Skip to main content

Advertisement

Log in

Systemic Therapy Options for Unresectable and Metastatic Chordomas

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Chordoma is an exceedingly rare tumor, marked by a slow growth rate. Surgery is the treatment of choice, but the most frequent sites of origin (spine and skull base) make treatment of primary disease challenging. Local relapses affect more than 50% of cases, with a minority of patients being cured by further surgery. Furthermore, metastases occur in at least 20% of patients. For residual or recurrent disease, high-dose radiation therapy may be indicated. Radiation therapy is currently the preferred local treatment when surgery is problematic, exploiting most recent techniques, including proton beams and carbon ions. However, systemic therapy is needed in patients non-amenable to surgery and/or radiation therapy. We reviewed systemic treatments currently available, and targets possibly druggable in the future in this orphan disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Newton H. Chordoma. In: Raghavan D, Brecher ML, Johnson DH, Meropol NJ, Moots PL, Rose PG, et al., editors. Textbooks of uncommon cancer. 3rd ed. Chichester: Wiley; 2006. p. 614–25.

    Chapter  Google Scholar 

  2. Tirabosco R, Mangham DC, Rosenberg AE, et al. Brachyury expression in extra-axial skeletal and soft tissue chordomas: a marker that distinguishes chordoma from mixed tumor/myoepithelioma/parachordoma in soft tissue. Am J Surg Pathol. 2008;32:573–80.

    Google Scholar 

  3. Miozzo M, Dalprà L, Riva P, et al. A tumor suppressor locus in familial and sporadic chordoma maps to 1p36. Int J Cancer. 2000;87:68–72.

    Article  PubMed  CAS  Google Scholar 

  4. Kelley MJ, Korczak JF, Sheridan E, et al. Familial chordoma, a tumor of notochordal remnants, is linked to chromosome 7q33. Am J Hum Genet. 2001;69:454–60.

    Article  PubMed  CAS  Google Scholar 

  5. Riva P, Crosti F, Orzan F, et al. Mapping of candidate region for chordoma development to 1p36.13 by LOH analysis. Int J Cancer. 2003;107(3):493–7.

    Article  PubMed  CAS  Google Scholar 

  6. Börgel J, Olschewski H, Reuter T, et al. Does the tuberous sclerosis complex include clivus chordoma? A case report. Eur J Pediatr. 2001;160:138.

    Article  PubMed  Google Scholar 

  7. Dutton RV, Singleton EB. Tuberous sclerosis: a case report with aortic aneurysm and unusual rib changes. Pediatr Radiol. 1975;3:184–6.

    Article  PubMed  CAS  Google Scholar 

  8. Schroeder BA, Wells RG, Starshak RJ, et al. Clivus chordoma in a child with tuberous sclerosis: CT and MR demonstration. J Comput Assist Tomogr. 1987;11:195–6.

    Article  PubMed  CAS  Google Scholar 

  9. Storm PB, Magge SN, Kazahaya K, et al. Cervical chordoma in a patient with tuberous sclerosis presenting with shoulder pain. Pediatr Neurosurg. 2007;43:167–9.

    Article  PubMed  Google Scholar 

  10. Lee-Jones L, Aligianis I, Davies PA, et al. Sacrococcygeal chordomas in patients with tuberous sclerosis complex show somatic loss of TSC1 or TSC2. Genes Chromosom Cancer. 2004;41:80–5.

    Article  PubMed  CAS  Google Scholar 

  11. Henderson SR, Guiliano D, Presneau N, et al. A molecular map of mesenchymal tumors. Genome Biol. 2005;6:R76.

    Article  PubMed  Google Scholar 

  12. Vujovic S, Henderson SR, Presneau N, et al. Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol. 2006;209:157–65.

    Article  PubMed  CAS  Google Scholar 

  13. •• Presneau N, Shalaby A, Ye H, Pillay N, et al. Role of the transcription factor T (brachyury) in the pathogenesis of sporadic chordoma: a genetic and functional-based study. J Pathol. 2011;223:327–35. Chromosomal aberrations resulting in gain of the T (brachyury) locus were confirmed to be common in sporadic chordoma, by the analysis of 181 tumor samples. Besides, knockdown of T in a chordoma cell line, U-CH1, resulted in a marked decrease in cell proliferation, supporting that the expression of this gene is critical for proliferation of chordoma cells in vitro.

    Article  PubMed  CAS  Google Scholar 

  14. Stacchiotti S, Casali PG, Lo Vullo S, et al. Chordoma of the mobile spine and sacrum: a retrospective analysis of a series of patients surgically treated at two referral centers. Ann Surg Oncol. 2010;17:211–9.

    Article  PubMed  Google Scholar 

  15. Higinbotham NL, Philips RF, Farr HW, et al. Chordoma. Thirty-five-year study at Memorial Hospital. Cancer. 1967;20:1841–50.

    Article  PubMed  CAS  Google Scholar 

  16. York JE, Kaczaraj A, Abi-Said D, et al. Sacral chordoma: 40-year experience at a major cancer center. Neurosurgery. 1999;44:74–9.

    Article  PubMed  CAS  Google Scholar 

  17. Tzortzidis F, Elahi F, Wright D, et al. Patient outcome at long-term follow-up after aggressive microsurgical resection of cranial base chordomas. Neurosurgery. 2006;59:230–7.

    Article  PubMed  Google Scholar 

  18. Boriani S, Bandiera S, Biagini R, et al. Chordoma of the mobile spine: fifty years of experience. Spine. 2006;31:493–503.

    Article  PubMed  Google Scholar 

  19. Samii A, Gerganov VM, Herold C, et al. Chordomas of the skull base: surgical management and outcome. J Neurosurg. 2007;107:319–24.

    Article  PubMed  Google Scholar 

  20. Pearlman AW, Friedman M. Radical radiation therapy of chordoma. Am J Roentgenol Radium Ther Nucl Med. 1970;108:332–41.

    PubMed  CAS  Google Scholar 

  21. Catton C, O’Sullivan B, Bell R, et al. Chordoma: long-term follow-up after radical photon irradiation. Radiother Oncol. 1996;41:67–72.

    PubMed  CAS  Google Scholar 

  22. Hug EB, Loredo LN, Slater JD, et al. Proton radiation therapy for chordomas and chondrosarcomas of the skull base. J Neurosurg. 1999;91:432–9.

    Article  PubMed  CAS  Google Scholar 

  23. Crockard HA, Steel T, Plowman N, et al. A multidisciplinary team approach to skull base chordomas. J Neurosurg. 2001;95:175–83.

    Article  PubMed  CAS  Google Scholar 

  24. Noel G, Habrand JL, Mammar H, et al. Combination of photon and proton radiation therapy for chordomas and chondrosarcomas of the skull base: the Centre de Protontherapie D’Orsay experience. Int J Radiat Oncol Biol Phys. 2001;51:392–8.

    PubMed  CAS  Google Scholar 

  25. Foweraker KL, Burton KE, Maynard SE, et al. High-dose radiotherapy in the management of chordoma and chondrosarcoma of the skull base and cervical spine: part 1–clinical outcomes. Clin Oncol (R Coll Radiol). 2007;19:509–16.

    CAS  Google Scholar 

  26. Delaney TF, Liebsch NJ, Pedlow FX, et al. Phase II study of high-dose photon/proton radiotherapy in the management of spine sarcomas. Int J Radiat Oncol Biol Phys. 2009;74:732–9.

    Article  PubMed  CAS  Google Scholar 

  27. Ares C, Hug EB, Lomax AJ, et al. Effectiveness and safety of spot scanning proton radiation therapy for chordomas and chondrosarcomas of the skull base: first long-term report. Int J Radiat Oncol Biol Phys. 2009;75:1111–8.

    Article  PubMed  Google Scholar 

  28. Moojen WA, Vleggeert-Lankamp CL, Krol AD, et al. Long term results: Adjuvant radiotherapy in en bloc resection of sacrococcygeal chordoma is advisable. Spine 2011, Epub ahead of print

  29. Chambers PW, Schwinn CP. Chordoma: a clinico-pathologic study of metastasis. Am J Clin Pathol. 1979;72:765–76.

    PubMed  CAS  Google Scholar 

  30. Bjornsson J, Wold LE, Ebersold MJ, et al. Chordoma of the mobile spine. A clinicopathologic analysis of 40 patients. Cancer. 1993;71:735–40.

    Article  PubMed  CAS  Google Scholar 

  31. McPherson CM, Suki D, McCutcheon IE, et al. Metastatic disease from spinal chordoma: a 10-year experience. J Neurosurg Spine. 2006;5:277–80.

    Article  PubMed  Google Scholar 

  32. Bergh P, Kindblom LG, Gunterberg B, et al. Prognostic factors in chordoma of the sacrum and mobile spine: a study of 39 patients. Cancer. 2000;88:2122–34.

    Article  PubMed  CAS  Google Scholar 

  33. Pallini R, Sabatino G, Doglietto F, et al. Clivus metastases: report of seven patients and literature review. Acta Neurochir. 2009;151:291–6.

    Article  Google Scholar 

  34. Chugh R, Dunn R, Zalupski MM, et al. Phase II study of 9-nitro-camptothecin in patients with advanced chordoma or soft tissue sarcoma. J Clin Oncol. 2005;23:3597–604.

    Article  PubMed  CAS  Google Scholar 

  35. McSweeney AJ, Sholl PR. Metastatic chordoma use of mechlorethamine (nitrogen mustard) in chordomas therapy. AMA Arch Surg. 1959;79:152–5.

    PubMed  CAS  Google Scholar 

  36. Razis DV, Tsatsaronis A, Kyriazides I, et al. Chordoma of the cervical spine treated with vincristine sulphate. J Med. 1974;5:274–7.

    PubMed  CAS  Google Scholar 

  37. Scimeca PG, James-Herry AG, Black KS, et al. Chemotherapeutic treatment of malignant chordomas in children. J Pediatr Hematol/Oncol. 1996;18:237–40.

    Article  CAS  Google Scholar 

  38. Demetri GD, Elias AD. Results of single-agent and combination chemotherapy for advanced soft tissue sarcomas. Implications for decision making in the clinic. Hematol Oncol Clin North Am. 1995;9:765–85.

    PubMed  CAS  Google Scholar 

  39. Schonegger K, Gelpi E, Prayer D, et al. Recurrent and metastatic clivus chordoma: systemic palliative therapy retards disease progression. Anticancer Drugs. 2005;16:1139–43.

    Article  PubMed  Google Scholar 

  40. Dhall G, Traverso M, Finlay JL, et al. The role of chemotherapy in pediatric clival chordomas. J Neurooncol. 2010, in press.

  41. Ji Z, Long H, Hu Y, et al. Expression of MDR1, HIF-1α and MRP1 in sacral chordoma and chordoma cell line CM-319. J Exp Clin Cancer Res. 2010;29:158.

    Article  PubMed  CAS  Google Scholar 

  42. Scheil S, Brüderlein S, Liehr T, Starke H, Herms J, Schulte M, et al. Genome-wide analysis of sixteen chordomas by comparative genomic hybridization and cytogenetics of the first human chordoma cell line, U-CH1. Genes Chromosom Cancer. 2001;32(3):203–11.

    Article  PubMed  CAS  Google Scholar 

  43. Brandal P, Bjerkehagen B, Danielsen H, et al. Chromosome 7 abnormalities are common in chordomas. Cancer Genet Cytogenet. 2005;160:15–21.

    Article  PubMed  CAS  Google Scholar 

  44. Longoni M, Orzan F, Stroppi M, et al. Evaluation of 1p36 markers and clinical outcome in a skull base chordoma study. Neuro Oncology. 2008;10:52–60.

    Article  PubMed  CAS  Google Scholar 

  45. Horbinski C, Oakley GJ, Cieply K, Mantha GS, et al. The prognostic value of Ki-67, p53, epidermal growth factor receptor, 1p36, 9p21, 10q23, and 17p13 in skull base chordomas. Arch Pathol Lab Med. 2010;134:1170–6.

    PubMed  Google Scholar 

  46. Sommer J, Itani DM, Homlar KC, et al. Methylthioadenosine phosphorylase and activated insulin-like growth factor-1 receptor/insulin receptor: potential therapeutic targets in chordoma. J Pathol. 2010;220:608–17.

    Article  PubMed  CAS  Google Scholar 

  47. Walter BA, Begnami M, Valera VA, et al. Gain of chromosome 7 by chromogenic in situ hybridization (CISH) in chordomas is correlated to c-MET expression. J Neurooncol. 2011;101:199–206.

    Article  PubMed  CAS  Google Scholar 

  48. Tamborini E, Miselli F, Negri T, et al. Molecular and biochemical analyses of platelet-derived growth factor receptor (PDGFR) B, PDGFRA and KIT receptors in chordomas. Clin Cancer Res. 2006;12:6920–8.

    Article  PubMed  CAS  Google Scholar 

  49. Tamborini E, Virdis E, Negri T, et al. Analysis of receptor tyrosine kinases (RTKs) and downstream pathways in chordoma. Neuro Oncology. 2010;12:776–89.

    Article  PubMed  CAS  Google Scholar 

  50. • Shalaby A, Presneau N, Ye H, et al. The role of epidermal growth factor receptor in chordoma pathogenesis: a potential therapeutic target. J Pathol. 2011;223:336–46. In 173 chordoma samples, by immunohistochemistry, authors detected EGFR expression in 69% of cases, with EGFR polysomy in half of them. Direct sequencing of EGFR (exons 18–21), KRAS, NRAS, HRAS (exons 2, 3), and BRAF (exons 11, 15) using DNA from 62 chordomas failed to reveal mutations. Besides, the EGFR inhibitor tyrphostin (AG 1478) markedly inhibited proliferation of the chordoma cell line U-CH1 in vitro, supporting possible EGFR inhibitor activity in chordoma.

    Article  PubMed  CAS  Google Scholar 

  51. Weinberger PM, Yu Z, Kowalski D, et al. Differential expression of epidermal growth factor receptor, c-Met, and HER2/neu in chordoma compared with 17 other malignancies. Arch Otolaryngol Head Neck Surg. 2005;131:707–11.

    Article  PubMed  Google Scholar 

  52. Naka T, Kuester D, Boltze C, et al. Expression of hepatocyte growth factor and c-MET in skull base chordoma. Cancer. 2008;112:104–10.

    Article  PubMed  Google Scholar 

  53. Naka T, Boltze C, Samii A, et al. Expression of c-MET, low-molecular-weight cytokeratin, matrix metalloproteinases-1 and −2 in spinal chordoma. Histopathology. 2009;54:607–13.

    Article  PubMed  Google Scholar 

  54. Ostroumov E, Hunter CJ. Identifying mechanisms for therapeutic intervention in chordoma: c-Met oncoprotein. Spine. 2008;33:2774–80.

    Article  PubMed  Google Scholar 

  55. Kuniyasu H, Yasui W, Yokozaki H, et al. Frequent loss of heterozygosity of the long arm of chromosome 7 is closely associated with progression of human gastric carcinomas. Int J Cancer. 1994;59:597–600.

    Article  PubMed  CAS  Google Scholar 

  56. Kelley MJ, Korczak JF, Sheridan E, et al. Familial chordoma, a tumor of notochordal remnants, is linked to chromosome 7q33. Am J Hum Genet. 2001;69:454–60.

    Article  PubMed  CAS  Google Scholar 

  57. Mitsuhashi T, Watanabe M, Sasano H, et al. The expression of insulin-like growth factor-1 (IGF-1), IGF-1 receptor and transforming growth factor-beta in chordoma. Mod Pathol. 2006;19:6A.

    Google Scholar 

  58. Mitsuhashi T, Asanuma H, Hasegawa T. Insulin-like growth factor (IGF)-I and IGF-I receptor (IGF-IR) are consistently expressed in the most of chordomas. Mod Pathol. 2008;21:15A–6A.

    Article  Google Scholar 

  59. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006;441:424–30.

    Article  PubMed  CAS  Google Scholar 

  60. Schwab J, Antonescu C, Boland P, et al. Combination of PI3K/mTOR inhibition demonstrates efficacy in human chordoma. Anticancer Res. 2009;29:1867–71.

    PubMed  CAS  Google Scholar 

  61. Presneau N, Shalaby A, Idowu B, et al. Potential therapeutic targets for chordoma: PI3K/AKT/TSC1/TSC2/mTOR pathway. Br J Cancer. 2009;100:1406–14.

    Article  PubMed  CAS  Google Scholar 

  62. Han S, Polizzano C, Nielsen GP, et al. Aberrant hyperactivation of akt and Mammalian target of rapamycin complex 1 signaling in sporadic chordomas. Clin Cancer Res. 2009;15:1940–6.

    Article  PubMed  CAS  Google Scholar 

  63. Dobashi Y, Suzuki S, Sato E, et al. EGFR-dependent and independent activation of Akt/mTOR cascade in bone and soft tissue tumors. Mod Pathol. 2009;22:1328–40.

    Article  PubMed  CAS  Google Scholar 

  64. Davies DM, Johnson SR, Tattersfield AE, et al. Sirolimus therapy in tuberous sclerosis or sporadic lymphangioleiomyomatosis. N Engl J Med. 2008;358:200–3.

    Article  PubMed  CAS  Google Scholar 

  65. Piha-Paul SA, Hong DS, Kurzrock R. Response of Lymphangioleiomyomatosis to a Mammalian Target of Rapamycin Inhibitor (Temsirolimus) -Based Treatment. J Clin Oncol. 2011, in press.

  66. Lam C, Bouffet E, Tabori U, et al. Rapamycin (sirolimus) in tuberous sclerosis associated pediatric central nervous system tumors. Pediatr Blood Cancer. 2010;54:476–9.

    Article  PubMed  Google Scholar 

  67. Chari NS, McDonnell TJ. The sonic hedgehog signaling network in development and neoplasia. Adv Anat Pathol. 2007;14:344–52.

    Article  PubMed  CAS  Google Scholar 

  68. Kelley MJ, Korczak JF, Sheridan E, et al. Familial chordoma, a tumor of notochordal remnants, is linked to chromosome 7q33. Am J Hum Genet. 2001;69:454–60.

    Article  PubMed  CAS  Google Scholar 

  69. Cates JM, Itani DM, Coffin CM, et al. The sonic hedgehog pathway in chordoid tumours. Histopathology. 2010;56:978–9.

    Article  PubMed  Google Scholar 

  70. Casali PG, Messina A, Stacchiotti S, et al. Imatinib mesylate in chordoma. Cancer. 2004;101:2086–97.

    Article  PubMed  CAS  Google Scholar 

  71. Choi H, Charnsangavej C, Faria SC, et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol. 2007;25:1753–9.

    Article  PubMed  Google Scholar 

  72. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–6.

    Article  PubMed  CAS  Google Scholar 

  73. •• Stacchiotti S, Longhi A, Ferraresi V, et al.: A Phase II study on imatinib in advanced chordoma. J Clin Oncol, submitted data. This phase 2 study of imatinib in advanced chordoma patients confirmed preliminary data on imatinib activity in chordoma. Among 50 evaluable patients, observed responses were mostly non-dimensional and marked by a decrease in tumor density by CT scan or contrast enhancement by MRI, with one RECIST partial response (2%) and 35 stable disease (70%) and with a 64% clinical benefit (ie, RECIST complete response + PR + SD6 months) rate. The median PFS was 9 months.

  74. Demetri GD, van Oosterom AT, Garrett CR, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 2006;368:1329–38.

    Article  PubMed  CAS  Google Scholar 

  75. Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356:115–24.

    Article  PubMed  CAS  Google Scholar 

  76. Mendel DB, Laird AD, Xin X, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2006;12:6203–4.

    Article  Google Scholar 

  77. O’Farrell AM, Abrams TJ, Yuen HA, et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood. 2003;101:3597–605.

    Article  PubMed  Google Scholar 

  78. George S, Merriam P, Maki RG, et al. Multicenter phase II trial of sunitinib in the treatment of non-gastrointestinal stromal tumor sarcomas. J Clin Oncol. 2009;27:3154–60.

    Article  PubMed  CAS  Google Scholar 

  79. Gelderblom H, Hogendoorn P, Dijksra S. Sunitinib response in an imatinib refractory irresectable chordoma. Connective Tissue Society Annual Meeting 2008; abstr 35162.

  80. Hof H, Welzel T, Debus J. Effectiveness of cetuximab/gefitinib in the therapy of a sacral chordoma. Onkologie. 2006;29:572–4.

    Article  PubMed  Google Scholar 

  81. • Lindén O, Stenberg L, Kjellén E. Regression of cervical spinal cord compression in a patient with chordoma following treatment with cetuximab and gefitinib. Acta Oncol. 2009;48:158–9. This case report shows for the second time a tumor response to the combination of cetuximab and gefitinib in an advanced chordoma patient, thus suggesting the possibility that targeting EGFR may result in antitumor activity.

    Article  PubMed  Google Scholar 

  82. Singhal N, Kotasek D, Parnis FX. Response to erlotinib in a patient with treatment refractory chordoma. Anticancer Drugs. 2009;20:953–5.

    Article  PubMed  CAS  Google Scholar 

  83. Rusnak DW, Lackey K, Affleck K, et al. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, lapatinib, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Therapeutics. 2001;1:85–94.

    CAS  Google Scholar 

  84. Xia W, Mullin RJ, Keith BR, et al. Anti-tumor activity of lapatinib: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erB2 and downstream Erk1/2 and AKT pathways. Oncogene. 2002;21:6255–63.

    Article  PubMed  CAS  Google Scholar 

  85. Goldberg J, Demetri GD, Choy E, et al. Preliminary results from a phase II study of ARQ197 in patients with microphthalmia transcription factor family (MiT) associated tumors. J Clin Oncol. 2009;27:537s. suppl abstr 10502.

    Google Scholar 

  86. Tremblay MR, Lescarbeau A, Grogan MJ, et al. Discovery of a potent and orally active hedgehog pathway antagonist (IPI-926). J Med Chem. 2009;52:4400–18.

    Article  PubMed  CAS  Google Scholar 

  87. Nadesan PP, Wang Y, Whetstone H, et al. Antagonism of the hedgehog pathway with IPI-926 inhibits growth of primary chondrosarcoma xenografts. Connective Tissue Oncology Society, Paris 2010, abstr 900833.

  88. Stacchiotti S, Marrari A, Tamborini E, et al. Response to imatinib plus sirolimus in advanced chordoma. Ann Oncol. 2009;20:1886–94.

    Article  PubMed  CAS  Google Scholar 

  89. Casali PG, Stacchiotti S, Grosso F, et al. Adding cisplatin to imatinib (IM) re-establishes tumor response following secondary resistance to IM in advanced chordoma. J Clin Oncol. 2007;25:554s. suppl: abstr 10038.

    Google Scholar 

  90. Skorta I, Oren M, Markwardt C, Gutekunst M, et al. Imatinib mesylate induces cisplatin hypersensitivity in Bcr-Abl + cells by differential modulation of p53 transcriptional and proapoptotic activity. Cancer Res. 2009;69:9337–45.

    Article  PubMed  CAS  Google Scholar 

  91. Sims JT, Ganguly S, Fiore LS, et al. STI571 sensitizes breast cancer cells to 5-fluorouracil, cisplatin and camptothecin in a cell type-specific manner. Biochem Pharmacol. 2009;78:249–60.

    Article  PubMed  CAS  Google Scholar 

  92. Yerushalmi R, Nordenberg J, Beery E, et al. Combined antiproliferative activity of imatinib mesylate (STI-571) with radiation or cisplatin in vitro. Exp Oncol. 2007;29:126–31.

    PubMed  CAS  Google Scholar 

  93. Wang-Rodriguez J, Lopez JP, Altuna X, et al. STI-571 (Gleevec) potentiates the effect of cisplatin in inhibiting the proliferation of head and neck squamous cell carcinoma in vitro. Laryngoscope. 2006;116:1409–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

S. Stacchiotti: honoraria from Pfizer; P. G. Casali: consultant to Novartis, Pfizer, GlaxoSmithKline, and Infinity, and honoraria from Novartis, Pfizer, and GlaxoSmithKline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Stacchiotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stacchiotti, S., Casali, P.G. Systemic Therapy Options for Unresectable and Metastatic Chordomas. Curr Oncol Rep 13, 323–330 (2011). https://doi.org/10.1007/s11912-011-0176-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-011-0176-x

Keywords

Navigation