Skip to main content

Advertisement

Log in

Gene expression profiling of primary breast cancer

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Gene expression profiling is a method to measure the expression of a large number of genes in tissue specimens simultaneously. This analytical technique is actively explored as an emerging diagnostic tool for breast cancer. An important assumption behind this research is that the constellation of multiple genes will be more predictive of clinical outcome than any single gene alone. Gene expression signatures were shown to predict prognosis of breast cancer as well as response to particular chemotherapy regimens. The first multigene predictor of prognosis after tamoxifen therapy is already commercially available in the United States. This article reviews recent advances in the clinical application of this technique to breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Ramaswamy S, Golub TR: DNA microarrays in clinical oncology. J Clin Oncol 2002, 20:1932–1941.

    PubMed  CAS  Google Scholar 

  2. de Bolle X, Bayliss CD: Gene expression technology. Methods Mol Med 2003, 71:135–146.

    PubMed  Google Scholar 

  3. Walker SJ, Worst TJ, Vrana KE: Semiquantitative real-time PCR for analysis of mRNA levels. Methods Mol Med 2003, 79:211–227.

    PubMed  CAS  Google Scholar 

  4. Baunoch D, Moore M, Reyes M, et al.: Microarray analysis of formalin fixed paraffin-embedded tissue: the development of a gene expression staging system for breast carcinoma. Breast Cancer Res Treat 2003, 82(Suppl 1):S116.

    Google Scholar 

  5. Paik S, Shak S, Tang G, et al.: Multi-gene RT-PCR assay for predicting recurrence in node negative breast cancer patients—NSABP studies B-20 and B-14. Breast Cancer Res Treat 2003, 82(Suppl 1):S10.

    Google Scholar 

  6. Cui X, Churchill GA: Statistical tests for differential expression in cDNA microarray experiments. Genome Biol 2003, 4:210.

    Article  PubMed  Google Scholar 

  7. Golub TR, Slonim DK, Tamayo P, et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531–537. The results of this study demonstrate the feasibility of cancer classification based solely on gene expression monitoring and suggest a general strategy for discovering and predicting cancer classes.

    Article  PubMed  CAS  Google Scholar 

  8. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 1998, 95:14863–14868.

    Article  PubMed  CAS  Google Scholar 

  9. Radmacher MD, McShane LM, Simon R: A paradigm for class prediction using gene expression profiles. J Comput Biol 2002, 9:505–511.

    Article  PubMed  CAS  Google Scholar 

  10. Ringner M, Peterson C, Khan J: Analyzing array data using supervised methods. Pharmacogenomics 2002, 3:403–415.

    Article  PubMed  CAS  Google Scholar 

  11. Perou CM, Sorlie T, Eisen MB, et al.: Molecular portraits of human breast tumours. Nature 2000, 406:747–752. The study reports that breast tumors can be classified into subtypes distinguished by pervasive differences in their gene expression patterns.

    Article  PubMed  CAS  Google Scholar 

  12. Sorlie T, Tibshirani R, Parker J, et al.: Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 2003, 100:8418–8423.

    Article  PubMed  CAS  Google Scholar 

  13. Sorlie T, Perou CM, Tibshirani R, et al.: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001, 98:10869–10874.

    Article  PubMed  CAS  Google Scholar 

  14. Sotiriou C, Neo SY, McShane LM, et al.: Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci U S A 2003, 100:10393–10398.

    Article  PubMed  CAS  Google Scholar 

  15. Ramaswamy S, Ross KN, Lander ES, Golub TR: A molecular signature of metastasis in primary solid tumors. Nat Genet 2003, 33:49–54.

    Article  PubMed  CAS  Google Scholar 

  16. Weigelt B, Glas AM, Wessels LF, et al.: Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci U S A 2003, 100:15901–15905.

    Article  PubMed  CAS  Google Scholar 

  17. van’t Veer LJ, Dai H, van de Vijver MJ, et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415:530–536. This study reports a 70-gene expression profile that is associated with survival of breast cancer patients.

    Article  Google Scholar 

  18. van de Vijver MJ, He YD, van’t Veer LJ, et al.: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002, 347:1999–2009.

    Article  PubMed  Google Scholar 

  19. Tuma RS: A big trial for a new technology: TransBIG project takes microarrays into clinical trials. J Natl Cancer Inst 2004, 96:648–649.

    Article  PubMed  Google Scholar 

  20. Huang E, Cheng SH, Dressman H, et al.: Gene expression predictors of breast cancer outcomes. Lancet 2003, 361:1590–1596.

    Article  PubMed  CAS  Google Scholar 

  21. Esteban J, Baker J, Cronin M, et al.: Tumor gene expression and prognosis in breast cancer: multi-gene RT-PCR assay of paraffin-embedded tissue [abstract]. Proc ASCO 2003, 22:3416.

    Google Scholar 

  22. Esteva FJ, Sahin AA, Coombes K, et al.: Multi-gene RT-PCR assay for predicting recurrence in node negative breast cancer patients: M.D. Anderson Clinical Validation Study [abstract]. Breast Cancer Res Treat 2003, 82(Suppl 1):S11.

    Google Scholar 

  23. Ma XJ, Wang Z, Ryan PD, et al.: A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 2004, 5:607–616.

    Article  PubMed  CAS  Google Scholar 

  24. Gottesman MM, Fojo T, Bates SE: Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002, 2:48–58.

    Article  PubMed  CAS  Google Scholar 

  25. Staunton JE, Slonim DK, Coller HA, et al.: Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci U S A 2001, 98:10787–10792.

    Article  PubMed  CAS  Google Scholar 

  26. Chang JC, Wooten EC, Tsimelzon A, et al.: Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 2003, 362:362–369.

    Article  PubMed  CAS  Google Scholar 

  27. Ayers M, Symmans WF, Stec J, et al.: Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 2004, 22:2284–2293. This study shows that transcriptional profiling has the potential to identify a gene expression pattern in breast cancer that may lead to clinically useful predictors of response to chemotherapy.

    Article  PubMed  CAS  Google Scholar 

  28. Gianni L, Zambetti K, Clark J, et al.: Gene expression profiles of paraffin-embedded core biopsy tissue predict response to chemotherapy in patients with locally advanced breast cancer [abstract]. Proc ASCO 2004, 23:501.

    Google Scholar 

  29. Yoshimoto M, Makita M, Nishimura S, et al.: Prediction of the therapeutic response to paclitaxel by gene expression profiling in neoadjuvant chemotherapy for breast cancer [abstract]. Proc ASCO 2004, 23:500.

    Google Scholar 

  30. Hannemann J, Oosterkamp HM, Bosch CAJ, et al.: Changes in gene expression profiling due to primary chemotherapy in patients with locally advanced breast cancer [abstract]. Proc ASCO 2004, 23:502.

    Google Scholar 

  31. Buchholz TA, Stivers D, Stec J, et al.: Global gene expression changes during neoadjuvant chemotherapy of human breast cancer. Cancer J 2002, 8:461–468.

    Article  PubMed  Google Scholar 

  32. Sotiriou C, Powles TJ, Dowsett M, et al.: Gene expression profiles derived from fine needle aspiration correlate with response to systemic chemotherapy in breast cancer. Breast Cancer Res 2002, 4:R3.

    Article  PubMed  Google Scholar 

  33. Mukherjee S, Tamayo P, Rogers S, et al.: Estimating dataset size requirements for classifying DNA microarray data. J Comput Biol 2003, 10:119–142.

    Article  PubMed  CAS  Google Scholar 

  34. Chakravarthy B, Pietenpol JA: Combined modality management of breast cancer: development of predictive markers through proteomics. Semin Oncol 2003, 30(Suppl 9):23–36.

    Article  PubMed  CAS  Google Scholar 

  35. Pusztai L, Gregory BW, Baggerly KA, et al.: Pharmacoproteomic analysis of prechemotherapy and postchemotherapy plasma samples from patients receiving neoadjuvant or adjuvant chemotherapy for breast carcinoma. Cancer 2004, 100:1814–1822.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouzier, R., Wagner, P., Morandi, P. et al. Gene expression profiling of primary breast cancer. Curr Oncol Rep 7, 38–44 (2005). https://doi.org/10.1007/s11912-005-0024-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-005-0024-y

Keywords

Navigation