Skip to main content

Advertisement

Log in

Advantages and Pitfalls of the Use of Optical Coherence Tomography for Papilledema

  • Review
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

A Publisher Correction to this article was published on 08 February 2024

This article has been updated

Abstract

Purpose of Review

Papilledema refers to optic disc swelling caused by raised intracranial pressure. This syndrome arises from numerous potential causes, which may pose varying degrees of threat to patients. Manifestations of papilledema range from mild to severe, and early diagnosis is important to prevent vision loss and other deleterious outcomes. The purpose of this review is to highlight the role of optical coherence tomography (OCT) in the diagnosis and management of syndromes of raised intracranial pressure associated with papilledema.

Recent Findings

Ophthalmoscopy is an unreliable skill for many clinicians. Optical coherence tomography is a non-invasive ocular imaging technique which may fill a current care gap, by facilitating detection of papilledema for those who cannot perform a detailed fundus examination. Optical coherence tomography may help confirm the presence of papilledema, by detecting subclinical peripapillary retinal nerve fiber layer (pRNFL) thickening that might otherwise be missed with ophthalmoscopy. Enhanced depth imaging (EDI) and swept source OCT techniques may identify optic disc drusen as cause of pseudo-papilledema. Macular ganglion cell inner plexiform layer (mGCIPL) values may provide early signs of neuroaxonal injury in patients with papilledema and inform management for patients with syndromes of raised intracranial pressure.

Summary

There are well-established advantages and disadvantages of OCT that need to be fully understood to best utilize this method for the detection of papilledema. Overall, OCT may complement other existing tools by facilitating detection of papilledema and tracking response to therapies.  Moving forward, OCT findings may be included in deep learning models to diagnose papilledema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  1. Rigi M, Almarzouqi S, Morgan M, Lee A. Papilledema: epidemiology, etiology, and clinical management. Eye Brain. 2015;7:47–57.

    PubMed  PubMed Central  Google Scholar 

  2. Costello F, Kardon RH, Wall M, Kirby P, Ryken T, Lee AG. Papilledema as the presenting manifestation of spinal schwannoma. J Neuroophthalmol. 2002;22(3):199–203.

    Article  PubMed  Google Scholar 

  3. Thurtell MJ. Idiopathic intracranial hypertension. Continuum (Minneap Minn). 2019;25(5):1289–309.

    PubMed  Google Scholar 

  4. Crum OM, Kilgore KP, Sharma R, Lee MS, Spiegel MR, McClelland CM, Bhatti MT, Chen JJ. Etiology of papilledema in patients in the eye clinic setting. JAMA Netw Open. 2020;3(6):e206625.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Markey KA, Mollan SP, Jensen RH, Sinclair AJ. Understanding idiopathic intracranial hypertension: mechanisms, management, and future directions. Lancet Neurol. 2016;15(1):78–91.

    Article  PubMed  Google Scholar 

  6. Pinto VL, Tadi P, Adeyinka A. Increased intracranial pressure. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482119/ . Accessed 26 Dec 2023.

  7. Mackay DD, Garza PS, Bruce BB, Newman NJ, Biousse V. The demise of direct ophthalmoscopy: a modern clinical challenge. Neurol Clin Pract. 2015;5(2):150–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frisén L. Swelling of the optic nerve head: a staging scheme. J Neurol Neurosurg Psychiatry. 1982;45(1):13–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Scott CJ, Kardon RH, Lee AG, Frisén L, Wall M. Diagnosis and grading of papilledema in patients with raised intracranial pressure using optical coherence tomography vs clinical expert assessment using a clinical staging scale. Arch Ophthalmol. 2010;128(6):705–11.

    Article  PubMed  Google Scholar 

  10. Nichani P, Micieli JA. Retinal Manifestations of Idiopathic Intracranial Hypertension. Ophthalmol Retina. 2021;5(5):429–37.

    Article  PubMed  Google Scholar 

  11. Bruce BB, Lamirel C, Biousse V, Ward A, Heilpern KL, Newman N, Wright DW. Non-mydriatic ocular fundus photography in the emergency department. N Engl J Med. 2011;364:387–9.

  12. Costello F, Chen JJ. The role of optical coherence tomography in the diagnosis of afferent visual pathway problems: a neuroophthalmic perspective. Handb Clin Neurol. 2021;178:97–113.

    Article  PubMed  Google Scholar 

  13. Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146(4):496–500.

    Article  PubMed  Google Scholar 

  14. Costello F, Rothenbuehler SP, Sibony PA, Hamann S. Optic disc drusen studies consortium. Diagnosing optic disc drusen in the modern imaging era: a practical approach. Neuroophthalmology. 2020;45(1):1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Costello F, Malmqvist L, Hamann S. The role of optical coherence tomography in differentiating optic disc drusen from optic disc edema. Asia Pac J Ophthalmol (Phila). 2018;7(4):271–9.

    PubMed  Google Scholar 

  16. De Carvalho ER, Maloca PM. Review of optical coherence tomography in neuro-ophthalmology. Ann Eye Sci. 2020;5:14.

    Article  Google Scholar 

  17. Yan Y, Liao YJ. Updates on ophthalmic imaging features of optic disc drusen, papilledema, and optic disc edema. Curr Opin Neurol. 2021;34(1):108–15.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fard MA, Sahraiyan A, Jalili J, Hejazi M, Suwan Y, Ritch R, Subramanian PS. Optical coherence tomography angiography in papilledema compared with pseudopapilledema. Invest Ophthalmol Vis Sci. 2019;60(1):168–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pahuja A, Dhiman R, Aggarwal V, Aalok SP, Saxena R. Evaluation of peripapillary and macular optical coherence tomography angiography characteristics in different stages of papilledema. J Neuroophthalmol. 2023. https://doi.org/10.1097/WNO.0000000000001908.

    Article  PubMed  Google Scholar 

  20. Rougier MB, Le Goff M, Korobelnik JF. Optical coherence tomography angiography at the acute phase of optic disc edema. Eye and Vis. 2018;5:15.

    Article  Google Scholar 

  21. Rodriguez Torres Y, Lee P, Mihlstin M, Tomsak RL. Correlation between optic disc peripapillary capillary network and papilledema grading in patients with idiopathic intracranial hypertension: a study of optical coherence tomography angiography. J Neuroophthalmol. 2021;41(1):48–53.

    Article  PubMed  Google Scholar 

  22. Malmqvist L, Bursztyn L, Costello F, Digre K, Fraser JA, Fraser C, Katz B, Lawlor M, Petzold A, Sibony P, Warner J, Wegener M, Wong S, Hamann S. The optic disc drusen studies consortium recommendations for diagnosis of optic disc drusen using optical coherence tomography. J Neuroophthalmol. 2018;38(3):299–307.

    Article  PubMed  Google Scholar 

  23. Malhotra K, Padungkiatsagul T, Moss HE. Optical coherence tomography use in idiopathic intracranial hypertension. Ann Eye Sci. 2020;5:7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sibony PA, Kupersmith MJ, Feldon SE, et al. Retinal and Choroidal Folds in Papilledema. Invest Ophthalmol Vis Sci. 2015;56:5670–80.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sibony PA, Kupersmith MJ, Kardon RH. Optical coherence tomography neuro-toolbox for the diagnosis and management of papilledema, optic disc edema, and pseudopapilledema. J Neuroophthalmol. 2021;41(1):77–92.

    Article  PubMed  Google Scholar 

  26. Chen BS, Meyer BI, Saindane AM, Bruce BB, Newman NJ, Biousse V. Prevalence of incidentally detected signs of intracranial hypertension on magnetic resonance imaging and their association with papilledema. JAMA Neurol. 2021;78(6):718–25.

    Article  PubMed  Google Scholar 

  27. Gampa A, Vangipuram G, Shirazi Z, Moss HE. Quantitative association between peripapillary Bruch’s membrane shape and intracranial pressure. Invest Ophthalmol Vis Sci. 2017;58(5):2739–45.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Takkar A, Goyal MK, Bansal R, Lal V. Clinical and neuro-ophthalmologic predictors of visual outcome in idiopathic intracranial hypertension. Neuroophthalmology. 2018;42(4):201–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen JJ, Thurtell MJ, Longmuir RA, Garvin MK, Wang JK, Wall M, Kardon RH. Causes and prognosis of visual acuity loss at the time of initial presentation in idiopathic intracranial hypertension. Invest Ophthalmol Vis Sci. 2015;56(6):3850–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oyama H, Hattori K, Kito A, Maki H, Noda T, Wada K. Visual disturbance following shunt malfunction in a patient with congenital hydrocephalus. Neurol Med Chir (Tokyo). 2012;52(11):835–8.

    Article  PubMed  Google Scholar 

  31. Wall M, Falardeau J, Fletcher WA, Granadier RJ, Lam BL, Longmuir RA, Patel AD, Bruce BB, He H, McDermott MP, NORDIC Idiopathic Intracranial Hypertension Study Group. Risk factors for poor visual outcome in patients with idiopathic intracranial hypertension. Neurology. 2015;85(9):799–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mikkilineni S, Trobe JD, Cornblath WT, De Lott L. Visual field mean deviation at diagnosis of idiopathic intracranial hypertension predicts visual outcome. J Neuroophthalmol. 2019;39(2):186–90.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Qiu S, Jifang Qu, Yang Bo, Song Y. Nan Bao; Permanent visual impairment due to delayed diagnosis of shunt malfunction in case of lack of typical features of increased intracranial pressure and unchanged ventricular size. Pediatr Neurosurg. 2022;57(5):306–31.

    Article  PubMed  Google Scholar 

  34. Newman NJ. Bilateral visual loss and disc edema in a 15-year-old girl. Surv Opthalmol. 1994;38(4):365–70.

    Article  CAS  Google Scholar 

  35. Pople IK. Hydrocephalus and shunts: what the neurologist should know. J Neurol Neurosurg Psychiatry. 2002;73:i17–22.

    PubMed  PubMed Central  Google Scholar 

  36. Das S, Montemurro N, Ashfaq M, Ghosh D, Sarker AC, Khan AH, Dey S, Chaurasia B. Resolution of papilledema following ventriculoperitoneal shunt or endoscopic third ventriculostomy for obstructive hydrocephalus: a pilot study. Medicina (Kaunas). 2022;58(2):281.

    Article  PubMed  Google Scholar 

  37. Bruce BB, Preechawat P, Newman NJ, Lynn MJ, Biousse V. Racial differences in idiopathic intracranial hypertension. Neurology. 2008;70:861–7.

    Article  CAS  PubMed  Google Scholar 

  38. Digre KB, Corbett JJ. Pseudotumor cerebri in men. Arch Neurol. 1988;45:866–72.

    Article  CAS  PubMed  Google Scholar 

  39. Bruce BB, Kedar S, Van Stavern GP, Monaghan D, Acierno MD, Braswell RA, Preechawat P, Corbett JJ, Newman NJ, Biousse N. Idiopathic intracranial hypertension in men. Neurology. 2009;72:304–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Biousse V, Rucker JC, Vignal C, Crassard I, Katz BJ, Newman NJ. Anemia and papilledema. Am J Ophthalmol. 2003;135:437–46.

    Article  PubMed  Google Scholar 

  41. Orcutt JC, Page NGR, Sanders MD. Factors affecting visual loss in benign intracranial hypertension. Ophthalmology. 1984;91:1303–12.

    Article  CAS  PubMed  Google Scholar 

  42. Wall M, Purvin V. Idiopathic intracranial hypertension in men and the relationship to sleep apnea. Neurology. 2009;72:300–1.

    Article  PubMed  Google Scholar 

  43. Lim M, Kurian M, Penn A, Calver D, Lin JP. Visual failure without headache in idiopathic intracranial hypertension. Arch Dis Child. 2005;90:206–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fisayo A, Bruce BB, Newman NJ, Biousse V. Overdiagnosis of idiopathic intracranial hypertension. Neurology. 2016;86(4):341–50.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kilgore KP, Lee MS, Leavitt JA, Mokri B, Hodge DO, Frank RD, Chen JJ. Re-evaluating the incidence of idiopathic intracranial hypertension in an era of increasing obesity. Ophthalmology. 2017;124(5):697–700.

    Article  PubMed  Google Scholar 

  46. Milea D, Najjar RP, Zhubo J, Ting D, Vasseneix C, Xu X, AghsaeiFard M, Fonseca P, Vanikieti K, Lagrèze WA, La Morgia C, Cheung CY, Hamann S, Chiquet C, Sanda N, Yang H, Mejico LJ, Rougier M-B, Kho R, Thi Ha Chau T, Singhal S, Gohier P, Clermont-Vignal C, Cheng C-Y, Jonas JB, Yu-Wai-Man P, Fraser CL, Chen JJ, Ambika S, Miller NR, Liu Y, Newman NJ, Wong TY, Biousse V, BONSAI Group. Artificial intelligence to detect papilledema from ocular fundus photographs. N Engl J Med. 2020;382(18):1687–95.

    Article  PubMed  Google Scholar 

  47. Leong YY, Vasseneix C, Finkelstein MT, Milea D, Najjar RP. Artificial intelligence meets neuro-ophthalmology. Asia Pac J Ophthalmol (Phila). 2022;11(2):111–25.

    Article  PubMed  Google Scholar 

  48. Biousse V, Newman NJ, Najjar RP, Vasseneix C, Xu X, Ting DS, Milea LB, Hwang JM, Kim DH, Yang HK, Hamann S, Chen JJ, Liu Y, Wong TY, Milea D, BONSAI (Brain and Optic Nerve Study with Artificial Intelligence) Study Group. Optic disc classification by deep learning versus expert neuro-ophthalmologists. Ann Neurol. 2020;88(4):785–95.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F.C. wrote the main manuscript with input from S.H. The figures were prepared by S.H. All authors reviewed the manuscript.

Corresponding author

Correspondence to Fiona Costello.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

Dr. Costello has received speaker fees or advisory board honoraria from Alexion, Novartis, Horizon Therapeutics, Sanofi, Vindico, and Healio Live.

Dr. Hamann has nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The citations of references 30 to 43 in the body text were not linked to their corresponding references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costello, F., Hamann, S. Advantages and Pitfalls of the Use of Optical Coherence Tomography for Papilledema. Curr Neurol Neurosci Rep 24, 55–64 (2024). https://doi.org/10.1007/s11910-023-01327-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-023-01327-6

Keywords

Navigation