol. 2009;27(15):2457–65.PubMedCrossRefGoogle Scholar
  34. 34.
    Innocenti F, Kroetz D, Schuetz E, Dolan E, Ramirez J, Relling M, et al. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol. 2009;27(16):2604–14.PubMedCrossRefGoogle Scholar
  35. 35.
    Meyerhardt J, Kwok A, Ratain M, McGovren P, Fuchs C. Relationship of baseline serum bilirubin to efficacy and toxicity of single-agent irinotecan in patients with metastatic colorectal cancer. J Clin Oncol. 2004;22(8):1439–46.PubMedCrossRefGoogle Scholar
  36. 36.
    Raymond E, Boige V, Faovre S, Sanderink GJ, Rixe O, Vernillet L, et al. Dosage adjustment and pharmacokinetic profile of irinotecan in cancer patients with hepatic dysfunction. J Clin Oncol. 2002;20(21):4303–12.PubMedCrossRefGoogle Scholar
  37. 37.
    Davis FF, Van Es T, Palczuk NC. Non-immunogenic polypeptides. United States patent US. 1979;4:179,337.Google Scholar
  38. 38.
    Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10(21):1451–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Allen TM, Austin GA, Chonn A, Lin L, Lee KC. Uptake of liposomes by cultured mouse bone marrow macrophages: influence of liposome composition and size. Biochim Biophys Acta. 1991;1061(1):56–64.PubMedCrossRefGoogle Scholar
  40. 40.
    Pasut G, Veronese FM. PEGylation for improving the effectiveness of therapeutic biomolecules. Drugs Today (Barc). 2009;45(9):687–95.PubMedCrossRefGoogle Scholar
  41. 41.
    Hershfield MS, Buckley RH, Greenberg ML, Melton AL, Schiff R, Hatem C, et al. Treatment of adenosine deaminase deficiency with polyethylene glycol-modified adenosine deaminase. N Engl J Med. 1987;316(10):589–96.PubMedCrossRefGoogle Scholar
  42. 42.
    Ettinger LJ, Kurtzberg J, Voute PA, Jurgens H, Halpern SL. An open-label, multicenter study of polyethylene glycol-L-asparaginase for the treatment of acute lymphoblastic leukemia. Cancer. 1995;75(5):1176–81.PubMedCrossRefGoogle Scholar
  43. 43.
    Jameson GS, Hamm JT, Weiss GJ, Alemany C, Anthony S, Basche M, et al. A multicenter, phase 1, dose-escalation study to assess the safety, tolerability, and pharmacokinetics of etirotecan pegol in patients with refractory solid tumors. Clin Cancer Res. 2013;19(1):268–78.PubMedCrossRefGoogle Scholar
  44. 44.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan R, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92(3):205–16.PubMedCrossRefGoogle Scholar
  45. 45.
    Vergote I, Garcia A, Micha J, Pippitt C, Bendell J, Spitz D, et al. Randomized multicenter phase II trial comparing two schedules of etirinotecan pegol (NKTR-102) in women with recurrent platinum-resistant/refractory epithelial ovarian cancer. J Clin Oncol. 2013;31(32):4060–6. doi:10.1200/JCO.2012.45.1278.PubMedCrossRefGoogle Scholar
  46. 46.
    Awada A, Garcia A, Chan S, Jerusalem GH, Coleman RE, Huizing MT, et al. Two schedules of etirinotecan pegol (NKTR-102) in patients with previously treated metastatic breast cancer: a randomized phase 2 study. Lancet Oncol. 2013;14(12):1216–25.PubMedCrossRefGoogle Scholar
  47. 47.
    Rowinsky EK, Rizzo J, Ochoa L, Takimoto CH, Forouzesh B, Schwartz G, et al. A phase I and pharcokinetic study of pegylated camptothecin as a 1-hour infusion every 3 weeks in patients with advanced solid malignancies. J Clin Oncol. 2003;21(1):148–57.PubMedCrossRefGoogle Scholar
  48. 48.
    Scott LC, Yao JC, Benson 3rd AB, Thomas AL, Falk S, Mena RR, et al. A phase II study of pegylated-camptothecin (pegamotecan) in the treatment of locally advanced and metastatic gastric and gastro-oesophaeal junction adenocarcinoma. Cancer Chemother Pharmacol. 2009;63(2):363–70.PubMedCrossRefGoogle Scholar
  49. 49.
    Infante JR, Keedy VL, Jones SF, Zamboni WC, Chan E, Bendell JC, et al. Phase I and pharmacokinetic study of IHL-305 (PEGylated liposomal irinotecan) in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2012;70(5):699–705.PubMedCrossRefGoogle Scholar
  50. 50.
    Patnaik A, Papadopoulos KP, Tolcher AW, Beeram M, Urien S, Schaaf LJ, et al. Phase I dose-escalation study of EZN-2208 (PEG-SN38), a novel conjugate of poly(ethylene) glycol and SN38, administered weekly in patients with advanced cancer. Cancer Chemother Pharmacol. 2013;71(6):1499–506.PubMedCrossRefGoogle Scholar
  51. 51.
    Pastorino F, Loi M, Sapra P, Becherini P, Cilli M, Emionite L, et al. Tumor regression and curability of preclinical neuroblastoma models by PEGylated SN38 (ENZ-2208), a novel topoisomerase I inhibitor. Clin Cancer Res. 2010;16:4809–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Hematology and OncologyFlorida Hospital Cancer InstituteOrlandoUSA

Personalised recommendations