Skip to main content
Log in

Current Progress in Adaptive Radiation Therapy for Head and Neck Cancer

  • Head and Neck Cancers (EY Hanna, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Head and neck intensity-modulated radiotherapy (IMRT) remains toxic, and cannot compensate for anatomic changes or tumor response that occur during treatment. Adaptive radiotherapy (ART) is a novel approach to correct for variations in geometry of tumor and bystander anatomy with repeated imaging-based modification of treatment delivery. Technical limitations have hampered introduction of ART into routine practice. This review summarizes investigational challenges impacting development of head and neck ART, describes findings from early clinical testing of an automated ART platform, and highlights emerging directions of ongoing research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sobel S, Rubin P, Keller B, Poulter C. Tumor persistence as a predictor of outcome after radiation therapy of head and neck cancers. Int J Radiat Oncol Biol Phys. 1976;1(9–10):873–80.

    PubMed  CAS  Google Scholar 

  2. Barkley HT, Fletcher GH. The significance of residual disease after external irradiation of squamous-cell carcinoma of the oropharynx. Radiology. 1977;124(2):493–5.

    PubMed  CAS  Google Scholar 

  3. Suit HD, Walker AM. Assessment of the response of tumours to radiation: clinical and experimental studies. Br J Cancer Suppl. 1980;41 Suppl 4:1–10.

    Google Scholar 

  4. Trott KR. Human tumour radiobiology: clinical data. Strahlentherapie. 1983;159(7):393–7.

    PubMed  CAS  Google Scholar 

  5. Bhide SA, Davies M, Burke K, et al. Weekly volume and dosimetric changes during chemoradiotherapy with intensity-modulated radiation therapy for head and neck cancer: a prospective observational study. Int J Radiat Oncol Biol Phys. 2010;76(5):1360–8.

    Article  PubMed  Google Scholar 

  6. • Barker JL, Jr., Garden AS, Ang KK, et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys. 2004;59(4):960–70. A seminal study utilizing serial in-room CT imaging to catalog volumetric and positional tissue changes occurring during a course of H&N IMRT treatment, particularly changes involving parotid glands and tumor volumes.

    Article  PubMed  Google Scholar 

  7. Nutting CM, Morden JP, Harrington KJ, et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol. 2011;12(2):127–36.

    Article  PubMed  Google Scholar 

  8. Hansen EK, Bucci MK, Quivey JM, et al. Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2006;64(2):355–62.

    Article  PubMed  Google Scholar 

  9. Mohan R, Zhang X, Wang C, et al. Deforming intensity distributions to incorporate inter-fraction anatomic variations for image-guided IMRT. Int J Radiat Oncol Biol Phys. 2004;60(1):S226–S7.

    Article  Google Scholar 

  10. Court LE, Dong L, Lee AK, et al. An automatic CT-guided adaptive radiation therapy technique by online modification of multileaf collimator leaf positions for prostate cancer. Int J Radiat Oncol Biol Phys. 2005;62(1):154–63.

    Article  PubMed  Google Scholar 

  11. Court LE, Tishler RB, Petit J, et al. Automatic online adaptive radiation therapy techniques for targets with significant shape change: a feasibility study. Phys Med Biol. 2006;51(10):2493–501.

    Article  PubMed  Google Scholar 

  12. Gregoire V, Levendag P, Ang KK, et al. CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines. Radiother Oncol. 2003;69(3):227–36.

    Article  PubMed  Google Scholar 

  13. Chao KSC, Bhide S, Chen H, et al. Reduce in variation and improve efficiency of target volume delineation by a computer-assisted system using a deformable image registration approach. Int J Radiat Oncol Biol Phys. 2007;68(5):1512–21.

    Article  PubMed  Google Scholar 

  14. Gregoire V, De Neve W, Eisbruch A, et al. Intensity-modulated radiation therapy for head and neck carcinoma. Oncologist. 2007;12(5):555–64.

    Article  PubMed  Google Scholar 

  15. Eisbruch A, Gregoire V. Balancing risk and reward in target delineation for highly conformal radiotherapy in head and neck cancer. Semin Radiat Oncol. 2009;19(1):43–52.

    Article  PubMed  Google Scholar 

  16. Nangia S, Chufal KS, Tyagi A, et al. Selective nodal irradiation for head and neck cancer using intensity-modulated radiotherapy: application of RTOG consensus guidelines in routine clinical practice. Int J Radiat Oncol Biol Phys. 2009.

  17. Eisbruch A, Ten Haken RK, Kim HM, et al. Dose, volume, and function relationships in parotid salivary glands following conformal and intensity-modulated irradiation of head and neck cancer. Int J Radiat Oncol Biol Phys. 1999;45(3):577–87.

    Article  PubMed  CAS  Google Scholar 

  18. Chao KS, Deasy JO, Markman J, et al. A prospective study of salivary function sparing in patients with head-and-neck cancers receiving intensity-modulated or three-dimensional radiation therapy: initial results. Int J Radiat Oncol Biol Phys. 2001;49(4):907–16.

    Article  PubMed  CAS  Google Scholar 

  19. Feng FY, Kim HM, Lyden TH, et al. Intensity-modulated radiotherapy of head and neck cancer aiming to reduce dysphagia: early dose-effect relationships for the swallowing structures. Int J Radiat Oncol Biol Phys. 2007;68(5):1289–98.

    Article  PubMed  Google Scholar 

  20. Schwartz DL, Hutcheson K, Barringer D, et al. Candidate dosimetric predictors of long-term swallowing dysfunction after oropharyngeal intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2010;78(5):1356–65.

    Article  PubMed  Google Scholar 

  21. Chao KS, Majhail N, Huang CJ, et al. Intensity-modulated radiation therapy reduces late salivary toxicity without compromising tumor control in patients with oropharyngeal carcinoma: a comparison with conventional techniques. Radiother Oncol. 2001;61(3):275–80.

    Article  PubMed  CAS  Google Scholar 

  22. Lee N, Xia P, Quivey JM, et al. Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: an update of the UCSF experience. Int J Radiat Oncol Biol Phys. 2002;53(1):12–22.

    Article  PubMed  Google Scholar 

  23. Eisbruch A, Rhodus N, Rosenthal D, et al. The prevention and treatment of radiotherapy-induced xerostomia. Semin Radiat Oncol. 2003;13(3):302–8.

    Article  PubMed  Google Scholar 

  24. Hong TS, Tome WA, Chappell RJ, et al. The impact of daily setup variations on head-and-neck intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2005;61(3):779–88.

    Article  PubMed  Google Scholar 

  25. Prisciandaro JI, Frechette CM, Herman MG, et al. A methodology to determine margins by EPID measurements of patient setup variation and motion as applied to immobilization devices. Med Phys. 2004;31(11):2978–88.

    Article  PubMed  Google Scholar 

  26. Gregoire V, Daisne JF, Geets X, Levendag P. Selection and delineation of target volumes in head and neck tumors: beyond ICRU definition. Rays. 2003;28(3):217–24.

    PubMed  Google Scholar 

  27. Manning MA, Wu Q, Cardinale RM, et al. The effect of setup uncertainty on normal tissue sparing with IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2001;51(5):1400–9.

    Article  PubMed  CAS  Google Scholar 

  28. Hatherly KE, Smylie JC, Rodger A, et al. A double exposed portal image comparison between electronic portal imaging hard copies and port films in radiation therapy treatment setup confirmation to determine its clinical application in a radiotherapy center. Int J Radiat Oncol Biol Phys. 2001;49(1):191–8.

    Article  PubMed  CAS  Google Scholar 

  29. Bel A, Keus R, Vijlbrief RE, Lebesque JV. Setup deviations in wedged pair irradiation of parotid gland and tonsillar tumors, measured with an electronic portal imaging device. Radiother Oncol. 1995;37(2):153–9.

    Article  PubMed  CAS  Google Scholar 

  30. Willner J, Hadinger U, Neumann M, et al. Three dimensional variability in patient positioning using bite block immobilization in 3D-conformal radiation treatment for ENT-tumors. Radiother Oncol. 1997;43(3):315–21.

    Article  PubMed  CAS  Google Scholar 

  31. Karger CP, Jakel O, Debus J, et al. Three-dimensional accuracy and interfractional reproducibility of patient fixation and positioning using a stereotactic head mask system. Int J Radiat Oncol Biol Phys. 2001;49(5):1493–504.

    Article  PubMed  CAS  Google Scholar 

  32. Li H, Zhu XR, Zhang L, et al. Comparison of 2D radiographic images and 3D cone beam computed tomography for positioning head-and-neck radiotherapy patients. Int J Radiat Oncol Biol Phys. 2008;71(3):916–25.

    Article  PubMed  Google Scholar 

  33. Court L, Rosen I, Mohan R, Dong L. Evaluation of mechanical precision and alignment uncertainties for an integrated CT/LINAC system. Med Phys. 2003;30(6):1198–210.

    Article  PubMed  Google Scholar 

  34. Jaffray DA, Drake DG, Moreau M, et al. A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets. Int J Radiat Oncol Biol Phys. 1999;45(3):773–89.

    Article  PubMed  CAS  Google Scholar 

  35. Kuriyama K, Onishi H, Sano N, et al. A new irradiation unit constructed of self-moving gantry-CT and linac. Int J Radiat Oncol Biol Phys. 2003;55(2):428–35.

    Article  PubMed  Google Scholar 

  36. Mackie TR, Kapatoes J, Ruchala K, et al. Image guidance for precise conformal radiotherapy. Int J Radiat Oncol Biol Phys. 2003;56(1):89–105.

    Article  PubMed  Google Scholar 

  37. Ahn PH, Ahn AI, Lee CJ, et al. Random positional variation among the skull, mandible, and cervical spine with treatment progression during head-and-neck radiotherapy. Int J Radiat Oncol Biol Phys. 2009;73(2):626–33.

    Article  PubMed  Google Scholar 

  38. Zhang L, Garden AS, Lo J, et al. Multiple regions-of-interest analysis of setup uncertainties for head-and-neck cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2006;64(5):1559–69.

    Article  PubMed  Google Scholar 

  39. van Kranen S, van Beek S, Rasch C, et al. Setup uncertainties of anatomical sub-regions in head-and-neck cancer patients after offline CBCT guidance. Int J Radiat Oncol Biol Phys. 2009;73(5):1566–73.

    Article  PubMed  Google Scholar 

  40. Lee C, Langen KM, Lu W, et al. Evaluation of geometric changes of parotid glands during head and neck cancer radiotherapy using daily MVCT and automatic deformable registration. Radiother Oncol. 2008;89(1):81–8.

    Article  PubMed  Google Scholar 

  41. Wang ZH, Yan C, Zhang ZY, et al. Radiation-induced volume changes in parotid and submandibular glands in patients with head and neck cancer receiving postoperative radiotherapy: a longitudinal study. Laryngoscope. 2009;119(10):1966–74.

    Article  PubMed  Google Scholar 

  42. Geets X, Daisne JF, Arcangeli S, et al. Inter-observer variability in the delineation of pharyngo-laryngeal tumor, parotid glands and cervical spinal cord: comparison between CT-scan and MRI. Radiother Oncol. 2005;77(1):25–31.

    Article  PubMed  Google Scholar 

  43. Lu W, Chen ML, Olivera GH, et al. Fast free-form deformable registration via calculus of variations. Phys Med Biol. 2004;49(14):3067–87.

    Article  PubMed  Google Scholar 

  44. Wang H, Dong L, O’Daniel J, et al. Validation of an accelerated ‘demons’ algorithm for deformable image registration in radiation therapy. Phys Med Biol. 2005;50(12):2887–905.

    Article  PubMed  CAS  Google Scholar 

  45. Castadot P, Lee JA, Parraga A, et al. Comparison of 12 deformable registration strategies in adaptive radiation therapy for the treatment of head and neck tumors. Radiother Oncol. 2008;89(1):1–12.

    Article  PubMed  Google Scholar 

  46. Zhang T, Chi Y, Meldolesi E, Yan D. Automatic delineation of on-line head-and-neck computed tomography images: toward on-line adaptive radiotherapy. Int J Radiat Oncol Biol Phys. 2007;68(2):522–30.

    Article  PubMed  Google Scholar 

  47. Nithiananthan S, Brock KK, Daly MJ, et al. Demons deformable registration for CBCT-guided procedures in the head and neck: convergence and accuracy. Med Phys. 2009;36(10):4755–64.

    Article  PubMed  CAS  Google Scholar 

  48. O’Daniel JC, Garden AS, Schwartz DL, et al. Parotid gland dose in intensity-modulated radiotherapy for head and neck cancer: is what you plan what you get? Int J Radiat Oncol Biol Phys. 2007;69(4):1290–6.

    Article  PubMed  Google Scholar 

  49. Lee C, Langen KM, Lu W, et al. Assessment of parotid gland dose changes during head and neck cancer radiotherapy using daily megavoltage computed tomography and deformable image registration. Int J Radiat Oncol Biol Phys. 2008;71(5):1563–71.

    Article  PubMed  Google Scholar 

  50. •• Wu Q, Chi Y, Chen PY, et al. Adaptive replanning strategies accounting for shrinkage in head and neck IMRT. Int J Radiat Oncol Biol Phys. 2009;75(3):924–32. This is among the most thorough preclinical H&N ART studies yet published. The authors comprehensively catalog and compare the potential impact of different clinically relevant adaptive strategies, including the potential dosimetric effects of alternative frequency and timing of ART replanning events.

    Article  PubMed  Google Scholar 

  51. Ahunbay EE, Peng C, Godley A, et al. An on-line replanning method for head and neck adaptive radiotherapy. Med Phys. 2009;36(10):4776–90.

    Article  PubMed  Google Scholar 

  52. Madani I, Duthoy W, Derie C, et al. Positron emission tomography-guided, focal-dose escalation using intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys. 2007;68(1):126–35.

    Article  PubMed  Google Scholar 

  53. Vanderstraeten B, Duthoy W, De Gersem W, et al. [18F]fluoro-deoxy-glucose positron emission tomography ([18F]FDG-PET) voxel intensity-based intensity-modulated radiation therapy (IMRT) for head and neck cancer. Radiother Oncol. 2006;79(3):249–58.

    Article  PubMed  CAS  Google Scholar 

  54. Lee N, Nehmeh S, Schoder H, et al. Prospective trial incorporating pre-/mid-treatment [18F]-misonidazole positron emission tomography for head-and-neck cancer patients undergoing concurrent chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2009;75(1):101–8.

    Article  PubMed  CAS  Google Scholar 

  55. • Dirix P, Vandecaveye V, De Keyzer F, et al. Dose painting in radiotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging with (18)F-FDG PET, (18)F-fluoromisonidazole PET, diffusion-weighted MRI, and dynamic contrast-enhanced MRI. J Nucl Med. 2009;50(7):1020–7. This report shares results from an exciting proof-of-concept trial employing “brute force” multimodality functional imaging for biologically informed dose painting by numbers. Although this degree of image-based characterization is currently not feasible outside of experienced research centers, the manuscript provides potential insight into the future of image-guided H&N ART.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, D.L. Current Progress in Adaptive Radiation Therapy for Head and Neck Cancer. Curr Oncol Rep 14, 139–147 (2012). https://doi.org/10.1007/s11912-012-0221-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-012-0221-4

Keywords

Navigation