Skip to main content

Advertisement

Log in

Immunotherapy for colorectal cancer

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Immunologic approaches to therapy for colorectal cancer have evolved substantially. In the past, patients were treated with nonspecific immune stimulants such as bacillus Calmette-Guérin (BCG). The current focus lies in targeting tumor-associated antigens. This is done either through passive immune therapy, with antibodies targeted directly to tumor cells, or by active immune therapy through vaccination with tumor cells, tumor cell lysates, peptides, carbohydrates, gene constructs encoding proteins, or anti-idiotype antibodies that mimic tumor-associated antigens. These different approaches to immunotherapy are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Riethmuller G, Holz E, Schlimok G, et al.: Monoclonal antibody therapy for resected Dukes’ C colorectal cancer: Seven-year outcome of a multicenter randomized trial. J Clin Oncol 1998, 16:1788–1794. Report from a study of monoclonal antibody therapy for resected Dukes’ C colon cancer at 7 years, demonstrating a favorable response for patients in the treatment arm. Phase III trials are underway in the United States and Europe to confirm these results and, in addition, to assess the combination of antibody 17-1A and 5-FU chemotherapy regimens.

    PubMed  CAS  Google Scholar 

  2. Gruber Rudolf, Leonardus JM, van Haarlem SO, et al.: The human antimouse immunoglobulin response and the anti-idiotypic network have no influence on clinical outcome in patients with minimal residual colorectal cancer treated with monoclonal antibody CO17-1A. Cancer Res 2000, 60:1921–1926.

    PubMed  CAS  Google Scholar 

  3. Sears HF, Herlyn D, Steplewski A, Koprowski H: Phase II clinical trial of murine monoclonal antibody cytotoxic for gastrointestinal adenocarcinoma. Cancer Res 1985, 45:5910–5913.

    PubMed  CAS  Google Scholar 

  4. Weiner LM, Moldofsky PJ, Gatenby RA, et al.: Antibody delivery and effector cell activation in a phase II trial of recombinant a-interferon and murine monoclonal antibody CD17-1A in advanced colorectal carcinoma. Cancer Res 1988, 48:2568–2573.

    PubMed  CAS  Google Scholar 

  5. Ragnhammar P, Fagerberg J, Frödin JE, et al.: Effect of monoclonal antibody 17-1A and GM-CSF in patients with advanced colorectal carcinoma: long-lasting, complete remissions can be induced. Int J Cancer 1993, 53:751–758.

    Article  PubMed  CAS  Google Scholar 

  6. Fagerberg J, Hjelm AL, Ragnhammar P, et al.: Tumor regression in monoclonal antibody-treated patients correlates with the presence of anti-idiotype-reactive T lymphocytes. Cancer Res 1995, 55:1824–1827.

    PubMed  CAS  Google Scholar 

  7. Riethmöller G, Schneider-Gädicke E, Schlimok G, et al., and the German Cancer Aid 17-1A Study Group: Randomized trial of monoclonal antibody for adjuvant therapy of resected Dukes’ C colorectal carcinoma. Lancet 1994, 343:1177–1183.

    Article  Google Scholar 

  8. Doerr RJ, Abdel-Nabi H, Krag D, Mitchell E: Radiolabeled antibody imaging in the management of colorectal cancer: results of a multicenter clinical study. Ann Surg 1991, 2:118–124.

    Article  Google Scholar 

  9. Winzelberg GG, Grossman SJ, Rizk S, et al.: Indium-111 Monoclonal antibody B72.3 scintigraphy in colorectal cancer: correlation with computed tomography, surgery, histopathology, immunohistology, and human immune response. Cancer 1992, 7:1656–1663.

    Article  Google Scholar 

  10. Moffat FL Jr, Pinsky CM, Hammershaimb NJ, et al., for the Immunomedics Study Group: Clinical utility of external immunoscintigraphy with the IMMU-4 technetium-99m Fab’ antibody fragment in patients undergoing surgery for carcinoma of the colon and rectum: results of a pivotal, phase II trial. J Clin Oncol 1996, 8:2295–2305.

    Google Scholar 

  11. Divgi CR: Status of radiolabeled monoclonal antibodies for diagnosis and therapy of cancer. Oncology 1996, 10:939–953.

    PubMed  CAS  Google Scholar 

  12. Wilder RB, DeNardo GL, DeNardo SJ: Radioimmunotherapy: recent results and future directions. J Clin Oncol 1996, 4:1383–1400.

    Google Scholar 

  13. Goldenberg DM: Monoclonal antibodies in cancer detection and therapy. Am J Med 1993, 94:297–312.

    Article  PubMed  CAS  Google Scholar 

  14. Murray JL, Macey DJ, Kasi LP, et al.: Phase II radioimmunoltherapy trial with 131I-CC49 in colorectal cancer. Cancer 1994, 73:1057–1066.

    Article  PubMed  CAS  Google Scholar 

  15. Meredith RF, Bueschen AJ, Khazaeli MB, et al.: Phase I trial of iodine-131-chimeric B72.3 (human IgG4) in metastatic colorectal cancer. J Nucl Med 1992, 33:23–29.

    PubMed  CAS  Google Scholar 

  16. Welt S, Divgi CR, Kemeny N, et al.: Phase I/II study of iodine 131-labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol 1994, 12:1561–1571.

    PubMed  CAS  Google Scholar 

  17. Welt S, Scott AM, Divgi CR, et al.: Phase I/II study of iodine 125-labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol 1996, 6:1787–1797.

    Google Scholar 

  18. Stickney DR, Anderson LD, Slater AJB, et al.: Bifunctional antibody: A binary radiopharmaceutical delivery system for imaging colorectal carcinoma. Cancer Res 1991, 51:6650–6655.

    PubMed  CAS  Google Scholar 

  19. Paganelli G, Magnani P, Zito F, et al.: Three-step monoclonal antibody tumor targeting in carcinoembryonic antigenpositive patients. Cancer Res 1991, 51:5960–5966.

    PubMed  CAS  Google Scholar 

  20. Shaw DR, Khazaeli MB, LoBuglio AF: Mouse/human chemeric antibodies to a tumor-associated antigen: biologic activity of the four human IgG subclasses. J Natl Cancer Inst 1988, 80:1553–1559.

    Article  PubMed  CAS  Google Scholar 

  21. Jones PT, Dear PH, Foote J, et al.: Replacing the complementaritydetermining regions in a human antibody with those from the mouse. Nature 1986, 321:522–525.

    Article  PubMed  CAS  Google Scholar 

  22. Reichmann L, Clark MR, Waldmann H, et al.: Reshaping antibodies for therapy. Nature 1988, 332:323–327.

    Article  Google Scholar 

  23. Khazaeli MB, Saleh MN, Liu TP, et al.: Pharmacokinetics and immune response of 131I-chimeric mouse/human B72.3 (human _ 4) monoclonal antibody in humans. Cancer Res 1991, 51:5461–5466.

    PubMed  CAS  Google Scholar 

  24. Parham P: Antigen processing: transporters of delight. Nature 1990, 348:674–675.

    Article  PubMed  CAS  Google Scholar 

  25. Monaco J: A molecular model of MHC class-1-restricted antigen processing. Immunol Today 1992, 13:173–179.

    Article  PubMed  CAS  Google Scholar 

  26. Falk K, Rotzchke O, Stevanovic J, et al.: Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991, 351:290–294.

    Article  PubMed  CAS  Google Scholar 

  27. Keene J, Forman J: Helper activity is required for the in vitro generation of cytotoxic T lymphocytes. J Exp Med 1982, 150:1134–1142.

    Google Scholar 

  28. Raulet D, Bevan M: Helper T cells for cytotoxic T lymphocytes need not be region restricted. J Exp Med 1982, 155:1766–1784.

    Article  PubMed  CAS  Google Scholar 

  29. Kast W, Bronklhorst, DeWaal L, et al.: Cooperation between cytotoxic and helper T lymphocytes in protection against lethal Sendai virus infection. J Exp Med 1986, 164:723–738.

    Article  PubMed  CAS  Google Scholar 

  30. Steinman RM: The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991, 9:271–296.

    Article  PubMed  CAS  Google Scholar 

  31. Fitch FW, Laneki DW, Gajewski TF: T-cell mediated immune regulation: help and suppression. In Fundamental Immunology. Edited by Paul W, Nita E. Philadelphia: Raven; 1993:733–761.

    Google Scholar 

  32. Zinkernagel R, Doherty P: MHC-restricted cytotoxic cell: Studies on the biological role of polymorphic major transplantation antigens determining T cell restriction-specificity, function and responsiveness. Adv Immunol 1979, 27:51–106.

    PubMed  CAS  Google Scholar 

  33. Rock KL, Gamble S, Rothstein L: Presentation of exogenous antigen with class I major histocompatibility complex molecules. Science 1990, 249:918–921.

    Article  PubMed  CAS  Google Scholar 

  34. Harding CV, Song R: Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules. J Immunol 1994, 153:4925–4933.

    PubMed  CAS  Google Scholar 

  35. Kovacsovic-Bankowski M, Rock KL: A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 1995, 267:243–245.

    Article  Google Scholar 

  36. Hoover HC Jr, Brandhorst JS, Peters LC, et al.: Adjuvant active specific immunotherapy for human colorectal cancer: 6.5 - year median follow-up of a phase III prospectively randomized trial. J Clin Oncol 1993, 11:390–399.

    PubMed  Google Scholar 

  37. Key ME, Hanna MG Jr:: Mechanism of action of BCG-tumor cell vaccines in the generation of systemic tumor immunity: 1. Synergism between BCG and line 10 tumor cells in the induction of an inflammatory response. J Natl Cancer Inst 1981, 67:853–861.

    PubMed  CAS  Google Scholar 

  38. Peters LC, Hanna MG Jr: Active-specific immunotherapy of established micrometastasis: effect of cryopreservation procedures on tumor cell immunogenicity in guinea pigs. J Natl Cancer Inst 1980, 64:1521–1525.

    PubMed  CAS  Google Scholar 

  39. Harris JE, Ryan L, Hanna MG Jr, et al.: Adjuvant active specific immunotherapy for stage II and III colon cancer autologous tumor cell vaccine: Eastern Cooperative Oncology Group Study E5283. J Clin Oncol 2000, 18:148–157. Report describing a vaccine trial using autologous tumor cells mixed with BCG for patients with stage II and III colon cancer. After a 7.6-year median follow-up, there was no statistically significant difference in clinical outcomes between the treatment arms; however, diseasefree survival and overall survival trends were in favor of the vaccine arm for patients who received the intended treatment.

    PubMed  CAS  Google Scholar 

  40. Gilboa E, Lyerly HK: Specific active immunotherapy of cancer using genetically modified tumor vaccines. Biol Ther Cancer 1994, 6:1–16.

    Google Scholar 

  41. Yannelli JR, Hyatt C, Johnson S, et al.: Characterization of human tumor cell lines with the cDNA encoding either tumor necrosis factor-alpha (TNF-alpha or interleukin-2 (IL-2). J Immunol Methods 1993, 161:77–90.

    Article  PubMed  CAS  Google Scholar 

  42. Chen L, McGown P, Ashe S, et al.: Tumor Immunogenicity determines the effect of B7 costimulation on T cell mediated tumor immunity. J Exp Med 1994, 179:523–532.

    Article  PubMed  CAS  Google Scholar 

  43. Townsend SE, Allison JP: Tumor rejection after direct costimulation of CD8+ T-cells by B7-transfected melanoma cells. Science 1993, 259:368–370.

    Article  PubMed  CAS  Google Scholar 

  44. Yang S, Darrow TL, Seigler HF: Generation of primary tumor specific cytotoxic lymphocytes from autologous and human lymphocyte antigen class I matched allogeneic peripheral blood lymphocytes by B7 gene modified melanoma cells. Cancer Res 1997, 57:1561–1568.

    PubMed  CAS  Google Scholar 

  45. Jaffee E, Dranoff G, Cohen L, et al.: High efficiency gene transfer into primary human tumor explants without cell selection. Cancer Res 1993, 53:2221–2226.

    PubMed  CAS  Google Scholar 

  46. Kawakami Y, Eliyahu S, Sakaguchi K, et al.: Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2 restricted tumor infiltrating lymphocytes. J Exp Med 1994, 180:347–352.

    Article  PubMed  CAS  Google Scholar 

  47. Kawakami Y, Eliyahu S, Sakaguchi K, et al.: Recognition of multiple epitopes in the human melanoma antigen gp100 associated with in vivo tumor regression. J Immunol 1995, 154:3961–3968.

    PubMed  CAS  Google Scholar 

  48. Bakker A, Schreurs M, Tafazzul G, et al.: Identification of a novel peptide derived from the melanocyte-specific gp100 antigen as the dominant epitope recognized by an HLA-A2.1-restricted anti-melanoma CTL line. Int J Cancer 1995, 62:97–102.

    Article  PubMed  CAS  Google Scholar 

  49. Kawakami Y, Eliyahu S, Delgado CH, et al.: Identification of a human melanoma antigen recognized by tumor infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci U S A 1994, 91:6458–6462.

    Article  PubMed  CAS  Google Scholar 

  50. Castelli C, Storkus WJ, Maeurer MJ, et al.: Mass spectrometric identification of a naturally processed melanoma peptide recognized by CD8+ cytotoxic T lymphocytes. J Exp Med 1995, 181:363–368.

    Article  PubMed  CAS  Google Scholar 

  51. Brichard V, Van Pel A, Wölfel T, et al.: The tyrosinase gene codes for an antigen recognized by autologous cytolytic Tlymphocytes on HLA-A2 melanomas. J Exp Med 1993, 178:759–764.

    Article  Google Scholar 

  52. Fisk B, Blevins TL, Wharton JT: Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocytes lines. J Exp Med 1995, 181:2109–2117.

    Article  PubMed  CAS  Google Scholar 

  53. Linehan DC, Goedegebuure PS, Peoples GE, et al.: Tumorspecific and HLA-A2-restricted cytolysis by tumor-associated lymphocytes in human metastatic breast cancer. J Immunol 1995, 155:4486–4491.

    PubMed  CAS  Google Scholar 

  54. Tsang KY, Zaremba S, Nieroda CA, et al.: Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccina-CEA vaccine. J Natl Cancer Inst 1995, 87:982–990.

    Article  PubMed  CAS  Google Scholar 

  55. Disis NL, Gralow JR, Bernhard H, et al.: Peptide-based, but not whole protein, vaccines elicit immunity to HER-2/neu, an oncogenic self-protein. J Immunol 1996, 156:3151–3158.

    PubMed  CAS  Google Scholar 

  56. Kast WM, Brandt RPM, Sidney J, et al.: Role of HLA-A motifs in identification of potential CTL epitopes in human papillomavirus type 16 E6 and E7 proteins. J Immunol 1994, 152:3904–3912.

    PubMed  CAS  Google Scholar 

  57. Kubo RT, Sett A, Grey HM, et al.: Definition of specific peptide motifs for four major HLA-A alleles. J Immunol 1994, 152:3913–3924.

    PubMed  CAS  Google Scholar 

  58. Vitiello A, Ishioka G, Grey H, et al.: Development of a lipopeptide-based therapeutic vaccine to treat chronic HBV infection. J Clin Invest 1995, 95:341–349.

    PubMed  CAS  Google Scholar 

  59. Mayordomo JL, Zorina T, Storkus WJ, et al.: Bone marrowderived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nature 1995, Med 1:1297–1302.

    Google Scholar 

  60. Zitvogel L, Mayordomo JI, Tjandrawan T, et al.: Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cell, B7 co-stimulation, and T helper cell 1-associated cytokines. J Exp Med 1996, 183:87–97.

    Article  PubMed  CAS  Google Scholar 

  61. Rosenberg SA, Yang JC, Schwartzentruber DJ, et al.: Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998, 4:321–332. The authors describe immunologic and significant clinical responses in patients treated with a synthetic peptide combined with IL-2 for metastatic melanoma. These results have led to a phase III randomized trial for patients with metastatic melanoma.

    Article  PubMed  CAS  Google Scholar 

  62. Kotera Y, Fontenot JD, Pecher G, et al.: Human immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic and colon cancer patients. Cancer Res 1994, 54:2856–2860.

    PubMed  CAS  Google Scholar 

  63. Devine PL, Layton GT, Clark BA, et al.: Production of MUC1 and MUC2 mucins by human tumor cell lines. Biochem Biophys Res Commun 1991, 178:593–599.

    Article  PubMed  CAS  Google Scholar 

  64. Gendler SJ, Spicer AP, Lalani E-N, et al.: Structure and biology of a carcinoma-associated mucin, MUC1. Am Rev Respir Dis 1991, 144:S42-S47.

    PubMed  CAS  Google Scholar 

  65. Burchell J, Taylor-Papadimitriou J, Boshell M, et al.: A short sequence, within the amino acid tandem repeat of a cancerassociated mucin, contains immunodominant epitopes. Int J Cancer 1989, 44:691–696.

    Article  PubMed  CAS  Google Scholar 

  66. Fontenot JD, Tjandra N, Bu D, et al.: Biophysical characterization of one-, two-, and three-tandem repeats of human mucin (muc-1) protein core. Cancer Res 1993, 53:5386–5394.

    PubMed  CAS  Google Scholar 

  67. Perez L, Hayes DF, Maimonis P, et al.: Tumor selective reactivity of a monoclonal antibody prepared against a recombinant peptide derived from the DF3 human breast carcinomaassociated antigen. Cancer Res 1992, 52:2563–2568.

    Google Scholar 

  68. Ding L, Lalani, E-N, Reddish M, et al.: Immunogenicity of synthetic peptides related to the core peptide sequence encoded by the human MUC1 mucin gene: effect of immunization on the growth of murine mammary adenocarcinoma cells transfected with the human MUC1 gene. Cancer Immunol Immunother 1993, 36:9–17.

    Article  PubMed  CAS  Google Scholar 

  69. Barnd DL, Lan M, Metzgar R, Finn OJ: Specific MHCunrestricted recognition of tumor associated mucins by human cytotoxic T cells. Proc Natl Acad Sci U S A 1989, 86:7159–7163.

    Article  PubMed  CAS  Google Scholar 

  70. Jerome KR, Barnd DL, Bendt KM, et al.: Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells. Cancer Res 1991, 51:2908–2916.

    PubMed  CAS  Google Scholar 

  71. Goydos JS, Elder E, Whiteside TL, et al.: A phase I trial of a synthetic mucin peptide vaccine: induction of specific immune reactivity in patients with adenocarcinoma. J Surg Res 1996, 63:298–304.

    Article  PubMed  CAS  Google Scholar 

  72. Doménech N, Henderson RA, Finn OJ: Identification of an HLA-A11-restricted epitope from the tandem repeat domain of the epithelial tumor antigen mucin. J Immunol 1995, 155:4766–4774.

    PubMed  Google Scholar 

  73. Apostolopoulos V, Osinski C, McKenzie IFC: MUC1 crossreactive Galalpha(1,3)Gal antibodies in humans switch immune responses from cellular to humoral. Nat Med 1998, 4:315–320. The authors describe why humans lack a CTL response to the MUC1 antigen.

    Article  PubMed  CAS  Google Scholar 

  74. Houghton AN, Lloyd KO: Stuck in the MUC on the long and winding road: antibodies that cross react with the tumor antigen MUC1 switch a cellular immune response to a humoral one with implications for the immunotherapy of cancer. Nat Med 1998, 4:270–271. An editorial responding to concerns about "CTL chauvinism" in current research.

    Article  PubMed  CAS  Google Scholar 

  75. Livingston PO, Natoli EJ Jr, Calves MJ, et al.: Vaccines containing purified GM2 ganglioside elicit GM2 antibodies in melanoma patients. Proc Natl Acad Sci U S A 1987, 84:2911–2915.

    Article  PubMed  CAS  Google Scholar 

  76. Livingston PO, Wong GYC, Adluri S, et al.: Improved survival in stage III melanoma patients with GM2 antibodies: a randomized trial of adjuvant vaccination with GM2 ganglioside. J Clin Oncol 1994, 12:1036–1044.

    PubMed  CAS  Google Scholar 

  77. Sieling PA, Chatterjee D, Porcelli SA, et al.: CD1-restricted T-cell recognition of microbial lipoglycan antigens. Science 1985, 269:227–230.

    Article  Google Scholar 

  78. Moody DB, Reinhold BB, Guy MR, et al.: Structural requirements for glycolipid antigen recognition by CD1b-restricted T-cells. Science 1997, 278:283–286.

    Article  PubMed  CAS  Google Scholar 

  79. Haurum JS, Arsequell G, Lellouch AC, et al.: Recognition of carbohydrate by major histocompatability complex class Irestricted, glycopeptide-specific cytotoxic T lymphocytes. J Exp Med 1994, 180:739–744.

    Article  PubMed  CAS  Google Scholar 

  80. Beckman EM, Porcelli SA, Morita CT, et al.: Recognition of a lipid antigen by CD1-restricted beta+ T cells. Nature 1994, 372:691–694.

    Article  PubMed  CAS  Google Scholar 

  81. Springer GF: T and Tn: general carcinoma antoantigens. Science 1984, 224:1198–1206.

    Article  PubMed  CAS  Google Scholar 

  82. Longenecker BM, Willan DJ, MacLean GD, et al.: Monoclonal antibodies and synthetic tumor-associated glycoconjugates in the study of the expression of Thomsen-Friedenreich-like and Tn-like antigens on human cancers. J Natl Cancer Inst 1987, 78:489–496.

    PubMed  CAS  Google Scholar 

  83. MacLean GD, Reddish MA, Bowen-Yacshyn MB, et al.: Active specific immunotherapy against adenocarcinomas. Cancer Invest 1994, 12:46–56.

    PubMed  CAS  Google Scholar 

  84. Adluri S, Helling F, Ogata S, et al.: Immunogenicity of synthetic TF-KLH (keyhole limpet hemocyanin) and sTn-KLH conjugates in colorectal carcinoma patients. Cancer Immunol Immunother 1995, 41:185–192.

    PubMed  CAS  Google Scholar 

  85. Thompson J, Zimmerman W: The carcinoembryonic antigen gene family: structure, expressions, and evolution. Tumour Biol 1988, 9:63–83.

    Article  PubMed  CAS  Google Scholar 

  86. Paxton RJ, Mooser G, Pande H, et al.: Sequence analysis of carcinoembryonic antigen: identification of glycosylation sites and homology with the immunoglobulin super-gene family. Proc Natl Acad Sci U S A 1987, 84:920–924.

    Article  PubMed  CAS  Google Scholar 

  87. Benchimol S, Fuks A, Jothy S, et al.: Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell 1989, 57:327–334.

    Article  PubMed  CAS  Google Scholar 

  88. Oikawa S, Inuzuka C, Kuroki M, et al.: Cell adhesion activity of non-specific cross-reacting antigen (NCA) and carcinoembryonic antigen (CEA) expressed on CHO cell surface: homophilic and heterophilic adhesion. Biochem Biophys Res Commun 1989, 164:39–45.

    Article  PubMed  CAS  Google Scholar 

  89. Kaufman H, Schlom J, Kantor J: A recombinant vaccinia virus expressing human carcinoembryonic antigen (CEA). Int J Cancer 1991, 48:900–907.

    Article  PubMed  CAS  Google Scholar 

  90. Kantor J, Irvine K, Abrams S, et al.: Antitumor activity and immune response induced by a recombinant carcinoembryonic antigen-vaccinia virus vaccine. J Natl Cancer Inst 1992, 84:1084–1091.

    Article  PubMed  CAS  Google Scholar 

  91. Tsang KY, Zaremba S, Nieroda CA, et al.: Generation of human cytotoxic T-cells specific for human carcinoembryonic antigen (CEA) epitopes from patients immunized with recombinant vaccinia-CEA (rV-CEA) vaccine. J Natl Cancer Inst 1995, 87:982–990.

    Article  PubMed  CAS  Google Scholar 

  92. Lindenmann J: Speculations on idiotypes and homobodies. Ann Immunol 1973, 124:171–184.

    CAS  Google Scholar 

  93. Jerne NK: Towards a network theory of the immune system. Ann Immunol 1974, 125C:373–389.

    CAS  Google Scholar 

  94. Fagerberg J, Steinitz M, Wigzell H, et al.: Human anti-idiotypic antibodies induced a humoral and cellular immune response against a colorectal carcinoma-associated antigen in patients. Proc Natl Acad Sci U S A 1995, 92:4773–4777.

    Article  PubMed  CAS  Google Scholar 

  95. Herlyn D, Harris D, Zaloudik J, et al.: Immunomodulatory activity of monoclonal anti-idiotypic antibody to anticolorectal carcinoma antibody CO17-1A in animals and patients. J Immunother 1994, 15:303–311.

    Article  CAS  Google Scholar 

  96. Robins RA, Denton GWL, Hardcastle JD, et al.: Antitumor immune response and interleukin 2 production induced in colorectal cancer patients by immunization with human monoclonal anti-idiotypic antibody. Cancer Res 1991, 51:5425–5429.

    PubMed  CAS  Google Scholar 

  97. Denton GWL, Durrant LG, Hardcastle JD, et al.: Clinical outcome of colorectal cancer patients treated with human monoclonal anti-idiotypic antibody. Int J Cancer 1994, 57:10–17.

    Article  PubMed  CAS  Google Scholar 

  98. Durrant LG, Doran M, Austin EB, Robins RA: Induction of cellular immune responses by a murine monoclonal antiidiotypic antibody recognizing the 791Tgp72 antigen expressed on colorectal, gastric and ovarian human tumors. Int J Cancer 1995, 61:62–66.

    Article  PubMed  CAS  Google Scholar 

  99. Bhattacharya-Chatterjee M, Mukerjee S, Biddle W, et al.: Murine monoclonal anti-idiotype antibody as a potential network antigen for human carcinoembryonic antigen. J Immunol 1990, 145:2758–2765.

    PubMed  CAS  Google Scholar 

  100. Pervin S, Chakraborty M, Bhattacharya-Chatterjee M, et al.: Induction of antitumor immunity by an anti-idiotype antibody mimicking carcinoembryonic antigen. Cancer Res 1997, 57:728–734.

    PubMed  CAS  Google Scholar 

  101. Foon KA, Chakraborty M, John WJ, et al.: Immune response to the carcinoembryonic antigen in patients treated with an antiidiotype antibody vaccine. J Clin Invest 1995, 96:334–342.

    Article  PubMed  CAS  Google Scholar 

  102. Foon KA, John WJ, Chakraborty M, et al.: Clinical and immune responses in advanced colorectal cancer patients treated with anti-idiotype monoclonal antibody vaccine that mimics the carcinoembryonic antigen. Clin Cancer Res 1997, 3:1267–1276.

    PubMed  CAS  Google Scholar 

  103. Foon KA, John WJ, Chakraborty M, et al.: Clinical and immune responses in resected colorectal cancer patients treated with anti-idiotype monoclonal antibody vaccine that mimics the carcinoembryonic antigen. J Clin Oncol 1999, 17:2889–2895. This report describes high-titer anti-CEA IgG immune responses in 32 of 32 resected colorectal cancer patients treated with an anti-idiotype monoclonal antibody vaccine that mimics CEA. Favorable clinical results are suggested.

    PubMed  CAS  Google Scholar 

  104. Chatterjee SK, Tripathi PK, Chakraborty M, et al.: Molecular mimicry of carcinoembryonic antigen by peptides derived from the structure of an anti-idiotype antibody. Cancer Res 1998, 58:1217–1224.

    PubMed  CAS  Google Scholar 

  105. Magliani W, Polonelli L, Conti S, et al.: Neonatal mouse immunity against group B streptococcal infection by maternal vaccination with recombinant anti-idiotypes. Nat Med 1998, 4:705–709.

    Article  PubMed  CAS  Google Scholar 

  106. Ruiz PJ, Wolkowicz R, Waisman A, et al.: Immunity to mutant p53 and tumor rejection induced by idiotypic immunization. Nat Med 1998, 4:710–712.

    Article  PubMed  CAS  Google Scholar 

  107. Bona CA: Idiotype vaccines: forgotten but not gone. Nat Med 1998, 4:668–669.

    Article  PubMed  CAS  Google Scholar 

  108. Foon KA, Bhattacharya-Chatterjee M: Idiotype vaccines in the clinic. Nat Med 1998, 4:870.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foon, K.A. Immunotherapy for colorectal cancer. Curr Oncol Rep 3, 116–126 (2001). https://doi.org/10.1007/s11912-001-0010-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-001-0010-y

Keywords

Navigation