Skip to main content

Advertisement

Log in

HPV Vaccination and Cervical Cancer

  • Cancer Prevention (J Cuzick, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Cervical cancer is the third most common cancer in women worldwide and often affects women under 40 years with young families. Vaccination against the human papillomavirus (HPV) is a major advance, since it offers primary prevention against the infectious agent that is the main cause of the disease. Two prophylactic vaccines have shown great promise in clinical trials. One of these (Gardasil®) contains all four HPV types, offering protection against genital warts (types 6 and 11) as well as cervical cancer (types 16 and 18). The other (Cervarix®) contains types 16 and 18, targeting cervical cancer alone, but also has a degree of cross-protection against types 31 and 45, which could significantly increase the level of protection. Adolescent girls remain the primary target of vaccination programmes, but the issues of vaccinating boys and older women are increasingly debated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jemal A, Bray F, Center MM, Ferlay J, et al. Global cancer statistics: GLOBOCAN 2008. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Smith JS, Lindsay L, Hoots B, et al. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer. 2007;121:621–32.

    Article  PubMed  CAS  Google Scholar 

  3. Capri S, Gasparini R, Panatto D, et al. Cost-consequences evaluation between bivalent and quadrivalent HPV vaccines in Italy: The potential impact of different cross-protection profiles. Gynecol Oncol. 2011;121:514–21.

    Article  PubMed  CAS  Google Scholar 

  4. de Sanjose S, Quint WG, Alemany L, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11:1048–56.

    Article  PubMed  Google Scholar 

  5. Giuliano AR, Tortolero-Luna G, Ferrer E, et al. Epidemiology of human papillomavirus infection in men, cancers other than cervical and benign conditions. Vaccine. 2008;26 Suppl 10:K17–28.

    Article  PubMed  Google Scholar 

  6. Koshiol J, Lindsay L, Pimenta JM, et al. Persistent human papillomavirus infection and cervical neoplasia: a systematic review and meta-analysis. Am J Epidemiol. 2008;168:123–37.

    Article  PubMed  Google Scholar 

  7. Lacey CJ, Lowndes CM, Shah KV. Chapter 4: Burden and management of non-cancerous HPV-related conditions: HPV-6/11 disease. Vaccine. 2006;24 Suppl 3:S3/35–41.

    Google Scholar 

  8. Stanley M. Pathology and epidemiology of HPV infection in females. Gynecol Oncol. 2010;117:S5–10.

    Article  PubMed  Google Scholar 

  9. •• Schwarz TF, Leo O. Immune response to human papillomavirus after prophylactic vaccination with AS04-adjuvanted HPV-16/18 vaccine: improving upon nature. Gynecol Oncol. 2008;110:S1-10. Excellent explanation of immune mechanisms in HPV infection.

    Article  PubMed  CAS  Google Scholar 

  10. Safaeian M, Porras C, Schiffman M, et al. Epidemiological study of anti-HPV16/18 seropositivity and subsequent risk of HPV16 and −18 infections. J Natl Cancer Inst. 2010;102:1653–62.

    Article  PubMed  CAS  Google Scholar 

  11. Castellsague X. Risk of new infection with the same HPV type in women with naturally acquired HPV 16/18 antibodies (abstract No 44). 13th Biennial meeting of the International Gynaecologic Cancer Society (IGCS); 2010 Oct 23–26; Prague; 2010 Oct 23–26.

  12. Schwarz TF, Kocken M, Petaja T, et al. Correlation between levels of human papillomavirus (HPV)-16 and 18 antibodies in serum and cervicovaginal secretions in girls and women vaccinated with the HPV-16/18 AS04-adjuvanted vaccine. Hum Vaccin. 2010;6:1054–61.

    Article  PubMed  CAS  Google Scholar 

  13. Haupt RM, Sings HL. The efficacy and safety of the quadrivalent human papillomavirus 6/11/16/18 vaccine gardasil. J Adolesc Health. 2011;49:467–75.

    Article  PubMed  Google Scholar 

  14. Petaja T, Pedersen C, Poder A, et al. Long-term persistence of systemic and mucosal immune response to HPV-16/18 AS04-adjuvanted vaccine in preteen/adolescent girls and young women. Int J Cancer. 2011;129:2147–57.

    Article  PubMed  Google Scholar 

  15. Rivera Medina DM, Valencia A, de Velasquez A, et al. Safety and immunogenicity of the HPV 16/18 AS04-adjuvanted vaccine: a randomized, controlled trial in adolescent girls. J Adolesc Health. 2010;46:414–21.

    Article  Google Scholar 

  16. Romanowski B. Sustained efficacy and immunogenicity of the human papillomavirus (HPV) - 16/18 ASO4-adjuvanted vaccine: analysis of a randomised placebo-controlled trial up to 6.4 years. Lancet. 2009;374:1975–85.

    Article  PubMed  CAS  Google Scholar 

  17. Roteli-Martins CM, Naud P, Borba P, et al. Sustained immunogenicity of the HPV-16/18 AS04-adjuvanted vaccine: follow up to 8.4 years. Abstract. Presented at EPSID, Nice, 2010.

  18. Naud PRMC, De Carvalho N, Teixeira J, Borba P et al. HPV-16/18 Vaccine: Sustained Immunogenicity And Efficacy Up To 9.4 Years. IPV Conference, Sept 17–22 2011 Berlin; 2011. p. Abstract number O-18.04

  19. Schwarz TF, Huang LM, Medina DM, et al. Four-Year Follow-up of the Immunogenicity and Safety of the HPV-16/18 AS04-Adjuvanted Vaccine When Administered to Adolescent Girls Aged 10–14 Years. J Adolesc Health. 2012;50:187–94.

    Article  PubMed  Google Scholar 

  20. Einstein MH, Baron M, Levin MJ, et al. Comparative immunogenicity and safety of human papillomavirus (HPV)-16/18 vaccine and HPV-6/11/16/18 vaccine: follow-up from months 12–24 in a Phase III randomized study of healthy women aged 18–45 years. Hum Vaccin. 2011;7:1343–58.

    Article  PubMed  CAS  Google Scholar 

  21. •• Einstein MH, Baron M, Levin MJ, et al. Comparison of the immunogenicity of the human papillomavirus (HPV)-16/18 vaccine and the HPV-6/11/16/18 vaccine for oncogenic non-vaccine types HPV-31 and HPV-45 in healthy women aged 18–45 years. Hum Vaccin. 2011;7:1359–73. The direct comparison trial of the two vaccines.

    Article  PubMed  CAS  Google Scholar 

  22. Brown DR, Garland SM, Ferris DG, et al. The humoral response to Gardasil(R) over four years as defined by Total IgG and competitive Luminex immunoassay. Hum Vaccin. 2011;7:1–9.

    Google Scholar 

  23. David MP, Van Herck K, Hardt K, et al. Long-term persistence of anti-HPV-16 and −18 antibodies induced by vaccination with the AS04-adjuvanted cervical cancer vaccine: Modeling of sustained antibody responses. Gynecol Oncol. 2009;115:S1–6.

    Article  PubMed  CAS  Google Scholar 

  24. Syrjanen K. Persistent high-risk human papillomavirus (HPV) infections as surrogate endpoints of progressive cervical disease. Potential new endpoint for efficacy studies with new-generation (non-HPV 16/18) prophylactic HPV vaccines. Eur J Gynaecol Oncol. 2011;32:17–33.

    PubMed  CAS  Google Scholar 

  25. Jenkins D. A review of cross-protection against oncogenic HPV by an HPV-16/18 AS04-adjuvanted cervical cancer vaccine: importance of virological and clinical endpoints and implications for mass vaccination in cervical cancer prevention. Gynecol Oncol. 2008;110:S18–25.

    Article  PubMed  CAS  Google Scholar 

  26. Paavonen J, Naud P, Salmeron J, et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet. 2009;374:301–14.

    Article  PubMed  CAS  Google Scholar 

  27. •• Lehtinen M, Paavonen J, Wheeler CM, et al. Overall efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical intraepithelial neoplasia grade 3 or greater: end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 2012;13:89–99. End of study results of the Cervarix® Phase III trial.

    Article  PubMed  CAS  Google Scholar 

  28. Kreimer AR, Gonzalez P, Katki HA, et al. Efficacy of a bivalent HPV 16/18 vaccine against anal HPV 16/18 infection among young women: a nested analysis within the Costa Rica Vaccine Trial. Lancet Oncol. 2011;12:862–70.

    Article  PubMed  CAS  Google Scholar 

  29. • Kjaer SK, Sigurdsson K, Iversen OE, et al. A pooled analysis of continued prophylactic efficacy of quadrivalent human papillomavirus (Types 6/11/16/18) vaccine against high-grade cervical and external genital lesions. Cancer Prev Res (Phila Pa). 2009;2:868–78. The final results of the Gardasil trials showing vaccine efficacy against high grade disease.

    Article  Google Scholar 

  30. Brown DR, Kjaer SK, Sigurdsson K, et al. The Impact of Quadrivalent Human Papillomavirus (HPV; Types 6, 11, 16, and 18) L1 Virus-Like Particle Vaccine on Infection and Disease Due to Oncogenic Nonvaccine HPV Types in Generally HPV-Naive Women Aged 16–26 Years. J Infect Dis. 2009;199:926–35.

    Article  PubMed  Google Scholar 

  31. Dillner J, Kjaer SK, Wheeler CM, et al. Four year efficacy of prophylactic human papillomavirus quadrivalent vaccine against low grade cervical, vulvar, and vaginal intraepithelial neoplasia and anogenital warts: randomised controlled trial. BMJ. 2010;341:c3493.

    Article  PubMed  Google Scholar 

  32. • Brotherton JM, Fridman M, May CL, et al. Early effect of the HPV vaccination programme on cervical abnormalities in Victoria, Australia: an ecological study. Lancet. 2011;377:2085–92. The first evidence of population efficacy of HPV vaccination, showing a reduction in high grade cervical disease.

    Article  PubMed  Google Scholar 

  33. Donovan B, Franklin N, Guy R, et al. Quadrivalent human papillomavirus vaccination and trends in genital warts in Australia: analysis of national sentinel surveillance data. Lancet Infect Dis. 2011;11:39–44.

    Article  PubMed  Google Scholar 

  34. Harper DM, Franco EL, Wheeler CM, et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet. 2006;367:1247–55.

    Article  PubMed  CAS  Google Scholar 

  35. •• Wheeler CM, Castellsague X, Garland SM, et al. Cross-protective efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types: end-of-study (4-year) analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 2012;13:100–10. The end of study cross-protection data, with detailed discussion of the cross-protection issue.

    Article  PubMed  CAS  Google Scholar 

  36. Wheeler CM, Kjaer SK, Sigurdsson K, et al. The Impact of Quadrivalent Human Papillomavirus (HPV; Types 6, 11, 16, and 18) L1 Virus-Like Particle Vaccine on Infection and Disease Due to Oncogenic Nonvaccine HPV Types in Sexually Active Women Aged 16–26 Years. J Infect Dis. 2009;199:936–44.

    Article  PubMed  Google Scholar 

  37. Bulkmans NW, Bleeker MC, Berkhof J, et al. Prevalence of types 16 and 33 is increased in high-risk human papillomavirus positive women with cervical intraepithelial neoplasia grade 2 or worse. Int J Cancer. 2005;117:177–81.

    Article  PubMed  CAS  Google Scholar 

  38. Insinga RP, Perez G, Wheeler CM, et al. Incident cervical HPV infections in young women: transition probabilities for CIN and infection clearance. Cancer Epidemiol Biomarkers Prev. 2011;20:287–96.

    Article  PubMed  Google Scholar 

  39. Wheeler CM, Hunt WC, Joste NE, et al. Human papillomavirus genotype distributions: implications for vaccination and cancer screening in the United States. J Natl Cancer Inst. 2009;101:475–87.

    Article  PubMed  Google Scholar 

  40. Bosch FX, Burchell AN, Schiffman M, et al. Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia. Vaccine. 2008;26 Suppl 10:K1–16.

    Article  PubMed  Google Scholar 

  41. Bonanni P, Cohet C, Kjaer SK, et al. A summary of the post-licensure surveillance initiatives for GARDASIL/SILGARD. Vaccine. 2010;28:4719–30.

    Article  PubMed  Google Scholar 

  42. Omer SB. Safety of quadrivalent human papillomavirus vaccine. J Intern Med. 2012;271:177–8.

    Article  PubMed  CAS  Google Scholar 

  43. Descamps D, Hardt K, Spiessens B, et al. Safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine for cervical cancer prevention: a pooled analysis of 11 clinical trials. Hum Vaccin. 2009;5:332–40.

    Article  PubMed  Google Scholar 

  44. Verstraeten T, Descamps D, David MP, et al. Analysis of adverse events of potential autoimmune aetiology in a large integrated safety database of AS04 adjuvanted vaccines. Vaccine. 2008;26:6630–8.

    Article  PubMed  CAS  Google Scholar 

  45. •• Einstein MH, Baron M, Levin MJ, et al. Comparison of the immunogenicity and safety of Cervarix and Gardasil human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18–45 years. Hum Vaccin. 2009;5. The direct comparison trial of the two vaccines

  46. Wacholder S, Chen BE, Wilcox A, et al. Risk of miscarriage with bivalent vaccine against human papillomavirus (HPV) types 16 and 18: pooled analysis of two randomised controlled trials. BMJ. 2010;340:c712.

    Article  PubMed  Google Scholar 

  47. Pomfret TC, Gagnon Jr JM, Gilchrist AT. Quadrivalent human papillomavirus (HPV) vaccine: a review of safety, efficacy, and pharmacoeconomics. J Clin Pharm Ther. 2011;36:1–9.

    Article  PubMed  CAS  Google Scholar 

  48. Markowitz LE, Hariri S, Unger ER, et al. Post-licensure monitoring of HPV vaccine in the United States. Vaccine. 2010;28:4731–7.

    Article  PubMed  Google Scholar 

  49. MHRA. Drug Safety Update Oct 2010, vol 4 issue 3: H2. Available at: http://www.mhra.gov.uk/home/groups/pl-p/documents/publication/con096842.pdf. Accessed 25th September 2011.

  50. Labadie J. Postlicensure safety evaluation of human papilloma virus vaccines. Int J Risk Saf Med. 2011;23:103–12.

    PubMed  Google Scholar 

  51. Szarewski A, Poppe W, Skinner SR, et al. Efficacy of the human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine in women aged 15–25 years with and without serological evidence of previous exposure to HPV-16/18. Int J Cancer. 2012;131(1):106–16 doi:10.1002/ijc.26362.

    Google Scholar 

  52. Paavonen J, Jenkins D, Bosch FX, et al. Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial (Patricia trial). Lancet. 2007;369:2161–70.

    Article  PubMed  CAS  Google Scholar 

  53. Olsson SE, Kjaer SK, Sigurdsson K, et al. Evaluation of quadrivalent HPV 6/11/16/18 vaccine efficacy against cervical and anogenital disease in subjects with serological evidence of prior vaccine type HPV infection. Hum Vaccin. 2009;5:696–704.

    Google Scholar 

  54. Schwarz TFSM, Schneider A, Wysocki J, HPV Study Group for Adult Women, et al. Immunogenicity and tolerability of an HPV-16/18 AS04-adjuvanted prophylactic cervical cancer vaccine in women aged 15–55 years. Vaccine. 2009;27:581–7.

    Article  PubMed  CAS  Google Scholar 

  55. Clifford GM, Gallus S, Herrero R, et al. Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: a pooled analysis. Lancet. 2005;366:991–8.

    Article  PubMed  CAS  Google Scholar 

  56. Ault KA. Effect of prophylactic human papillomavirus L1 virus-like-particle vaccine on risk of cervical intraepithelial neoplasia grade 2, grade 3, and adenocarcinoma in situ: a combined analysis of four randomised clinical trials. Lancet. 2007;369:1861–8.

    Article  PubMed  Google Scholar 

  57. Stanley M. Immune responses to human papillomavirus. Vaccine. 2006;24 Suppl 1:S16–22.

    Article  PubMed  Google Scholar 

  58. Munoz N, Manalastas Jr R, Pitisuttithum PT, et al. Safety, immunogenicity, and efficacy of quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine in women aged 24–45 years: a randomised, double-blind trial. Lancet. 2009;373:1949–57.

    Article  PubMed  CAS  Google Scholar 

  59. Castellsague X, Munoz N, Pitisuttithum P, et al. End-of-study safety, immunogenicity, and efficacy of quadrivalent HPV (types 6, 11, 16, 18) recombinant vaccine in adult women 24–45 years of age. Br J Cancer. 2011;105:28–37.

    Article  PubMed  CAS  Google Scholar 

  60. Cuschieri KS, Horne AW, Szarewski A, Cubie HA. Public awareness of human papillomavirus. J Med Screen. 2006;13:201–7.

    PubMed  CAS  Google Scholar 

  61. Skinner SR, Szarewski A, Romanowski B, et al. HPV-16/18 AS04-adjuvanted vaccine efficacy in > = 26-year-old women after 4-year follow-up. Presented at IPV Conference, Berlin, Sept 17–22, 2011. Abstract number O-18.06.

  62. Munoz N, Mendez F, Posso H, et al. Incidence, duration, and determinants of cervical human papillomavirus infection in a cohort of Colombian women with normal cytological results. J Infect Dis. 2004;190:2077–87.

    Article  PubMed  Google Scholar 

  63. Coupe VM, Berkhof J, Bulkmans NW, Snijders PJ, Meijer CJ. Age-dependent prevalence of 14 high-risk HPV types in the Netherlands: implications for prophylactic vaccination and screening. Br J Cancer. 2008;98:646–51.

    Article  PubMed  CAS  Google Scholar 

  64. Sellors JW, Karwalajtys TL, Kaczorowski J, et al. Incidence, clearance and predictors of human papillomavirus infection in women. CMAJ. 2003;168:421–5.

    PubMed  Google Scholar 

  65. Grainge MJ, Seth R, Guo L, et al. Cervical human papillomavirus screening among older women. Emerg Infect Dis. 2005;11:1680–5.

    Article  PubMed  Google Scholar 

  66. Joura EA, Garland SM, Paavonen J, et al. Effect of the human papillomavirus (HPV) quadrivalent vaccine in a subgroup of women with cervical and vulvar disease: retrospective pooled analysis of trial data. BMJ. 2012;344:e1401.

    Article  PubMed  Google Scholar 

  67. Michels KB, zur Hausen H. HPV vaccine for all. Lancet. 2009;374:268–70.

    Article  PubMed  Google Scholar 

  68. Kim JJ. Focus on research: weighing the benefits and costs of HPV vaccination of young men. N Engl J Med. 2011;364:393–5.

    Article  PubMed  CAS  Google Scholar 

  69. Malmqvist E, Natunen K, Lehtinen M, Helgesson G. Just implementation of human papillomavirus vaccination. J Med Ethics. 2012;38:247–9.

    Article  PubMed  Google Scholar 

  70. Szarewski A. Cervarix®: a bivalent vaccine against HPV types 16 and 18, with cross-protection against other high-risk HPV types. Expert Rev Vaccines. 2012;11(6):645–657. doi:10.1586/erv.12.42.

  71. Mehanna H, Jones TM, Gregoire V, Ang KK. Oropharyngeal carcinoma related to human papillomavirus. BMJ. 2010;340:c1439.

    Article  PubMed  Google Scholar 

  72. Brisson M, van de Velde N, Franco EL, Drolet M, Boily MC. Incremental impact of adding boys to current human papillomavirus vaccination programs: role of herd immunity. J Infect Dis. 2011;204:372–6.

    Article  PubMed  Google Scholar 

  73. Smith MA, Lew JB, Walker RJ, et al. The predicted impact of HPV vaccination on male infections and male HPV-related cancers in Australia. Vaccine. 2011;29:9112–22.

    Article  PubMed  Google Scholar 

  74. Block SL, Nolan T, Sattler C, et al. Comparison of the immunogenicity and reactogenicity of a prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in male and female adolescents and young adult women. Pediatrics. 2006;118:2135–45.

    Article  PubMed  Google Scholar 

  75. Petaja T, Keranen H, Karppa T, et al. Immunogenicity and safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine in healthy boys aged 10–18 years. J Adolesc Health. 2009;44:33–40.

    Article  PubMed  Google Scholar 

  76. Giuliano AR, Palefsky JM, Goldstone S, et al. Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. N Engl J Med. 2011;364:401–11.

    Article  PubMed  CAS  Google Scholar 

  77. Swedish KA, Factor SH, Goldstone SE. Prevention of recurrent high-grade anal neoplasia with quadrivalent human papillomavirus vaccination of men who have sex with men: a nonconcurrent cohort study. Clin Infect Dis. 2012;54:891–8.

    Article  PubMed  Google Scholar 

  78. Wilkin T, Lee JY, Lensing SY, et al. Safety and immunogenicity of the quadrivalent human papillomavirus vaccine in HIV-1-infected men. J Infect Dis. 2010;202:1246–53.

    Article  PubMed  Google Scholar 

  79. Levin MJ, Moscicki AB, Song LY, et al. Safety and immunogenicity of a quadrivalent human papillomavirus (types 6, 11, 16, and 18) vaccine in HIV-infected children 7 to 12 years old. J Acquir Immune Defic Syndr. 2010;55:197–204.

    Article  PubMed  Google Scholar 

  80. Romanowski B, Schwarz TF, Ferguson LM, et al. Immunogenicity and safety of the HPV-16/18 AS04-adjuvanted vaccine administered as a 2-dose schedule compared with the licensed 3-dose schedule: results from a randomized study. Hum Vaccin. 2011;7:1374–86.

    Article  PubMed  CAS  Google Scholar 

  81. Kreimer AR, Rodriguez AC, Hildesheim A, et al. Proof-of-Principle Evaluation of the Efficacy of Fewer Than Three Doses of a Bivalent HPV16/18 Vaccine. J Natl Cancer Inst. 2011;103:1444–51.

    Article  PubMed  CAS  Google Scholar 

  82. Esposito S, Birlutiu V, Jarcuska P, et al. Immunogenicity and safety of human papillomavirus-16/18 AS04-adjuvanted vaccine administered according to an alternative dosing schedule compared with the standard dosing schedule in healthy women aged 15 to 25 years: results from a randomized study. Pediatr Infect Dis J. 2011;30:e49–55.

    Article  PubMed  Google Scholar 

  83. Le Tallec D, Doucet D, Elouahabi A, et al. Cervarix, the GSK HPV-16/HPV-18 AS04-adjuvanted cervical cancer vaccine, demonstrates stability upon long-term storage and under simulated cold chain break conditions. Hum Vaccin. 2009;5:467–74.

    PubMed  Google Scholar 

  84. Bosch FX. Human papillomavirus: science and technologies for the elimination of cervical cancer. Expert Opinion Pharmacother. 2011;12:2189–204.

    Article  Google Scholar 

  85. Schiffman M, Wentzensen N, Wacholder S, et al. Human papillomavirus testing in the prevention of cervical cancer. J Natl Cancer Inst. 2011;103:368–83.

    Article  PubMed  Google Scholar 

  86. Bosch FX, Castellsague X, de Sanjose S. HPV and cervical cancer: screening or vaccination? Br J Cancer. 2008;98:15–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

A. Szarewski: board membership (MSD, GSK); consultancy, honoraria, and speakers’ bureaus (GSK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Szarewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szarewski, A. HPV Vaccination and Cervical Cancer. Curr Oncol Rep 14, 559–567 (2012). https://doi.org/10.1007/s11912-012-0259-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-012-0259-3

Keywords

Navigation