Skip to main content

Advertisement

Log in

Exploring Novel Therapeutic Targets in GIST: Focus on the PI3K/Akt/mTOR Pathway

  • Sarcomas (SR Patel, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Gastrointestinal stromal tumors (GISTs) are the most common soft tissue sarcoma, and most feature abnormalities in two genes encoding the receptor tyrosine kinases (RTKs), KIT, and PDGFRA. The RTK inhibitor imatinib revolutionized treatment in GIST; however, drug resistance remains a challenge. Constitutive autophosphorylation of RTKs is linked to phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway hyperactivation, which is central to oncogenic signaling, and known to be dysregulated in GIST. Preclinical experiments have confirmed that inhibiting the PI3K/Akt/mTOR pathway is a rational target for therapy. Early studies using mTOR inhibitors have shown limited success, which may be due to the activation of Akt that occurs following mTORC1 inhibition. Therefore, targeting PI3K or Akt, which lie upstream of mTORC1, may translate into more complete pathway inhibition. Several treatment strategies are currently being developed in phase 1 and 2 clinical trials. Compounds currently in development include pan-Class I PI3K inhibitors, dual PI3K/mTOR inhibitors, and Akt inhibitors. The aim of this review is to highlight the evidence for targeting PI3K/Akt/mTOR-dependent mechanisms in GIST and to evaluate the existing preclinical and clinical data supporting this strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance ••Of major importance

  1. Ducimetiere F, Lurkin A, Ranchere-Vince D, et al. Incidence rate, epidemiology of sarcoma and molecular biology. Preliminary results from EMS study in the Rhone-Alpes region. Bull Cancer. 2010;97:629–41.

    PubMed  CAS  Google Scholar 

  2. Schoffski P, Reichardt P, Blay JY, et al. A phase I-II study of everolimus (RAD001) in combination with imatinib in patients with imatinib-resistant gastrointestinal stromal tumors. Ann Oncol. 2010;21:1990–8.

    Article  PubMed  CAS  Google Scholar 

  3. Joensuu H. Gastrointestinal stromal tumor (GIST). Ann Oncol. 2006;17 Suppl 10:x280–6.

    Article  PubMed  Google Scholar 

  4. Cichoz-Lach H, Kasztelan-Szczerbinska B, Slomka M. Gastrointestinal stromal tumors: epidemiology, clinical picture, diagnosis, prognosis and treatment. Pol Arch Med Wewn. 2008;118:216–21.

    PubMed  Google Scholar 

  5. Sircar K, Hewlett BR, Huizinga JD, et al. Interstitial cells of Cajal as precursors of gastrointestinal stromal tumors. Am J Surg Pathol. 1999;23:377–89.

    Article  PubMed  CAS  Google Scholar 

  6. Fletcher CD, Berman JJ, Corless C, et al. Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum Pathol. 2002;33:459–65.

    Article  PubMed  Google Scholar 

  7. Dematteo RP, Ballman KV, Antonescu CR, et al. Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet. 2009;373:1097–104.

    Article  PubMed  CAS  Google Scholar 

  8. Hirota S, Isozaki K, Moriyama Y, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998;279:577–80.

    Article  PubMed  CAS  Google Scholar 

  9. Hirota S, Ohashi A, Nishida T, et al. Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology. 2003;125:660–7.

    Article  PubMed  CAS  Google Scholar 

  10. Sommer G, Agosti V, Ehlers I, et al. Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase. Proc Natl Acad Sci USA. 2003;100:6706–11.

    Article  PubMed  CAS  Google Scholar 

  11. Maleddu A, Pantaleo MA, Nannini M, Biasco G. The role of mutational analysis of KIT and PDGFRA in gastrointestinal stromal tumors in a clinical setting. J Transl Med. 2011;9:75.

    Article  PubMed  CAS  Google Scholar 

  12. Cohen MH, Farrell A, Justice R, Pazdur R. Approval summary: imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Oncologist. 2009;14:174–80.

    Article  PubMed  CAS  Google Scholar 

  13. Plaat BE, Hollema H, Molenaar WM, et al. Soft tissue leiomyosarcomas and malignant gastrointestinal stromal tumors: differences in clinical outcome and expression of multidrug resistance proteins. J Clin Oncol. 2000;18:3211–20.

    PubMed  CAS  Google Scholar 

  14. Gold JS, Dematteo RP. Combined surgical and molecular therapy: the gastrointestinal stromal tumor model. Ann Surg. 2006;244:176–84.

    Article  PubMed  Google Scholar 

  15. Gramza AW, Corless CL, Heinrich MC. Resistance to tyrosine kinase inhibitors in gastrointestinal stromal tumors. Clin Cancer Res. 2009;15:7510–8.

    Article  PubMed  CAS  Google Scholar 

  16. Goodman VL, Rock EP, Dagher R, et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res. 2007;13:1367–73.

    Article  PubMed  CAS  Google Scholar 

  17. Demetri GD, van Oosterom AT, Garrett CR, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 2006;368:1329–38.

    Article  PubMed  CAS  Google Scholar 

  18. Leigl B, Fletcher JA, Corless CL, et al. Correlation between KIT mutations and sunitinib (SU) resistance in GIST [abstract 92]. Presented at the 2008 ASCO Gastrointestinal Cancers Symposium. Orlando, Florida, USA; January 25–27, 2008.

  19. Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347:472–80.

    Article  PubMed  CAS  Google Scholar 

  20. Verweij J, Casali PG, Zalcberg J, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet. 2004;364:1127–34.

    Article  PubMed  CAS  Google Scholar 

  21. Heinrich MC, Corless CL, Blanke CD, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol. 2006;24:4764–74.

    Article  PubMed  CAS  Google Scholar 

  22. •• Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology Nat Rev Cancer. 2011;11:865–78. A comprehensive review of GIST focusing on pathologic characteristics, oncogenic mutations, and mechanisms of resistance.

    CAS  Google Scholar 

  23. Debiec-Rychter M, Cools J, Dumez H, et al. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology. 2005;128:270–9.

    Article  PubMed  CAS  Google Scholar 

  24. Antonescu CR, Besmer P, Guo T, et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res. 2005;11:4182–90.

    Article  PubMed  CAS  Google Scholar 

  25. Chen LL, Trent JC, Wu EF, et al. A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res. 2004;64:5913–9.

    Article  PubMed  CAS  Google Scholar 

  26. Lim KH, Huang MJ, Chen LT, et al. Molecular analysis of secondary kinase mutations in imatinib-resistant gastrointestinal stromal tumors. Med Oncol. 2008;25:207–13.

    Article  PubMed  CAS  Google Scholar 

  27. Ou WB, Fletcher CDM, Demetri GD, Fletcher JA. Protein kinase C theta (PKCθ) and c-Jun regulate proliferation through cyclin D1 in KIT-independent gastrointestinal stromal tumors [abstract 952]. Presented at the 102nd Annual Meeting of the AACR. Orlando, Florida, USA; April 2–6, 2011.

  28. Tarn C, Rink L, Merkel E, et al. Insulin-like growth factor 1 receptor is a potential therapeutic target for gastrointestinal stromal tumors. Proc Natl Acad Sci USA. 2008;105:8387–92.

    Article  PubMed  CAS  Google Scholar 

  29. Blanke CD, Demetri GD, von Mehren M, et al. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol. 2008;26:620–5.

    Article  PubMed  CAS  Google Scholar 

  30. Bauer S, Duensing A, Demetri GD, Fletcher JA. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene. 2007;26:7560–8.

    Article  PubMed  CAS  Google Scholar 

  31. Hollander MC, Blumenthal GM, Dennis PA. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer. 2011;11:289–301.

    Article  PubMed  CAS  Google Scholar 

  32. Katso R, Okkenhaug K, Ahmadi K, et al. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2001;17:615–75.

    Article  PubMed  CAS  Google Scholar 

  33. Fruman DA, Meyers RE, Cantley LC. Phosphoinositide kinases. Annu Rev Biochem. 1998;67:481–507.

    Article  PubMed  CAS  Google Scholar 

  34. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9:550–62.

    Article  PubMed  CAS  Google Scholar 

  35. Zhao L, Vogt PK. Class I PI3K in oncogenic cellular transformation. Oncogene. 2008;27:5486–96.

    Article  PubMed  CAS  Google Scholar 

  36. Mahalingam D, Mita A, Sankhala K, et al. Targeting sarcomas: novel biological agents and future perspectives. Curr Drug Targets. 2009;10:937–49.

    Article  PubMed  CAS  Google Scholar 

  37. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. J Biol Chem. 1998;273:13375–8.

    Article  PubMed  CAS  Google Scholar 

  38. Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8:627–44.

    Article  PubMed  CAS  Google Scholar 

  39. Sridharan S, Basu A. S6 kinase 2 promotes breast cancer cell survival via Akt. Cancer Res. 2011;71:2590–9.

    Article  PubMed  CAS  Google Scholar 

  40. Pastor MD, Garcia-Yebenes I, Fradejas N, et al. mTOR/S6 kinase pathway contributes to astrocyte survival during ischemia. J Biol Chem. 2009;284:22067–78.

    Article  PubMed  CAS  Google Scholar 

  41. Glantschnig H, Fisher JE, Wesolowski G, et al. M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ. 2003;10:1165–77.

    Article  PubMed  CAS  Google Scholar 

  42. Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta. 2010;1804:433–9.

    Article  PubMed  CAS  Google Scholar 

  43. •• Rios-Moreno MJ, Jaramillo S, Diaz-Delgado M, et al. Differential activation of MAPK and PI3K/AKT/mTOR pathways and IGF1R expression in gastrointestinal stromal tumors. Anticancer Res. 2011;31:3019–25. Characterizes genetic alterations of the PI3K and MAPK pathways in primary wild-type and mutated GIST samples.

    PubMed  CAS  Google Scholar 

  44. Sapi Z, Fule T, Hajdu M, et al. The activated targets of mTOR signaling pathway are characteristic for PDGFRA mutant and wild-type rather than KIT mutant GISTs. Diagn Mol Pathol. 2011;20:22–33.

    Article  PubMed  CAS  Google Scholar 

  45. Steelman LS, Chappell WH, Abrams SL, et al. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging Aging (Albany NY). 2011;3:192–222.

  46. Heinrich MC, Corless CL, Duensing A, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299:708–10.

    Article  PubMed  CAS  Google Scholar 

  47. Daniels M, Lurkin I, Pauli R, et al. Spectrum of KIT/PDGFRA/BRAF mutations and Phosphatidylinositol-3-Kinase pathway gene alterations in gastrointestinal stromal tumors (GIST). Cancer Lett. 2011;312:43–54.

    Article  PubMed  CAS  Google Scholar 

  48. Quattrone A, Wozniak A, Dewaele B, et al. PTEN inactivation in gastrointestinal stromal tumors (GIST): possible relevance for treatment of imatinib-resistant disease. Mol Cancer Ther. 2011;10:A166. abstract.

    Article  Google Scholar 

  49. •• Wang CM, Huang K, Zhou Y, et al. Molecular mechanisms of secondary imatinib resistance in patients with gastrointestinal stromal tumors. J Cancer Res Clin Oncol. 2010;136:1065–71. Assesses the molecular and genomic changes in imatinib-resistant GISTs, providing rationale for targeting the PI3K/Akt/mTOR pathway in this cancer type.

    Article  PubMed  CAS  Google Scholar 

  50. Ricci R, Maggiano N, Castri F, et al. Role of PTEN in gastrointestinal stromal tumor progression Arch Pathol Lab Med. 2004;128:421–5.

    CAS  Google Scholar 

  51. Yang J, Ikezoe T, Nishioka C, et al. Long-term exposure of gastrointestinal stromal tumor cells to sunitinib induces epigenetic silencing of the PTEN gene. Int J Cancer. 2012;130:959–66.

    Article  PubMed  CAS  Google Scholar 

  52. Markman B, Dienstmann R, Tabernero J. Targeting the PI3K/Akt/mTOR pathway – beyond rapalogs. Oncotarget. 2010;1:530–43.

    PubMed  Google Scholar 

  53. Reichardt P, Reichardt A, Pink D. Molecular targeted therapy of gastrointestinal stromal tumors. Curr Cancer Drug Targets. 2011;11:688–97.

    Article  PubMed  CAS  Google Scholar 

  54. • Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol. 2010;28:1075–83. An in-depth review describing PI3K/Akt/mTOR pathway signaling, its role in multiple cellular processes, and potential inhibition in human cancers.

    Article  PubMed  CAS  Google Scholar 

  55. Conley AP, Araujo D, Ludwig J, et al. A randomized phase II study of perifosine (P) plus imatinib for patients with imatinib-resistant gastrointestinal stromal tumor (GIST). J Clin Oncol. 2009;27:10563. abstract.

    Google Scholar 

  56. Kondapaka SB, Singh SS, Dasmahapatra GP, et al. Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther. 2003;2:1093–103.

    PubMed  CAS  Google Scholar 

  57. Pantaleo MA, Nicoletti G, Nanni C, et al. Preclinical evaluation of KIT/PDGFRA and mTOR inhibitors in gastrointestinal stromal tumors using small animal FDG PET. J Exp Clin Cancer Res. 2010;29:173.

    Article  PubMed  CAS  Google Scholar 

  58. Hohenberger P, Bauer S, Gruenwald V, et al. Multicenter, single-arm, two-stage phase II trial of everolimus (RAD001) with imatinib in imatinib-resistant patients (pts) with advanced GIST. J Clin Oncol. 2010;28:10048. abstract.

    Google Scholar 

  59. Richter S, Pink D, Hohenberger P, et al. Multicenter, triple-arm, single-stage, phase II trial to determine the efficacy and safety of everolimus (RAD001) in patients with refractory bone or soft tissue sarcomas including GIST. J Clin Oncol. 2010;28:10038. abstract.

    Google Scholar 

  60. Wander SA, Hennessy BT, Slingerland JM. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest. 2011;121:1231–41.

    Article  PubMed  CAS  Google Scholar 

  61. Li F, Growney J, Battalagine L, et al. The effect combining the KIT inhibitor imatinib with the PI3K inhibitor BKM120 or the dual PI3K/mTOR inhibitor BEZ235 on the proliferation of gastrointestinal stromal tumor cell lines [abstract 2239]. Presented at the 102nd Annual Meeting of the AACR. Chicago, Illinois, USA; March 31–April 4, 2012.

  62. Floris G, Sciot R, Wozniak A, et al. Activity of GDC-0941, an inhibitor of phosphotidylinositol 3 kinase (PI3K), in gastrointestinal stromal tumor (GIST) xenograft and duration of response after discontinuation of treatment in combination with imatinib. J Clin Oncol. 2010;25:10020. abstract.

    Google Scholar 

  63. Van Looy T, Wozniak A, Sciot R, et al. Efficacy of a phosphoinositol 3 kinase (PI3K) inhibitor in gastrointestinal stromal tumor (GIST) models. J Clin Oncol. 2012;30:10030. abstract.

    Google Scholar 

  64. Chiorean EG, Mahadevan D, Harris WB, et al. Phase I evaluation of SF1126, a vascular targeted PI3K inhibitor, administered twice weekly IV in patients with refractory solid tumors. J Clin Oncol. 2009;27:2558. abstract.

    Google Scholar 

  65. Wagner AJ, Bendell JC, Dolly S, et al. A first-in-human phase I study to evaluate GDC-0980, an oral PI3K/mTOR inhibitor, administered QD in patients with advanced solid tumors. J Clin Oncol. 2011;29:3020. abstract.

    Google Scholar 

  66. Liegl B, Kepten I, Le C, et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol. 2008;216:64–74.

    Article  PubMed  CAS  Google Scholar 

  67. Gajiwala KS, Wu JC, Christensen J, et al. KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. Proc Natl Acad Sci USA. 2009;106:1542–7.

    Article  PubMed  CAS  Google Scholar 

  68. Juric D, Baselga J. Tumor genetic testing for patient selection in phase I clinical trials: the case of PI3K inhibitors. J Clin Oncol. 2012;30:765–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for medical editorial assistance was provided by Novartis Pharmaceuticals. Allan P. Kiprianos, PhD provided medical editorial assistance with this manuscript.

Conflict of Interest

Shreyaskumar Patel has been a consultant for Novartis, Merck, GSK, and Johnson and Johnson and has received grant/research support from Infinity, Johnson and Johnson, PharmaMar, and Eisai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreyaskumar Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, S. Exploring Novel Therapeutic Targets in GIST: Focus on the PI3K/Akt/mTOR Pathway. Curr Oncol Rep 15, 386–395 (2013). https://doi.org/10.1007/s11912-013-0316-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-013-0316-6

Keywords

Navigation