Skip to main content

Advertisement

Log in

New pathways in drug discovery for alzheimer’s disease

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Specific treatments for Alzheimer’s disease (AD) were first introduced in the 1990s using the acetyl-cholinesterase inhibitors. More recently, the N-methyl-D-aspartate (NMDA) antagonist memantine has become available. Although these treatments do provide a modest improvement in the cognitive abnormalities present in AD, their pharmacology is based on manipulation of neurotransmitter systems, and there is no compelling evidence that they interfere with the underlying pathogenic process. Pathologic and genetic data have led to the hypothesis that a peptide called amyloid β (Aβ) plays a primary role in the pathophysiology of AD. Several investigational therapies targeting Aβ are now undergoing clinical trials. This paper reviews the available data regarding Aβ-directed therapies that are in the clinic and summarizes the approach to biomarkers and clinical trial designs that can provide evidence of modification of the underlying disease process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Jost BC, Grossberg GT: The natural history of Alzheimer’s disease: a brain bank study. J Amer Geriatr Soc 1995, 43:1248–1255.

    CAS  Google Scholar 

  2. Smith GE, O’Brien PC, Ivnik RJ, et al.: Prospective analysis of risk factors for nursing home placement of dementia patients. Neurology 2001, 57:1467–1473.

    PubMed  CAS  Google Scholar 

  3. Davies P, Maloney AJ: Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 1976, 2:1403.

    Article  PubMed  CAS  Google Scholar 

  4. Schneider LS: Treatment of Alzheimer’s disease with cholinesterase inhibitors. Clin Geriatric Med 2001, 17:337–358.

    Article  CAS  Google Scholar 

  5. Irizarry MC, Hyman BT: Alzheimer disease therapeutics. J Neuropathol Exp Neurol 2001, 60:923–928.

    PubMed  CAS  Google Scholar 

  6. Braak H, Braak E: Neuropathological staging of Alzheimerrelated changes. Acta Neuropathol 1991, 82:239–259.

    Article  PubMed  CAS  Google Scholar 

  7. Braak H, Braak E: Evolution of the neuropathology of Alzheimer’s disease. Acta Neurologica Scand Suppl 1996, 165:3–12.

    CAS  Google Scholar 

  8. Selkoe DJ: Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 1999, 399(6738 Suppl):A23-A31.

    PubMed  CAS  Google Scholar 

  9. Cummings JL: Alzheimer’s disease. N Engl J Med 2004, 351:56–67.

    Article  PubMed  CAS  Google Scholar 

  10. Hardy J. Selkoe DJ: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002, 297:353–356.

    Article  PubMed  CAS  Google Scholar 

  11. Schenk DB, Rydel RE, May P, et al.: Therapeutic approaches related to amyloid-beta peptide and Alzheimer’s disease. J Med Chem 1995, 38:4141–4154.

    Article  PubMed  CAS  Google Scholar 

  12. Holtzman DM: Role of apoe/Abeta interactions in the pathogenesis of Alzheimer’s disease and cerebral amyloid angiopathy. J Mol Neurosci 2001, 17:147–155.

    Article  PubMed  CAS  Google Scholar 

  13. Roses AD, Saunders AM: Perspective on a pathogenesis and treatment of Alzheimer’s disease. Alzheimer’s Dementia 2006, 2:59–70.

    Article  CAS  PubMed  Google Scholar 

  14. Lesna S, Koh MT, Kotilinek L, et al.: A specific amyloid-protein assembly in the brain impairs memory. Nature 2006, 440:352–357.

    Article  CAS  Google Scholar 

  15. Haass C: Take five - BACE and the gamma-secretase quartet conduct Alzheimer’s amyloid beta-peptide generation. EMBO J 2004, 23:483–438.

    Article  PubMed  CAS  Google Scholar 

  16. Shibata M, Yamada S, Kumar SR, et al.: Clearance of Alzheimer’s amyloid-b1-40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 2000, 106:1489–1499.

    Article  PubMed  CAS  Google Scholar 

  17. Gitter BD, Czilli DL, Li W, et al.: Stereoselective inhibition of amyloid beta peptide secretion by LY450139, a novel functional gamma secretase inhibitor. Neurobiol Aging 2004, 25(Suppl 2):571.

    Article  Google Scholar 

  18. Boggs LN, Fuson KS, Gitter BD, et al.: In vivo characterization of LY450139, a novel, sereoselective, functional gamma-secretase Inhibitor. Neurobiol Aging 2004, 25(Suppl 2):218.

    Article  Google Scholar 

  19. May PC, Yang Z, Li W, et al.: Multi-compartmental pharmaco-dynamic assessment of the functional gamma-secretase Inhibitor LY450139 in PDAPP transgenic mice and non-transgenic Mice. Neurobiol Aging 2004, 25(Suppl 25):65.

    Article  Google Scholar 

  20. Hyslop PA, May PC, Audia JE, et al.: Reduction in A-Beta(1–40) and A-Beta(1–42) in CSF and plasma in the beagle dog following acute oral dosing of the gamma secretase inhibitor, LY450139. Neurobiol Aging 2004, 25(Suppl 2):147.

    Article  Google Scholar 

  21. Ness DK, Boggs LN, Hepburn DL, et al.: Reduced beta-amyloid burden, increased C-99 concentrations and evaluation of neuropathology in the brains of PDAPP mice given LY450139 dihydrate daily by gavage for 5 months. Neurobiol Aging 2004, 25(Suppl 2):238.

    Article  Google Scholar 

  22. Siemers E, Skinner M, Dean RA, et al.: Safety, tolerability and changes in amyloid beta concentrations after administration of a gamma-secretase inhibitor in volunteers. Clin Neuropharmacol 2005, 28:126–132.

    Article  PubMed  CAS  Google Scholar 

  23. Siemers ER, Quinn JF, Kaye J, et al.: Effects of a gammasecretase inhibitor in a randomized study of patients with Alzheimer’s disease. Neurology 2006, 66:602–604.

    Article  PubMed  CAS  Google Scholar 

  24. Wong GT, Manfra D, Poulet FM, et al.: Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits Abeta production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 2004, 279:12876–12882.

    Article  PubMed  CAS  Google Scholar 

  25. Peretto I, Radaelli S, Parini C, et al.: Synthesis and biological activity of flurbiprofen analogues as selective inhibitors of b-amyloid1-42 secretion. J Med Chem 2005, 48:5707–5720.

    Article  CAS  Google Scholar 

  26. Lanz TA, Fici GJ, Merchant KM: Lack of specific amyloidbeta (1–42) suppression by nonsteroidal anti-inflammatory drugs in young, plaque-free Tg2576 mice and in guinea pig neuronal cultures. J Pharmacol Exp Ther 2005, 312:399–406.

    Article  PubMed  CAS  Google Scholar 

  27. Gasparini L, Ongini E, Wilcock D, Morgan D: Activity of flurbiprofen and chemically related anti-inflammatory drugs in models of Alzheimer’s disease. Brain Res Rev 2005, 48:400–408.

    Article  PubMed  CAS  Google Scholar 

  28. Vassar R, Bennett BD, Babu-Khan S, et al.: Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999, 286:735–741.

    Article  PubMed  CAS  Google Scholar 

  29. Yan R, Bienkowski MJ, Shuck ME, et al.: Membraneanchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature 1999, 402:533–537.

    Article  PubMed  CAS  Google Scholar 

  30. Sinha S, Anderson JP, Barbour R, et al.: Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 1999, 402:537–540.

    Article  PubMed  CAS  Google Scholar 

  31. Lin X, Koelsch G, Wu S, et al.: Human aspartic protease memapsin 2 cleaves the beta-secretase site of beta-amyloid precursor protein. Proc Natl Acad Sci 2000, 97:1456–1460.

    Article  PubMed  CAS  Google Scholar 

  32. Hussain I, Powell D, Howlett DR, et al.: Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci 1999, 14:419–427.

    Article  PubMed  CAS  Google Scholar 

  33. Cai H, Wang Y, McCarthy D, et al.: BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat Neurosci 2001, 4:233–234.

    Article  PubMed  CAS  Google Scholar 

  34. Luo Y, Bolon B, Kahn S, et al.: Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat Neurosci 2001, 4:231–232.

    Article  PubMed  CAS  Google Scholar 

  35. Roberds SL, Anderson J, Basi G, et al.: BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: implications for Alzheimer’s disease therapeutics. Hum Mol Genet 2001, 10:1317–1324.

    Article  PubMed  CAS  Google Scholar 

  36. Chang WP, Koelsch G, Wong S, et al.: In vivo inhibition of A beta production by memopsin 2 (beta-secretase) inhibitors. J Neurochem 2004, 89:1409–1416.

    Article  PubMed  CAS  Google Scholar 

  37. Stachel SJ, Coburn CA, Steele TG, et al.: Structure-based design of potent and selective cell permeable inhibitors of human beta-secretase (BACE-1). J Med Chem 2004, 47:6447–6450.

    Article  PubMed  CAS  Google Scholar 

  38. Schenk DB, Seubert P, Lieberburg I, Wallace J: Amyloid beta-peptide immunization: a possible new treatment for Alzheimer disease. Arch Neurol 2000, 57:934–936.

    Article  PubMed  CAS  Google Scholar 

  39. Orgogozo JM, Gilman S, Dartigues JF, et al.: Subacute meningoencephalitis in a subset of patients with AD after Ab42 immunization. Neurology 2003, 61:46–54.

    PubMed  CAS  Google Scholar 

  40. Hock C, Konietzko U, Papassotiropoulos A, et al.: Generation of antibodies specific for b-amyloid by vaccination of patients with Alzheimer disease. Nat Med 2002, 8:1270–1275.

    Article  PubMed  CAS  Google Scholar 

  41. Bard F, Barbour R, Cannon C, et al.: Epitode and isotype specificities of antibodies to b-amyloid peptide for protection against Alzheimer’s disease-like neuropathology. Proc Natl Acad Sci 2003, 100:2023–2028.

    Article  PubMed  CAS  Google Scholar 

  42. Nicoll JA, Wilkinson D, Holmes C, et al.: Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 2003, 9:448–452.

    Article  PubMed  CAS  Google Scholar 

  43. Ferrer I, Rovira MB, Guerra ML, et al.: Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer’s Disease. Brain Pathol 2004, 14:11–20.

    Article  PubMed  CAS  Google Scholar 

  44. Masliah E, Hansen L, Adame A, et al.: Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 2005, 64:129–131.

    PubMed  CAS  Google Scholar 

  45. Hock C, Konietzko U, Streffer JR, et al.: Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 2003, 38:517–518.

    Article  Google Scholar 

  46. Gilman S, Koller M, Black RS, et al.: Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 2005, 64:1553–1562.

    Article  PubMed  CAS  Google Scholar 

  47. Frank RA, Galasko D, Hampel H, et al.: Biological markers for therapeutic trials in Alzheimer’s disease; Proceedings of a biological markers working group; NIA initiative on neuroimaging in Alzheimer disease. Neurobiol Aging 2003, 24:521–536.

    Article  PubMed  Google Scholar 

  48. Fox NC, Black RS, Gilman S, et al.: Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 2005, 64:1563–1572.

    Article  PubMed  CAS  Google Scholar 

  49. Matthews B, Siemers ER, Mozley PD: Imaging based measures of disease progression in clinical trials of disease modifying drugs for Alzheimer disease. Am J Ger Psychiat 2003, 11:146–159.

    Article  Google Scholar 

  50. Bard F, Cannon C, Barbour R, et al.: Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000, 6:916–919.

    Article  PubMed  CAS  Google Scholar 

  51. DeMattos RB, Bales KR, Cummins DJ, et al.: Dodart JC, Paul SM, Holtzman DM: Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci 2001, 98:8850–8855.

    Article  PubMed  CAS  Google Scholar 

  52. Dodart JC, Bales KR, Gannon KS, et al.: Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci 2002, 5:452–457.

    PubMed  CAS  Google Scholar 

  53. Pfeifer M, Boncristiano S, Bondol. L, et al.: Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 2002, 298:1379.

    Article  PubMed  CAS  Google Scholar 

  54. Racke MM, Boone LI, Hepburn DL, et al.: Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid beta. J Neurosci 2005, 25:629–636.

    Article  PubMed  CAS  Google Scholar 

  55. Diaz-Nido J, Wandosell F, Avila J: Glycosaminoglycans and beta-amyloid, prion and tau peptides in neurodegenerative diseases. Peptides 2002, 23:1323–1332.

    Article  PubMed  CAS  Google Scholar 

  56. Fraser PE, Darabie AA, McLaurin J: Amyloid-beta interactions with chondroitin sulfate-derived monosaccharides and disaccharides. J Biol Chem 2001, 276:6412–6419.

    Article  PubMed  CAS  Google Scholar 

  57. Aisen P: The development of anti-amyloid therapy for Alzheimer’s disease: from secretase modulators to polymerization inhibitors. CNS Drugs 2005, 19:989–996.

    Article  PubMed  CAS  Google Scholar 

  58. Bush AI: The metallobiology of Alzheimer’s disease. Trends Neurosci 2003, 26:207–214.

    Article  PubMed  CAS  Google Scholar 

  59. Cherny RA, Atwood CS, Xilinas ME, et al.: Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 2001, 30:665–676.

    Article  PubMed  CAS  Google Scholar 

  60. Ritchie CW, Bush AI, Mackinnon A, et al.: Metal-protein attenuation with iodochlorhydroxyquin (Clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease. Arch Neurol 2003, 60:1685–1691.

    Article  PubMed  Google Scholar 

  61. Yassin MS, Ekblom J, Xilinas M, et al.: Changes in uptake of vitamin B12 and trace metals in brains of mice treated with clioquinol. J Neurol Sci 2000, 173:40–44.

    Article  PubMed  CAS  Google Scholar 

  62. Thal LJ, Kantarci K, Reiman EM, et al.: The role of biomarkers in clinical trials for Alzheimer’s disease. Alzheimer’s Dis Assoc Disord 2006, 20:6–15. This paper discusses study designs of disease-modifying drugs for AD and the use of biomarkers in those studies.

    Article  Google Scholar 

  63. Seubert P, Vigo-Pelfrey C, Esch F, et al.: Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 1992, 359:325–327.

    Article  PubMed  CAS  Google Scholar 

  64. Dovey HF, John V, Anderson JP, et al.: Functional gammasecretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 2001, 76:173–181.

    Article  PubMed  CAS  Google Scholar 

  65. Vanderstichele H, Blennow K, D’Heuvaert ND, et al.: Develoment of a specific diagnostic test for measurement of β-amyloid(1-42). In CSF: Progress in Alzheimer’s and Parkinson’s diseases. Edited by Fisher A, Hanin I, Yoshida M. New York: Plenum Press; 1998:773–778.

    Google Scholar 

  66. Motter R, Vigo-Pelfrey C, Kholodenko D, et al.: Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol 1995, 38:643–648.

    Article  PubMed  CAS  Google Scholar 

  67. Blennow K. Hampel H: CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2003, 2:605–613.

    Article  PubMed  CAS  Google Scholar 

  68. Olsson A, Vanderstichele H, Andreasen N, et al.: Simultaneous measurement of beta-amyloid(1-42), total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clin Chem 2005, 51:336–345.

    Article  PubMed  CAS  Google Scholar 

  69. Fagan AM, Mintun MA, Mach RH, et al.: Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta(42) in humans. Ann Neurol 2006, 59:512–519.

    Article  PubMed  CAS  Google Scholar 

  70. Hansson O, Zetterberg H, Buchhave P, et al.: Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 2006, 5:228–234.

    Article  PubMed  CAS  Google Scholar 

  71. Mohs RC, Kawas C, Carillio M: Perspective: optimal design of clinical trials for drugs designed to slow the course of Alzheimer’s disease. Alzheimer’s Dementia 2006, In press.

  72. Siemers ER: Commentary on "Perspective: Optimal Design of Clinical Trials for Drugs Designed to Slow the Course of Alzheimer’s Disease". Alzheimer’s Dementia 2006, In press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric R. Siemers MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siemers, E.R., Dean, R.A., Demattos, R. et al. New pathways in drug discovery for alzheimer’s disease. Curr Neurol Neurosci Rep 6, 372–378 (2006). https://doi.org/10.1007/s11910-996-0017-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-996-0017-8

Keywords

Navigation