Skip to main content

Advertisement

Log in

Challenges for gene therapy for muscular dystrophy

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Gene therapy for muscular dystrophy represents a promising avenue of pursuit for a disease with a limited repertoire of treatment. Recent successes in the research arena using adeno-associated viral vectors should accelerate the movement of gene-based therapeutics for muscle disorders into the clinic. Nevertheless, significant challenges remain before gene therapy can deliver on the promises avowed by early pioneers of the field. This review examines recent progress and the hurdles remaining to achieve gene-based treatment therapies for muscular dystrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Spencer MJ, Mellgren RL: Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology. Hum Mol Genet 2002, 11:2645–2655.

    Article  PubMed  CAS  Google Scholar 

  2. Shavlakadze T, White J, Hoh JF, et al.: Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice. Mol Ther 2004, 10:829–843.

    Article  PubMed  CAS  Google Scholar 

  3. Koenig M, Hoffman EP, Bertelson CJ, et al.: Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 1987, 50:509–517.

    Article  PubMed  CAS  Google Scholar 

  4. Brown RH: Diseases of muscle. In Harrison’s Principles of Internal Medicine. Edited by Kasper DL; New York: McGraw-Hill; 2005:2527–2540.

    Google Scholar 

  5. Collins CA, Morgan JE: Duchenne’s muscular dystrophy: animal models used to investigate pathogenesis and develop therapeutic strategies. Int J Exp Pathol 2003, 84:165–172.

    Article  PubMed  CAS  Google Scholar 

  6. Buzin CH, Feng J, Yan J, et al.: Mutation rates in the dystrophin gene: a hotspot of mutation at a CpG dinucleotide. Hum Mutat 2005, 25:177–188.

    Article  PubMed  CAS  Google Scholar 

  7. Dent KM, Dunn DM, von Niederhausern AC, et al.: Improved molecular diagnosis of dystrophinopathies in an unselected clinical cohort. Am J Med Genet 2005, 134:295–298.

    Article  CAS  Google Scholar 

  8. Michele DE, Campbell KP: Dystrophin-glycoprotein complex: post-translational processing and dystroglycan function. J Biol Chem 2003, 278:15457–15460.

    Article  PubMed  CAS  Google Scholar 

  9. Gao G, Alvira MR, Somanathan S, et al.: Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc Natl Acad Sci U S A 2003, 100:6081–6086. Isolation and characterization of multiple novel primate AAV serotypes.

    Article  PubMed  CAS  Google Scholar 

  10. Gregorevic P, Blankinship MJ, Allen JM, et al.: Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 2004, 10:828–834. Seminal paper on vascular delivery of rAAV vectors using VEGF for transient vascular permeabilization.

    Article  PubMed  CAS  Google Scholar 

  11. Wang Z, Zhu T, Qiao C, et al.: Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 2005, 23:321–328. Demonstration of efficient rAAV8-mediated gene transfer to muscle via the vasculature.

    Article  PubMed  CAS  Google Scholar 

  12. Yan Z, Zhang Y, Duan D, et al.: Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci U S A 2000, 97:6716–6721.

    Article  PubMed  CAS  Google Scholar 

  13. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al.: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003, 302:415–419.

    Article  PubMed  CAS  Google Scholar 

  14. Dave UP, Jenkins NA, Copeland NG: Gene therapy insertional mutagenesis insights. Science 2004, 303:333.

    Article  PubMed  Google Scholar 

  15. Check E: Gene therapy put on hold as third child develops cancer. Nature 2005, 433:561.

    Google Scholar 

  16. Schnepp BC, Clark KR, Klemanski DL, et al.: Genetic fate of recombinant adeno-associated virus vector genomes in muscle. J Virol 2003, 77:3495–3504.

    Article  PubMed  CAS  Google Scholar 

  17. England SB, Nicholson LV, Johnson MA, et al.: Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature 1990, 343:180–182.

    Article  PubMed  CAS  Google Scholar 

  18. Phelps SF, Hauser MA, Cole NM, et al.: Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet 1995, 4:1251–1258.

    Article  PubMed  CAS  Google Scholar 

  19. Rafael JA, Cox GA, Corrado K, et al.: Forced expression of dystrophin deletion constructs reveals structure-function correlations. J Cell Biol 1996, 134:93–102.

    Article  PubMed  CAS  Google Scholar 

  20. Corrado K, Rafael JA, Mills PL, et al.: Transgenic mdx mice expressing dystrophin with a deletion in the actin-binding domain display a "mild Becker" phenotype. J Cell Biol 1996, 134:873–884.

    Article  PubMed  CAS  Google Scholar 

  21. Crawford GE, Faulkner JA, Crosbie RH, et al.: Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. J Cell Biol 2000, 150:1399–1410.

    Article  PubMed  CAS  Google Scholar 

  22. Harper SQ, Hauser MA, DelloRusso C, et al.: Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med 2002, 8:253–261. Thorough dissection of dystrophin structure to define the minimal elements needed for near wild-type activity.

    Article  PubMed  CAS  Google Scholar 

  23. Wang B, Li J, Xiao X: Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci U S A 2000, 97:13714–13719. Demonstrates efficient transfer of mini-dystrophins to mdx muscle with reversal of dystrophy.

    Article  PubMed  CAS  Google Scholar 

  24. Cox GA, Cole NM, Matsumura K, et al.: Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature 1993, 364:725–729.

    Article  PubMed  CAS  Google Scholar 

  25. Chamberlain JS: Dystorphin levels required for genetic correction of Duchenne muscular dystrophy. Basic Appl Myol 1997, 7:251–255.

    Google Scholar 

  26. Hauser MA, Chamberlain JS: Progress towards gene therapy for Duchenne muscular dystrophy. J Endocrinol 1996, 149:373–378.

    Article  PubMed  CAS  Google Scholar 

  27. Yue Y, Li Z, Harper SQ, et al.: Microdystrophin gene therapy of cardiomyopathy restores dystrophin-glycoprotein complex and improves sarcolemma integrity in the mdx mouse heart. Circulation 2003, 108:1626–1632.

    Article  PubMed  CAS  Google Scholar 

  28. Mendell JR, Moore SA, et al.: Gene transfer clinical trial for limb-girdle muscular dystrophy type 2D, alpha-sarcoglycan deficiency. Neurology 2002, 58:A169.

    Google Scholar 

  29. Stedman H, Wilson JM, Finke R, et al.: Phase I clinical trial utilizing gene therapy for limb girdle muscular dystrophy: alpha-, beta-, gamma-, or delta-sarcoglycan gene delivered with intramuscular instillations of adenoassociated vectors. Hum Gene Ther 2000, 11:777–790.

    Article  PubMed  CAS  Google Scholar 

  30. Verma IM: A tumultuous year for gene therapy. Mol Ther 2000, 2:415–416.

    Article  PubMed  CAS  Google Scholar 

  31. Arruda VR, Stedman HH, Nichols TC, et al.: Regional intravascular delivery of AAV-2-F.IX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model. Blood 2005, 105:3458–3464.

    Article  PubMed  CAS  Google Scholar 

  32. Ding W, Zhang L, Yan Z, et al.: Intracellular trafficking of adeno-associated viral vectors. Gene Ther 2005, 12:873–880.

    Article  PubMed  CAS  Google Scholar 

  33. Qing K, Mah C, Hansen J, et al.: Human fibroblast growth factor receptor 1 is a co-receptor for infection by adenoassociated virus 2. Nat Med 1999, 5:71–77.

    Article  PubMed  CAS  Google Scholar 

  34. Di Pasquale G, Davidson BL, Stein CS, et al.: Identification of PDGFR as a receptor for AAV-5 transduction. Nat Med 2003, 9:1306–1312.

    Article  PubMed  Google Scholar 

  35. Rabinowitz JE, Bowles DE, Faust SM, et al.: Cross-dressing the virion: the transcapsidation of adeno-associated virus serotypes functionally defines subgroups. J Virol 2004, 78:4421–4432.

    Article  PubMed  CAS  Google Scholar 

  36. Bowles DE, Rabinowitz JE, Samulski RJ: Marker rescue of adeno-associated virus (AAV) capsid mutants: a novel approach for chimeric AAV production. J Virol 2003, 77:423–432.

    Article  PubMed  CAS  Google Scholar 

  37. Seisenberger G, Ried MU, Endress T, et al.: Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 2001, 294:1929–1932.

    Article  PubMed  CAS  Google Scholar 

  38. Bartlett JS, Wilcher R, Samulski RJ: Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J Virol 2000, 74:2777–2785.

    Article  PubMed  CAS  Google Scholar 

  39. Bantel-Schaal U, Hub B, Kartenbeck J: Endocytosis of adeno-associated virus type 5 leads to accumulation of virus particles in the Golgi compartment. J Virol 2002, 76:2340–2349.

    Article  PubMed  CAS  Google Scholar 

  40. Ferrari FK, Samulski T, Shenk T, et al.: Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 1996, 70:3227–3234.

    PubMed  CAS  Google Scholar 

  41. McCarty DM, Fu H, Monahan PE, et al.: Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther 2003, 10:2112–2118.

    Article  PubMed  CAS  Google Scholar 

  42. Zaiss AK, Liu Q, Bowen GP, et al.: Differential activation of innate immune responses by adenovirus and adenoassociated virus vectors. J Virol 2002, 76:4580–4590.

    Article  PubMed  CAS  Google Scholar 

  43. Clark KR, Sferra TJ, Johnson PR: Recombinant adenoassociated viral vectors mediate long-term transgene expression in muscle. Hum Gene Ther 1997, 8:659–669.

    Article  PubMed  CAS  Google Scholar 

  44. Xiao X, Li J, Samulski RJ: Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adenoassociated virus vector. J Virol 1996, 70:8098–8108.

    PubMed  CAS  Google Scholar 

  45. Jooss K, Yang Y, Fisher KJ, et al.: Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 1998, 72:4212–4223.

    PubMed  CAS  Google Scholar 

  46. Zhang Y, Chirmule N, Gao G, et al.: CD40 liganddependent activation of cytotoxic T lymphocytes by adeno-associated virus vectors in vivo: role of immature dendritic cells. J Virol 2000, 74:8003–8010.

    Article  PubMed  CAS  Google Scholar 

  47. Cordier L, Gao GP, Hack AA, et al.: Muscle-specific promoters may be necessary for adeno-associated virus-mediated gene transfer in the treatment of muscular dystrophies. Hum Gene Ther 2001, 12:205–215.

    Article  PubMed  CAS  Google Scholar 

  48. Brockstedt DG, Podsakoff GM, Fong L, et al.: Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration. Clin Immunol 1999, 92:67–75.

    Article  PubMed  CAS  Google Scholar 

  49. Manning WC, Paliard X, Zhou S, et al.: Genetic immunization with adeno-associated virus vectors expressing herpes simplex virus type 2 glycoproteins B and D. J Virol 1997, 71:7960–7962.

    PubMed  CAS  Google Scholar 

  50. Johnson PR, Schnepp BC, Connell MJ, et al.: Novel adenoassociated virus vector vaccine restricts replication of simian immunodeficiency virus in macaques. J Virol 2005, 79:955–965.

    Article  PubMed  CAS  Google Scholar 

  51. Gao G, Lebherz C, Weiner DJ, et al.: Erythropoietin gene therapy leads to autoimmune anemia in macaques. Blood 2004, 103:3300–3302.

    Article  PubMed  CAS  Google Scholar 

  52. Sarukhan A, Camugli S, Gjata B, et al.: Successful interference with cellular immune responses to immunogenic proteins encoded by recombinant viral vectors. J Virol 2001, 75:269–277.

    Article  PubMed  CAS  Google Scholar 

  53. Sarukhan A, Soudais C, Danos O, et al.: Factors influencing cross-presentation of non-self antigens expressed from recombinant adeno-associated virus vectors. J Gene Med 2001, 3:260–270.

    Article  PubMed  CAS  Google Scholar 

  54. Hartigan-O’Connor D, Kirk CJ, Crawford R, et al.: Immune evasion by muscle-specific gene expression inn dystrophic muscle. Mol Ther 2001, 4:525–533.

    Article  PubMed  CAS  Google Scholar 

  55. Tinsley J, Deconinck N, Fisher R, et al.: Expression of fulllength utrophin prevents muscular dystrophy in mdx mice. Nat Med 1998, 4:1441–1444.

    Article  PubMed  CAS  Google Scholar 

  56. Bogdanovich S, Krag TO, Barton ER, et al.: Functional improvement of dystrophic muscle by myostatin blockade. Nature 2002, 420:418–421.

    Article  PubMed  CAS  Google Scholar 

  57. Hildinger M, Auricchio A, Gao G, et al.: Hybrid vectors based on adeno-associated virus serotypes 2 and 5 for muscle-directed gene transfer. J Virol 2001, 75:6199–6203.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry R. Mendell MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendell, J.R., Clark, K.R. Challenges for gene therapy for muscular dystrophy. Curr Neurol Neurosci Rep 6, 47–56 (2006). https://doi.org/10.1007/s11910-996-0009-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-996-0009-8

Keywords

Navigation