Skip to main content

Advertisement

Log in

Personalized therapy of sarcomas: Integration of biomarkers for improved diagnosis, prognosis, and therapy selection

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

An improved understanding of cancer’s molecular diversity at the genetic, proteomic, and epigenetic levels has made it evident that “sarcoma” comprises more than 50 different types, each as unique as, for example, breast carcinoma is from colon carcinoma. Sarcomas exhibit characteristic differences in cell of origin, disease site, likelihood and site of metastasis, growth propensity, and chemosensitivity. Additionally, as many as one third of sarcomas harbor specific chromosomal translocations that can be used to discriminate one subtype from another. Although biomarkers can be integrated into clinical practice to improve diagnostic accuracy and predict treatment response, a number of challenges hinder their widespread use. This review addresses the current use of biomarkers for clinical oncology, with special emphasis on diagnosis, staging, and grading. It also discusses types of biomarkers that are emerging to aid selection of therapy for patients with sarcoma. Finally, we consider practical factors that appear to limit biomarker integration into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Jemal A, Siegel R, Ward E, et al.: Cancer statistics, 2007. CA Cancer J Clin 2007, 57:43–66.

    PubMed  Google Scholar 

  2. Schöffski P, Wolter P, Clement P, et al.: Trabectedin (ET-743): evaluation of its use in advanced soft-tissue sarcoma. Future Oncol 2007, 3:381–392.

    Article  PubMed  Google Scholar 

  3. Spira AI, Ettinger DS: The use of chemotherapy in soft-tissue sarcomas. Oncologist 2002, 7:348–359.

    Article  PubMed  CAS  Google Scholar 

  4. Sobin LH: TNM: evolution and relation to other prognostic factors. Semin Surg Oncol 2003, 21:3–7.

    Article  PubMed  Google Scholar 

  5. Broders AC, Hargrave R, Meyerding HW: Pathological features of soft tissue sarcoma; with special reference to the grading of its malignancy. Surg Gynecol Obstet 1939, 69:267–280.

    Google Scholar 

  6. Hoos A, Stojadinovic A, Mastorides S, et al.: High Ki-67 proliferative index predicts disease specific survival in patients with high-risk soft tissue sarcomas. Cancer 2001, 92:869–874.

    Article  PubMed  CAS  Google Scholar 

  7. Kattan MW, Leung DH, Brennan MF: Postoperative nomogram for 12-year sarcoma-specific death. J Clin Oncol 2002, 20:791–796.

    Article  PubMed  Google Scholar 

  8. Eilber FC, Brennan MF, Eilber FR, et al.: Validation of the postoperative nomogram for 12-year sarcoma-specific mortality. Cancer 2004, 101:2270–2275.

    Article  PubMed  Google Scholar 

  9. Mariani L, Miceli R, Kattan MW, et al.: Validation and adaptation of a nomogram for predicting the survival of patients with extremity soft tissue sarcoma using a three-grade system. Cancer 2005, 103:402–408.

    Article  PubMed  Google Scholar 

  10. Ravdin PM, Siminoff LA, Davis GJ, et al.: Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. J Clin Oncol 2001, 19:980–991.

    PubMed  CAS  Google Scholar 

  11. de Alava E, Kawai A, Healey JH, et al.: EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing’s sarcoma. J Clin Oncol 1998, 16:1248–1255.

    PubMed  Google Scholar 

  12. Lin PP, Brody RI, Hamelin AC, et al.: Differential transactivation by alternative EWS-FLI1 fusion proteins correlates with clinical heterogeneity in Ewing’s sarcoma. Cancer Res 1999, 59:1428–1432.

    PubMed  CAS  Google Scholar 

  13. Zoubek A, Dockhorn-Dworniczak B, Delattre O, et al.: Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumor patients? J Clin Oncol 1996, 14:1245–1251.

    PubMed  CAS  Google Scholar 

  14. Maki RG, Wathen JK, Patel SR, et al.: Randomized phase II study of gemcitabine and docetaxel compared with gemcitabine alone in patients with metastatic soft tissue sarcomas: results of sarcoma alliance for research through collaboration study 002 [corrected]. J Clin Oncol 2007, 25:2755–2763.

    Article  PubMed  CAS  Google Scholar 

  15. Druker BJ, Sawyers CL, Kantarjian H, et al.: Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001, 344:1038–1042.

    Article  PubMed  CAS  Google Scholar 

  16. Balmain A, Gray J, Ponder B: The genetics and genomics of cancer. Nat Genet 2003, 33(Suppl):238–244.

    Article  PubMed  CAS  Google Scholar 

  17. Steinert DM, Oyarzo M, Wang X, et al.: Expression of Bcl-2 in gastrointestinal stromal tumors: correlation with progression-free survival in 81 patients treated with imatinib mesylate. Cancer 2006, 106:1617–1623.

    Article  PubMed  Google Scholar 

  18. Osaka E, Suzuki T, Osaka S, et al.: Survivin expression levels as independent predictors of survival for osteosarcoma patients. J Orthop Res 2007, 25:116–121.

    Article  PubMed  CAS  Google Scholar 

  19. Taubert H, Würl P, Greither T, et al.: Stem cell-associated genes are extremely poor prognostic factors for soft-tissue sarcoma patients. Oncogene 2007, 26:7170–7174.

    Article  PubMed  CAS  Google Scholar 

  20. Kim MS, Song WS, Cho WH, et al.: Ezrin expression predicts survival in stage IIB osteosarcomas. Clin Orthop Relat Res 2007, 459:229–236.

    Article  PubMed  Google Scholar 

  21. Bartel F, Meye A, Würl P, et al.: Amplification of the MDM2 gene, but not expression of splice variants of MDM2 MRNA, is associated with prognosis in soft tissue sarcoma. Int J Cancer 2001, 95:168–175.

    Article  PubMed  CAS  Google Scholar 

  22. Taubert H, Koehler T, Meye A, et al.: mdm2 mRNA level is a prognostic factor in soft tissue sarcoma. Mol Med 2000, 6:50–59.

    PubMed  CAS  Google Scholar 

  23. Bodner K, Bodner-Adler B, Kimberger O, et al.: Bcl-2 expression and other clinicopathologic parameters in uterine leiomyosarcoma. Wien Klin Wochenschr 2004, 116:135–139.

    PubMed  CAS  Google Scholar 

  24. Honoki K, Stojanovski E, McEvoy M, et al.: Prognostic significance of p16 INK4a alteration for Ewing sarcoma: a meta-analysis. Cancer 2007, 110:1351–1360.

    Article  PubMed  Google Scholar 

  25. Endo M, Tateishi U, Seki K, et al.: Prognostic implications of glucose transporter protein-1 (glut-1) overexpression in bone and soft-tissue sarcomas. Jpn J Clin Oncol 2007, 37:955–960.

    Article  PubMed  Google Scholar 

  26. Sato O, Wada T, Kawai A, et al.: Expression of epidermal growth factor receptor, ERBB2 and KIT in adult soft tissue sarcomas: a clinicopathologic study of 281 cases. Cancer 2005, 103:1881–1890.

    Article  PubMed  CAS  Google Scholar 

  27. Lai R, Navid F, Rodriguez-Galindo C, et al.: STAT3 is activated in a subset of the Ewing sarcoma family of tumours. J Pathol 2006, 208:624–632.

    Article  PubMed  CAS  Google Scholar 

  28. Koshkina NV, Khanna C, Mendoza A, et al.: Fas-negative osteosarcoma tumor cells are selected during metastasis to the lungs: the role of the Fas pathway in the metastatic process of osteosarcoma. Mol Cancer Res 2007, 5:991–999.

    Article  PubMed  CAS  Google Scholar 

  29. Morrison C, Radmacher M, Mohammed N, et al.: MYC amplification and polysomy 8 in chondrosarcoma: array comparative genomic hybridization, fluorescent in situ hybridization, and association with outcome. J Clin Oncol 2005, 23:9369–9376.

    Article  PubMed  CAS  Google Scholar 

  30. Scotlandi K, Baldini N, Cerisano N, et al.: CD99 engagement: an effective therapeutic strategy for Ewing tumors. Cancer Res 2000, 60:5134–5142.

    PubMed  CAS  Google Scholar 

  31. Beech DJ, Perer E, Helms J, et al.: Insulin-like growth factor-I receptor activation blocks doxorubicin cytotoxicity in sarcoma cells. Oncol Rep 2003, 10:181–184.

    PubMed  CAS  Google Scholar 

  32. Ma Z, Dong A, Kong M, Qian J: Silencing of the type 1 insulin-like growth factor receptor increases the sensitivity to apoptosis and inhibits invasion in human lung adenocarcinoma A549 cells. Cell Mol Biol Lett 2007, 12:556–572.

    Article  PubMed  CAS  Google Scholar 

  33. Meyers PA, Heller G, Healey J, et al.: Chemotherapy for nonmetastatic osteogenic sarcoma: the Memorial Sloan-Kettering experience. J Clin Oncol 1992, 10:5–15.

    PubMed  CAS  Google Scholar 

  34. Meyers PA, Heller G, Healey JH, et al.: Osteogenic sarcoma with clinically detectable metastasis at initial presentation. J Clin Oncol 1993, 11:449–453.

    PubMed  CAS  Google Scholar 

  35. Bielack SS, Kempf-Bielack B, Delling G, et al.: Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 2002, 20:776–790.

    Article  PubMed  Google Scholar 

  36. Sato J, Yanagawa T, Dobashi Y, et al.: Prognostic significance of 18F-FDG uptake in primary osteosarcoma after but not before chemotherapy: a possible association with autocrine motility factor/phosphoglucose isomerase expression. Clin Exp Metastasis 2008 (ePub ahead of print).

  37. Hawkins DS, Schuetze SM, Butrynski JE, et al.: [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol 2005, 23:8828–8834.

    Article  PubMed  Google Scholar 

  38. Brisse H, Ollivier L, Edeline V, et al.: Imaging of malignant tumours of the long bones in children: monitoring response to neoadjuvant chemotherapy and preoperative assessment. Pediatr Radiol 2004, 34:595–605.

    Article  PubMed  Google Scholar 

  39. Goldstein D, Tan BS, Rossleigh M, et al.: Gastrointestinal stromal tumours: correlation of F-FDG gamma camera-based coincidence positron emission tomography with CT for the assessment of treatment response—an AGITG study. Oncology 2005, 69:326–332.

    Article  PubMed  Google Scholar 

  40. Benjamin RS, Choi H, Macapinlac HA, et al.: We should desist using RECIST, at least in GIST. J Clin Oncol 2007, 25:1760–1764.

    Article  PubMed  Google Scholar 

  41. Burke M, Anderson JR, Kao SC, et al.: Assessment of response to induction therapy and its influence on 5-year failure-free survival in group III rhabdomyosarcoma: the Intergroup Rhabdomyosarcoma Study-IV experience—a report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. J Clin Oncol 2007, 25:4909–4913.

    Article  PubMed  Google Scholar 

  42. West DC, Grier HE, Swallow MM, et al.: Detection of circulating tumor cells in patients with Ewing’s sarcoma and peripheral primitive neuroectodermal tumor. J Clin Oncol 1997, 15:583–588.

    PubMed  CAS  Google Scholar 

  43. Hammond ME, Taube SE: Issues and barriers to development of clinically useful tumor markers: a development pathway proposal. Semin Oncol 2002, 29:213–221.

    Article  PubMed  Google Scholar 

  44. Pepe MS, Etzioni R, Feng Z, et al.: Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 2001, 93:1054–1061.

    Article  PubMed  CAS  Google Scholar 

  45. Barker PE: Cancer biomarker validation: standards and process: roles for the National Institute of Standards and Technology (NIST). Ann N Y Acad Sci 2003, 983:142–150.

    Article  PubMed  CAS  Google Scholar 

  46. Ludwig JA, Weinstein JN: Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 2005, 5:845–856.

    Article  PubMed  CAS  Google Scholar 

  47. Cardoso F, Van’t Veer L, Rutgers E, et al.: Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 2008, 26:729–735.

    Article  PubMed  Google Scholar 

  48. Gutman S: Regulatory issues in tumor marker development. Semin Oncol 2002, 29:294–300.

    Article  PubMed  Google Scholar 

  49. Taube SE, Freiberg GP: Regulatory issues related to marker development. Urol Oncol 2000, 5:214–216.

    Article  PubMed  Google Scholar 

  50. Hackett JL, Lesko LJ: Microarray data: the US FDA, industry and academia. Nat Biotechnol 2003, 21:742–743.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Ludwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludwig, J.A. Personalized therapy of sarcomas: Integration of biomarkers for improved diagnosis, prognosis, and therapy selection. Curr Oncol Rep 10, 329–337 (2008). https://doi.org/10.1007/s11912-008-0051-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-008-0051-6

Keywords

Navigation