Skip to main content
Log in

Neurobiology of circadian rhythm sleep disorders

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

To adapt to a 24-hour environment, nearly all organisms, from mammals to single-celled organisms, have developed endogenous mechanisms that generate nearly 24-hour (circadian) rhythms in physiology and behavior, the most notable being that of the daily cycles of sleep and wake. Disruption of these circadian rhythms is often accompanied by disorders of sleep and wakefulness. With the recent advances in the molecular biology that underlies the development and maintenance of these rhythms, the pathophysiology behind circadian rhythm sleep disorders is becoming better understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Van den Pol AN: The hypothalamic suprachiasmatic nucleus of rat: intrinsic anatomy. J Comp Neurol 1980, 191:661–702.

    Article  PubMed  Google Scholar 

  2. Edgar DM, Dement WC, Fuller CA: Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J Neurosci 1993, 13:1065–1079.

    PubMed  CAS  Google Scholar 

  3. Lee HS, Billings HJ, Lehman MN: The suprachiasmatic nucleus: a clock of multiple components. J Biol Rhythms 2003, 18:435–449.

    Article  PubMed  CAS  Google Scholar 

  4. Welsh DK, Logothetis DE, Meister M, Reppert SM: Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 1995, 14:697–706.

    Article  PubMed  CAS  Google Scholar 

  5. Dunlap JC: Molecular bases for circadian clocks. Cell 1999, 96:271–290.

    Article  PubMed  CAS  Google Scholar 

  6. Gachon F, Nagoshi E, Brown SA, et al.: The mammalian circadian timing system: from gene expression to physiology. Chromosoma 2004, 113:103–112.

    Article  PubMed  Google Scholar 

  7. Xu Y, Padiath QS, Shapiro RE, et al.: Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 2005, 434:640–644. A definitive study elaborating a new "clock" gene and mechanism for an inherited circadian rhythm sleep disorder

    Article  PubMed  CAS  Google Scholar 

  8. Leloup JC, Goldbeter A: Toward a detailed computational model for the mammalian circadian clock. Proc Natl Acad Sci U S A 2003, 100:7051–7056.

    Article  PubMed  CAS  Google Scholar 

  9. Adelmant G, Begue A, Stehelin D, Laudet V: A functional Rev-erb alpha responsive element located in the human Rev-erb alpha promoter mediates a repressing activity. Proc Natl Acad Sci U S A 1996, 93:3553–3558.

    Article  PubMed  CAS  Google Scholar 

  10. Czeisler CA, Duffy JF, Shanahan TL, et al.: Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 1999, 284:2177–2181.

    Article  PubMed  CAS  Google Scholar 

  11. Czeisler CA, Allan JS, Strogatz SH, et al.: Bright light resets the human circadian pacemaker independent of the timing of the sleep-wake cycle. Science 1986, 233:667–671.

    Article  PubMed  CAS  Google Scholar 

  12. Moore RY, Lenn NJ: A retinohypothalamic projection in the rat. J Comp Neurol 1972, 146:1–14.

    Article  PubMed  CAS  Google Scholar 

  13. Moore RY: Retinohypothalamic projection in mammals: a comparative study. Brain Res 1973, 49:403–409.

    Article  PubMed  CAS  Google Scholar 

  14. Middleton B, Arendt J, Stone BM: Human circadian rhythms in constant dim light (8 lux) with knowledge of clock time. J Sleep Res 1996, 5:69–76.

    Article  PubMed  CAS  Google Scholar 

  15. Hattar S, Liao HW, Takao M, et al.: Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 2002, 295:1065–1070. A definitive review of the unique class of photoreceptors responsible for entrainment and phase-shifting circadian rhythms.

    Article  PubMed  CAS  Google Scholar 

  16. Hsu DS, Zhao X, Zhao S, et al.: Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry 1996, 35:13871–13877.

    Article  PubMed  CAS  Google Scholar 

  17. Minors DS, Waterhouse JM, Wirz-Justice A: A human phaseresponse curve to light. Neurosci Lett 1991, 133:36–40.

    Article  PubMed  CAS  Google Scholar 

  18. Ebadi M, Govitrapong P: Neural pathways and neurotransmitters affecting melatonin synthesis. J Neural Transm Suppl 1986, 21:125–155.

    PubMed  CAS  Google Scholar 

  19. Reppert SM, Perlow MJ, Ungerleider LG, et al.: Effects of damage to the suprachiasmatic area of the anterior hypothalamus on the daily melatonin and cortisol rhythms in the rhesus monkey. J Neurosci 1981, 1:1414–1425.

    PubMed  CAS  Google Scholar 

  20. Lewy AJ, Bauer VK, Ahmed S, et al.: The human phase response curve (PRC) to melatonin is about 12 hours out of phase with the PRC to light. Chronobiol Int 1998, 15:71–83.

    Article  PubMed  CAS  Google Scholar 

  21. Lewy AJ, Sack RL, Singer CM: Immediate and delayed effects of bright light on human melatonin production: shifting "dawn" and "dusk" shifts the dim light melatonin onset (DLMO). Ann NY Acad Sci 1985, 453:253–259.

    Article  PubMed  CAS  Google Scholar 

  22. Audinot V, Mailliet F, Lahaye-Brasseur C, et al.: New selective ligands of human cloned melatonin MT1 and MT2 receptors. Naunyn Schmiedebergs Arch Pharmacol 2003, 367:553–561.

    Article  PubMed  CAS  Google Scholar 

  23. Lewy AJ, Ahmed S, Jackson JM, Sack RL: Melatonin shifts human circadian rhythms according to a phase-response curve. Chronobiol Int 1992, 9:380–392.

    Article  PubMed  CAS  Google Scholar 

  24. Dubocovich ML, Yun K, Al-Ghoul WM, et al.: Selective MT2 melatonin receptor antagonists block melatoninmediated phase advances of circadian rhythms. FASEB J 1998, 12:1211–1220.

    PubMed  CAS  Google Scholar 

  25. Borbely A: A two process model of sleep regulation. Hum Neurobiol 1982, 1:195–204.

    PubMed  CAS  Google Scholar 

  26. Dijk D, Czeisler C: Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci Lett 1994, 166:63–68.

    Article  PubMed  CAS  Google Scholar 

  27. Borbely A: Sleep: circadian rhythm vs. recovery process. In Functional States of the Brain: Their Determinants. Edited by Koukkou M, Lehmann D, Angst J. Amsterdam: Elsevier/North-Holland; 1980:151–161.

    Google Scholar 

  28. Wever R: The Circadian System of Man. Results of Experiments under Temporal Isolation. New York: Springer Verlag; 1979.

    Google Scholar 

  29. Czeisler C, Weitzman E, Moore-Ede M, et al.: Human sleep: its duration and organisation depend on it circadian phase. Science 1980, 210:1264–1267.

    Article  PubMed  CAS  Google Scholar 

  30. Zulley J, Wever R, Aschoff J: The dependence of onset and duration of sleep on the circadian rhythm of rectal temperature. Pflugers Arch 1981, 391:314–318.

    PubMed  CAS  Google Scholar 

  31. Chou TC, Bjorkum AA, Gaus SE, et al.: Afferents to the ventrolateral preoptic nucleus. J Neurosci 2002, 22:977–990.

    PubMed  CAS  Google Scholar 

  32. Aston-Jones G, Chen S, Zhu Y, Oshinsky ML: A neural circuit for circadian regulation of arousal. Nat Neurosci 2001, 4:732–738. Explains how the SCN may regulate arousal.

    Article  PubMed  CAS  Google Scholar 

  33. Mason R, Brooks A: The electrophysiological effects of melatonin and a putative melatonin antagonist (N-acetyltr yptamine) on rat suprachiasmatic neurones in vitro. Neurosci Lett 1988, 95:296–301.

    Article  PubMed  CAS  Google Scholar 

  34. Poirel VJ, Masson-Pevet M, Pevet P, Gauer F: MT1 melatonin receptor mRNA expression exhibits a circadian variation in the rat suprachiasmatic nuclei. Brain Res 2002, 946:64–71.

    Article  PubMed  CAS  Google Scholar 

  35. Rajaratnam SM, Middleton B, Stone BM, et al.: Melatonin advances the circadian timing of EEG sleep and directly facilitates sleep without altering its duration in extended sleep opportunities in humans. J Physiol 2004, 561(Pt 1):339–351.

    Article  PubMed  CAS  Google Scholar 

  36. International Classification of Sleep Disorders — Second Edition. Westchester, IL: American Academy of Sleep Medicine; 2005.

  37. Weitzman ED, Czeisler CA, Coleman RM, et al.: Delayed sleep phase syndrome. A chronobiological disorder with sleep-onset insomnia. Arch Gen Psychiatry 1981, 38:737–746.

    PubMed  CAS  Google Scholar 

  38. Regestein QR, Monk TH: Delayed sleep phase syndrome: a review of its clinical aspects. Am J Psychiatry 1995, 152:602–608.

    PubMed  CAS  Google Scholar 

  39. Weitzman ED, Czeisler CA, Coleman RM, et al.: Delayed sleep phase syndrome. A chronobiological disorder with sleep-onset insomnia. Arch Gen Psychiatry 1981, 38:737–746.

    PubMed  CAS  Google Scholar 

  40. Ando K, Kripke DF, Ancoli-Israel S: Estimated prevalence of delayed and advanced sleep phase syndromes. Sleep Res 1995, 24:509.

    Google Scholar 

  41. Kamei Y, Urata J, Uchiyaya M, et al.: Clinical characteristics of circadian rhythm sleep disorders. Psychiatry Clin Neurosci 1998, 52:234–235.

    Article  PubMed  CAS  Google Scholar 

  42. Jones CR, Campbell SS, Zone SE, et al.: Familial advanced sleep-phase syndrome: A short-period circadian rhythm variant in humans. Nat Med 1999, 5:1062–1065.

    Article  PubMed  CAS  Google Scholar 

  43. Ancoli-Israel S, Kripke DF: Prevalent sleep problems in the aged. Biofeedback Self Regul 1991, 16:349–359.

    Article  PubMed  CAS  Google Scholar 

  44. Moore RY: A clock for the ages. Science 1999, 284:2102–2103.

    Article  PubMed  CAS  Google Scholar 

  45. Naylor E, Bergmann BM, Krauski K, et al.: The circadian clock mutation can affect sleep homeostasis in the mouse. J Neurosci 2000, 20:8138–8143.

    PubMed  CAS  Google Scholar 

  46. Rufiange M, Dumont M, Lachapelle P: Correlating retinal function with melatonin secretion in subjects with an early or late circadian phase. Invest Ophthalmol Vis Sci 2002, 42:2491–2499.

    Google Scholar 

  47. Reid KJ, Chang AM, Dubocovich ML, et al.: Familial advanced sleep phase syndrome. Arch Neurol 2001, 58:1089–1094.

    Article  PubMed  CAS  Google Scholar 

  48. Toh KL, Jones CR, He Y, et al.: An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001, 291:1040–1043.

    Article  PubMed  CAS  Google Scholar 

  49. Ebisawa T, Uchiyama M, Kajimura N, et al.: Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO J 2001, 2:342–346. First description of the hPER3-associated polymorphism in humans.

    Article  CAS  Google Scholar 

  50. Archer SN, Robilliard DL, Skene DJ, et al.: A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 2003, 26:413–415.

    PubMed  Google Scholar 

  51. Pereira DS, Tufik S, Louzada FM, et al.: Association of the length polymorphism in the human Per3 gene with the delayed sleep-phase syndrome: does latitude have an influence upon it? Sleep 2005, 28:29–32.

    PubMed  Google Scholar 

  52. Hohjoh H, Takasu M, Shishikura K, et al.: Significant association of the arylalkylamine N-acetyltransferase (AA-NAT) gene with delayed sleep phase syndrome. Neurogenetics 2003, 4:151–153. Genetic differences in non-classic "clock" genes may also influence circadian rhythm sleep disorders.

    PubMed  CAS  Google Scholar 

  53. Sack RL, Lewy AJ: Circadian rhythm sleep disorders: lessons from the blind. Sleep Med Rev 2001, 5:189–206.

    Article  PubMed  Google Scholar 

  54. Elliott AL, Mills JN, Waterhouse JM: A man with too long a day. J Physiol 1971, 212:30P-31P.

    Google Scholar 

  55. Sack RL, Lewy AJ, Blood ML, et al.: Circadian rhythm abnormalities in totally blind people: incidence and clinical significance. J Clin Endocrinol Metab 1992, 75:127–134.

    Article  PubMed  CAS  Google Scholar 

  56. Miles LE, Raynal DM, Wilson MA: Blind man living in normal society has circadian rhythms of 24.9 hours. Science 1977, 198:421–423.

    Article  PubMed  CAS  Google Scholar 

  57. Martens H, Endlich H, Hildebrandt G: Sleep/wake distribution in blind subjects with and without sleep complaints. Sleep Res 1990, 9:398.

    Google Scholar 

  58. Weber AL, Cary MS, Connor N, Keyes P: human non-24-hour sleep-wake cycles in an everyday environment. Sleep 1980, 2:347–354.

    PubMed  CAS  Google Scholar 

  59. Uchiyama M, Shibui K, Hayakawa T, et al.: Larger phase angle between sleep propensity and melatonin rhythms in sighted humans with non-24-hour sleep-wake syndrome. Sleep 2002, 25:83–88.

    PubMed  Google Scholar 

  60. McArthur AJ, Lewy AJ, Sack RL: Non-24-hour sleep-wake syndrome in a sighted man: circadian rhythm studies and efficacy of melatonin treatment. Sleep 1996, 19:544–553.

    PubMed  CAS  Google Scholar 

  61. Witting W, Kwa IH, Eikelenboom P, et al.: Alterations in the circadian rest-activity rhythm in aging and alzheimers disease. Biol Psychiatry 1990, 27:563–572.

    Article  PubMed  CAS  Google Scholar 

  62. Hoogendijk WJ, van Someren EJ, Mirmiran M, et al.: Circadian rhythm-related behavioral disturbances and structural hypothalamic changes in Alzheimer’s disease. Int Psychogeriatr 1996, 8(Suppl 3):245–252, discussion 269–272.

    PubMed  Google Scholar 

  63. Pollak CP, Stokes PE: Circadian rest-activity rhythms in demented and nondemented older community residents and their caregivers. J Am Geriatr Soc 1997, 45:446–452.

    PubMed  CAS  Google Scholar 

  64. van Someren EJ, Hagebeuk EE, Lijzenga C, et al.: Circadian rest-activity rhythm disturbances in Alzheimer’s disease. Biol Psychiatry 1996, 40:259–270.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phyllis C. Zee MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manthena, P., Zee, P.C. Neurobiology of circadian rhythm sleep disorders. Curr Neurol Neurosci Rep 6, 163–168 (2006). https://doi.org/10.1007/s11910-996-0040-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-996-0040-9

Keywords

Navigation