Skip to main content

Advertisement

Log in

Modern Sedation and Analgesia Strategies in Neurocritical Care

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Patients with acute neurologic injury require a specialized approach to critical care, particularly with regard to sedation and analgesia. This article reviews the most recent advances in methodology, pharmacology, and best practices of sedation and analgesia for the neurocritical care population.

Recent Findings

In addition to established agents such as propofol and midazolam, dexmedetomidine and ketamine are two sedative agents that play an increasingly central role, as they have a favorable side effect profile on cerebral hemodynamics and rapid offset can facilitate repeated neurologic exams. Recent evidence suggests that dexmedetomidine is also an effective component when managing delirium. Combined analgo-sedation with low doses of short-acting opiates is a preferred sedation strategy to facilitate neurologic exams as well as patient-ventilator synchrony.

Summary

Optimal care for patients in the neurocritical care population requires an adaptation of general ICU strategies that incorporates understanding of neurophysiology and the need for close neuromonitoring. Recent data continues to improve care tailored to this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Ramineni A, Roberts EA, Vora M, Mahboobi SK, Nozari A. Anesthesia considerations in neurological emergencies. Neurol Clin. 2021;39(2):319–32.

    Article  PubMed  Google Scholar 

  2. Li Z, Liu J, Liang H. Biophysical model: a promising method in the study of the mechanism of propofol: a narrative review. Computational intelligence and neuroscience. United States: Hindawi Pub Corp p; 2022. p. 8202869.

    Google Scholar 

  3. Schizodimos T, Soulountsi V, Iasonidou C, Kapravelos N. An overview of management of intracranial hypertension in the intensive care unit. J Anesth. 2020;34(5):741–57.

    Article  PubMed  PubMed Central  Google Scholar 

  4. • Wu M, Yin X, Chen M, Liu Y, Zhang X, Li T, et al. Effects of propofol on intracranial pressure and prognosis in patients with severe brain diseases undergoing endotracheal suctioning. BMC Neurol. 2020;20(1):394. This prospective study demonstrated the ability of propofol premedication to reduce increases in ICP due to endotracheal suctioning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Preethi J, Bidkar PU, Cherian A, Dey A, Srinivasan S, Adinarayanan S, et al. Comparison of total intravenous anesthesia vs inhalational anesthesia on brain relaxation, intracranial pressure, and hemodynamics in patients with acute subdural hematoma undergoing emergency craniotomy: a randomized control trial. Eur J Trauma Emerg Surg. 2021;47(3):831–7.

    Article  PubMed  Google Scholar 

  6. Vimala S, Arulvelan A, Chandy VG. Comparison of the effects of propofol and sevoflurane induced burst suppression on cerebral blood flow and oxygenation: a prospective, randomised, double-blinded study. World Neurosurg. 2020;135:e427–34.

    Article  PubMed  Google Scholar 

  7. Jeffcote T,  Weir T,  Anstey J, Mcnamara R,  Bellomo R, Udy A. The impact of sedative choice on intracranial and systemic physiology in moderate to severe traumatic brain injury: a scoping review. J Neurosurg Anesthesiol. 2022.

  8. Löwhagen Hendén P, Rentzos A, Karlsson JE, Rosengren L, Leiram B, Sundeman H, et al. General anesthesia versus conscious sedation for endovascular treatment of acute ischemic stroke: the AnStroke trial (anesthesia during stroke). Stroke. 2017;48(6):1601–7.

    Article  PubMed  Google Scholar 

  9. Simonsen CZ, Yoo AJ, Sørensen LH, Juul N, Johnsen SP, Andersen G, et al. Effect of general anesthesia and conscious sedation during endovascular therapy on infarct growth and clinical outcomes in acute ischemic stroke: a randomized clinical trial. JAMA Neurol. 2018;75(4):470–7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schönenberger S, Hendén PL, Simonsen CZ, Uhlmann L, Klose C, Pfaff JAR, et al. Association of general anesthesia vs procedural sedation with functional outcome among patients with acute ischemic stroke undergoing thrombectomy: a systematic review and meta-analysis. JAMA. 2019;322(13):1283–93.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pertzov B, Krasulya B, Azem K, Shostak Y, Izhakian S, Rosengarten D, Kharchenko S,Kramer MR. Dexmedetomidine versus propofol sedation in flexible bronchoscopy: a randomized controlled trial. BMC Pulm Med. 2022;22(1):87. 

  12. Liu X, Li Y, Kang L, Wang Q. Recent advances in the clinical value and potential of dexmedetomidine. J Inflamm Res. 2021;14:7507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kallioinen M, Posti JP, Rahi M, Sharma D, Katila A, Grönlund J, et al. Cerebral autoregulation after aneurysmal subarachnoid haemorrhage. A preliminary study comparing dexmedetomidine to propofol and/or midazolam. Acta anaesthesiologica Scandinavica. England: Wiley-Blackwell; 2020. p. 1278–86.

    Google Scholar 

  14. Bilodeau V, Saavedra-Mitjans M, Frenette AJ, et al. Safety of dexmedetomidine for thecontrol of agitation in critically ill traumatic brain injury patients: a descriptive study. J Clin Pharm Ther. 2021;46(4):1020–6.

  15. Khallaf M, Thabet AM, Ali M, Sharkawy E, Abdel-rehim S. The effect of dexmedetomidine versus propofol in traumatic brain injury: evaluation of some hemodynamic and intracranial pressure changes. Egypt J Neurosurg. 2019;34(1):17.

    Article  Google Scholar 

  16. James ML, Olson DM, Graffagnino C. A pilot study of cerebral and haemodynamic physiological changes during sedation with dexmedetomidine or propofol in patients with acute brain injury. Anaesth Intensive Care. 2012;40(6):949–57.

    Article  CAS  PubMed  Google Scholar 

  17. Oddo M, Crippa IA, Mehta S, Menon D, Payen JF, Taccone FS, et al. Optimizing sedation in patients with acute brain injury. Crit Care. 2016;20(1):128.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schomer KJ, Sebat CM, Adams JY, Duby JJ, Shahlaie K, Louie EL. Dexmedetomidine for refractory intracranial hypertension. J Intensive Care Med. 2019;34(1):62–6.

    Article  PubMed  Google Scholar 

  19. Heybati K, Zhou F, Ali S, Deng J, Mohananey D, Villablanca P, et al. Outcomes of dexmedetomidine versus propofol sedation in critically ill adults requiring mechanical ventilation: a systematic review and meta-analysis of randomised controlled trials. British Journal of Anaesthesia. 2022;129(4);515–26.

  20. Abowali HA, Paganini M, Enten G, Elbadawi A, Camporesi EM. Critical review and meta-analysis of postoperative sedation after adult cardiac surgery: dexmedetomidine versus propofol. J Cardiothorac Vasc Anesth. 2021;35(4):1134–42.

    Article  CAS  PubMed  Google Scholar 

  21. Xiao Z, He T, Jiang X, Xie F, Xia L, Zhou H. Effect of dexmedetomidine and propofol sedation on the prognosis of children with severe respiratory failure: a systematic review and meta-analysis. Transl Pediatr. 2022;11(2):260–9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Glaess SS, Attridge RL, Christina GG. Clonidine as a strategy for discontinuing dexmedetomidine sedation in critically ill patients: a narrative review. Am J Health Syst Pharm. 2020;77(7):515–22.

    Article  PubMed  Google Scholar 

  23. Kienitz R, Kay L, Beuchat I, Gelhard S, von Brauchitsch S, Mann C, et al. Benzodiazepines in the management of seizures and status epilepticus: a review of routes of delivery, pharmacokinetics, efficacy, and tolerability. CNS Drugs. 2022;36(9):951–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weiss B, Hilfrich D, Vorderwülbecke G, Heinrich M, Grunow JJ, Paul N, et al. Outcomes in critically ill patients sedated with intravenous lormetazepam or midazolam: a retrospective cohort study. J Clin Med. 2021;10(18):4091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. George S, Mathew J. Midazolam is effective in controlling intracranial pressure in severe traumatic brain injury. CHRISMED J Health Res. 2019;6(4):242–7.

    Article  Google Scholar 

  26. Garcia R, Salluh JIF, Andrade TR, Farah D, da Silva PSL, Bastos DF, et al. A systematic review and meta-analysis of propofol versus midazolam sedation in adult intensive care (ICU) patients. J Crit Care. 2021;64:91–9.

    Article  PubMed  Google Scholar 

  27. Pandharipande PP, Pun BT, Herr DL, Maze M, Girard TD, Miller RR, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA. 2007;298(22):2644–53.

    Article  CAS  PubMed  Google Scholar 

  28. Zanza C, Piccolella F, Racca F, Romenskaya T, Longhitano Y, Franceschi F, et al. Ketamine in acute brain injury: current opinion following cerebral circulation and electrical activity. Healthcare (Basel). 2022;10(3):566.

    Article  PubMed  Google Scholar 

  29. Zeiler FA, Teitelbaum J, West M, Gillman LM. The ketamine effect on intracranial pressure in nontraumatic neurological illness. J Crit Care. 2014;29(6):1096–106.

    Article  CAS  PubMed  Google Scholar 

  30. Gregers MCT, Mikkelsen S, Lindvig KP, Brochner AC. Ketamine as an anesthetic for patients with acute brain injury: a systematic review. Neurocrit Care. 2020;33(1):273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pribish A, Wood N, Kalava A. A review of nonanesthetic uses of ketamine. Anesthesiol Res Pract. 2020;2020:5798285.

    PubMed  PubMed Central  Google Scholar 

  32. Andolfatto G, Abu-Laban RB, Zed PJ, Staniforth SM, Stackhouse S, Moadebi S, et al. Ketamine-propofol combination (ketofol) versus propofol alone for emergency department procedural sedation and analgesia: a randomized double-blind trial. Ann Emerg Med. 2012;59(6):504-12.e1-2.

    Article  PubMed  Google Scholar 

  33. Walravens S, Buylaert W, Steen E, De Paepe P. Implementation of a protocol using ketamine-propofol (‘ketofol’) in a 1 to 4 ratio for procedural sedation in adults at a university hospital emergency department - report on safety and effectiveness. Acta Clin Belg. 2021;76(5):359–64.

    Article  PubMed  Google Scholar 

  34. Ferguson I, Bell A, Treston G, New L, Ding M, Holdgate A. Propofol or ketofol for procedural sedation and analgesia in emergency medicine-the POKER study: a randomized double-blind clinical trial. Ann Emerg Med. 2016;68(5):574-82 e1.

    Article  Google Scholar 

  35. Murala S, Yelam A, Ismail MM, Bollu PCGABA. In: Bollu PC, editor. Neurochemistry in clinical practice. Cham: Springer International Publishing; 2022. p. 73–89.

    Chapter  Google Scholar 

  36. Mathur M, Malik MT. Benzodiazepines and barbiturates. In: Kamat PP, Berkenbosch JW, editors. Sedation and analgesia for the pediatric intensivist: a clinical guide. Cham: Springer International Publishing; 2021. p. 401–10.

    Chapter  Google Scholar 

  37. Bernstein JE, Ghanchi H, Kashyap S, Podkovik S, Miulli DE, Wacker MR, et al. Pentobarbital coma with therapeutic hypothermia for treatment of refractory intracranial hypertension in traumatic brain injury patients: a single institution experience. Cureus. 2020;12(9): e10591.

    PubMed  PubMed Central  Google Scholar 

  38. Aisiku, IP. Chapter 387: Critical care management of traumatic brain injury. Youmansand Winn neurological surgery. Eighth ed. Philadelphia, PA: Elsevier, Inc.; 2023;3003–26.

  39. Navarro JC, Kofke WA. Chapter 24: Perioperative management of acute centralnervous system injury. Perioperative Medicine. Second ed. 2022;355–409.

  40. Yamakawa Y, Morioka M, Negoto T, Orito K, Yoshitomi M, Nakamura Y, et al. A novel step-down infusion method of barbiturate therapy: its safety and effectiveness for intracranial pressure control. Pharmacol Res Perspect. 2021;9(2): e00719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Severgnini P, Pelosi P, Contino E, Serafinelli E, Novario R, Chiaranda M. Accuracy of critical care pain observation tool and behavioral pain scale to assess pain in critically ill conscious and unconscious patients: prospective, observational study. J Intensive Care. 2016;4:68.

    Article  PubMed  PubMed Central  Google Scholar 

  42. • de Haro C, Magrans R, Lopez-Aguilar J, Montanya J, Lena E, Subira C, et al. Effects of sedatives and opioids on trigger and cycling asynchronies throughout mechanical ventilation: an observational study in a large dataset from critically ill patients. Crit Care. 2019;23(1):245. This prospective multi-center trial utilized a unique breath-to-breath assessment of the effects of opiates on ventilator synchrony.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Casamento AJ, Serpa Neto A, Young M, Lawrence M, Taplin C, Eastwood GM, et al. A phase II cluster-crossover randomized trial of fentanyl versus morphine for analgosedation in mechanically ventilated patients. Am J Respir Crit Care Med. 2021;204(11):1286–94.

    Article  CAS  PubMed  Google Scholar 

  44. Devlin JW, Skrobik Y, Gelinas C, Needham DM, Slooter AJC, Pandharipande PP, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46(9):e825–73.

    Article  PubMed  Google Scholar 

  45. Wiener J, McIntyre A, Janzen S, Mirkowski M, MacKenzie HM, Teasell R. Opioids and cerebral physiology in the acute management of traumatic brain injury: a systematic review. Brain Inj. 2019;33(5):559–66.

    Article  PubMed  Google Scholar 

  46. Lee KA, Ganta N, Horton JR, Chai E. Evidence for neurotoxicity due to morphine or hydromorphone use in renal impairment: a systematic review. J Palliat Med. 2016;19(11):1179–87.

    Article  PubMed  Google Scholar 

  47. Sanfilippo F, Santonocito C, Veenith T, Astuto M, Maybauer MO. The role of neuromuscular blockade in patients with traumatic brain injury: a systematic review. Neurocrit Care. 2015;22(2):325–34.

    Article  CAS  PubMed  Google Scholar 

  48. Lee S-J, Sung T-Y, Cho C-K. Comparison of emergence agitation between succinylcholine and rocuronium-sugammadex in adults following closed reduction of a nasal bone fracture: a prospective randomized controlled trial. BMC Anesthesiol. 2019;19(1):228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Renew JR, Ratzlaff R, Hernandez-Torres V, Brull SJ, Prielipp RC. Neuromuscular blockade management in the critically Ill patient. J Intensive Care. 2020;8(1):37.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Feldman JM. Cardiac arrest after succinylcholine administration in a pregnant patient recovered from Guillain-Barre syndrome. Anesthesiology. 1990;72(5):942–4.

    Article  CAS  PubMed  Google Scholar 

  51. Reilly M, Hutchinson M. Suxamethonium is contraindicated in the Guillain-Barre syndrome. J Neurol Neurosurg Psychiatry. 1991;54(11):1018–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hor JY. Cardiac arrhythmia after succinylcholine administration in a patient with Guillain-Barre syndrome–a case report. Middle East J Anaesthesiol. 2010;20(6):881–3.

    PubMed  Google Scholar 

  53. Kramer N, Lebowitz D, Walsh M, Ganti L. Rapid sequence intubation in traumatic brain-injured adults. Cureus. 2018;10(4): e2530.

    PubMed  PubMed Central  Google Scholar 

  54. Musick S, Alberico A. Neurologic assessment of the neurocritical care patient. Front Neurol. 2021;12: 588989.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Opdenakker O, Vanstraelen A, De Sloovere V, Meyfroidt G. Sedatives in neurocritical care: an update on pharmacological agents and modes of sedation. Curr Opin Crit Care. 2019;25(2):97–104.

    Article  PubMed  Google Scholar 

  56. Shehabi Y, Howe BD, Bellomo R, Arabi YM, Bailey M, Bass FE, et al. Early sedation with dexmedetomidine in critically ill patients. N Engl J Med. 2019;380(26):2506–17.

    Article  CAS  PubMed  Google Scholar 

  57. Owusu KA, Kurczewski L, Armahizer MJ, Zichichi A, Maciel CB, Heavner MS. DEXmedetomidine compared to PROpofol in NEurocritical Care [DEXPRONE]: a multicenter retrospective evaluation of clinical utility and safety. J Crit Care. 2020;60:79–83.

    Article  CAS  PubMed  Google Scholar 

  58. Gu Y, Yang F, Zhang Y, Zheng J, Wang J, Li B, et al. The effects of different doses of dexmedetomidine on the requirements for propofol for loss of consciousness in patients monitored via the bispectral index: a double-blind, placebo-controlled trial. BMC Anesthesiol. 2020;20(1):96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hunt N, Crowley K, Ahern K. Propofol compared to dexmedetomidine as primary or adjunctive sedation in traumatic brain injury. J Clin Med Surgery. 2022;2(1):1010.

    Google Scholar 

  60. Song Y, Gao S, Tan W, Qiu Z, Zhou H, Zhao Y. Dexmedetomidine versus midazolam and propofol for sedation in critically ill patients: mining the Medical Information Mart for Intensive Care data. Ann Transl Med. 2019;7(9):197.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Waly SH, Nasr YM, Morsy AA. Quasi-experiment as an initial experience for conscious sedation in awake craniotomy: dexmedetomidine versus midazolam. Res Opin Anesth Intensive Care. 2020;7(1):31.

    Article  Google Scholar 

  62. Aoki Y, Niwa T, Shiko Y, Kawasaki Y, Mimuro S, Doi M, et al. Remifentanil provides an increased proportion of time under light sedation than fentanyl when combined with dexmedetomidine for mechanical ventilation. J Int Med Res. 2021;49(3):3000605211002683.

    Article  CAS  PubMed  Google Scholar 

  63. Gong W, Zhang S, Li X, Shi L. Dexmedetomidine is superior to midazolam for sedation and cerebral protection in postoperative hypertensive intracerebral hemorrhage patients: a retrospective study. J Int Med Res. 2020;48(9):300060520957554.

    Article  CAS  PubMed  Google Scholar 

  64. Bilodeau V, Saavedra-Mitjans M, Frenette AJ, Burry L, Albert M, Bernard F, et al. Safety of dexmedetomidine for the control of agitation in critically ill traumatic brain injury patients: a descriptive study. J Clin Pharm Ther. 2021;46(4):1020–6.

    Article  CAS  PubMed  Google Scholar 

  65. Kyo M, Shimatani T, Hosokawa K, Taito S, Kataoka Y, Ohshimo S, et al. Patient-ventilator asynchrony, impact on clinical outcomes and effectiveness of interventions: a systematic review and meta-analysis. J Intensive Care. 2021;9(1):50.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Luo XY, He X, Zhou YM, Wang YM, Chen JR, Chen GQ, et al. Patient-ventilator asynchrony in acute brain-injured patients: a prospective observational study. Ann Intensive Care. 2020;10(1):144.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hungerford JL, O’Brien N, Moore-Clingenpeel M, Sribnick EA, Sargel C, Hall M, et al. Remifentanil for sedation of children with traumatic brain injury. J Intensive Care Med. 2019;34(7):557–62.

    Article  PubMed  Google Scholar 

  68. Zheng H, Zhu Y, Chen K, Shen X. The effect of etomidate or propofol on brainstem function during anesthesia induction: a bispectral index-guided study. Drug Des Devel Ther. 2019;13:1941–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vu TA, O’Meara A, Teasley J. Abnormal downward gaze and cold caloric examination due to propofol: a case study. Pediatr Neurol. 2014;51(3):437–8.

    Article  PubMed  Google Scholar 

  70. Rouche O, Wolak-Thierry A, Destoop Q, Milloncourt L, Floch T, Raclot P, et al. Evaluation of the depth of sedation in an intensive care unit based on the photo motor reflex variations measured by video pupillometry. Ann Intensive Care. 2013;3(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Grattan-Smith PJ, Butt W. Suppression of brainstem reflexes in barbiturate coma. Arch Dis Child. 1993;69(1):151–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Haddock JH, Mercante DE, Paccione R, Breaux JL, Jolley SE, Johnson JL, et al. Use of digital pupillometry to measure sedative response to propofol. Ochsner J. 2017;17(3):250–3.

    PubMed  PubMed Central  Google Scholar 

  73. Sabourdin N, Meniolle F, Chemam S, Rigouzzo A, Hamza J, Louvet N, et al. Effect of different concentrations of propofol used as a sole anesthetic on pupillary diameter: a randomized trial. Anesth Analg. 2020;131(2):510–7.

    Article  CAS  PubMed  Google Scholar 

  74. Hou RH, Scaife J, Freeman C, Langley RW, Szabadi E, Bradshaw CM. Relationship between sedation and pupillary function: comparison of diazepam and diphenhydramine. Br J Clin Pharmacol. 2006;61(6):752–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chan WP, Prescott BR, Barra ME, Chung DY, Kim IS, Saglam H, et al. Dexmedetomidine and other analgosedatives alter pupil characteristics in critically ill patients. Crit Care Explor. 2022;4(5): e0691.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Larson MD, Talke PO. Effect of dexmedetomidine, an alpha2-adrenoceptor agonist, on human pupillary reflexes during general anaesthesia. Br J Clin Pharmacol. 2001;51(1):27–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Larson MD. Mechanism of opioid-induced pupillary effects. Clin Neurophysiol. 2008;119(6):1358–64.

    Article  PubMed  Google Scholar 

  78. Rollins MD, Feiner JR, Lee JM, Shah S, Larson M. Pupillary effects of high-dose opioid quantified with infrared pupillometry. Anesthesiology. 2014;121(5):1037–44.

    Article  CAS  PubMed  Google Scholar 

  79. Packiasabapathy S, Rangasamy V, Sadhasivam S. Pupillometry in perioperative medicine: a narrative review. Can J Anaesth. 2021;68(4):566–78.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Eilers H, Larson MD. The effect of ketamine and nitrous oxide on the human pupillary light reflex during general anesthesia. Auton Neurosci. 2010;152(1–2):108–14.

    Article  CAS  PubMed  Google Scholar 

  81. Vide S, Costa CM, Gambus PL, Amorim PP. Effects of ketamine on pupillary reflex dilation: a case report. A A Pract. 2018;10(2):39–41.

    Article  PubMed  Google Scholar 

  82. Gray AT, Krejci ST, Larson MD. Neuromuscular blocking drugs do not alter the pupillary light reflex of anesthetized humans. Arch Neurol. 1997;54(5):579–84.

    Article  CAS  PubMed  Google Scholar 

  83. Ely EW, Margolin R, Francis J, May L, Truman B, Dittus R, et al. Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). Crit Care Med. 2001;29(7):1370–9.

    Article  CAS  PubMed  Google Scholar 

  84. Mitasova A, Kostalova M, Bednarik J, Michalcakova R, Kasparek T, Balabanova P, et al. Poststroke delirium incidence and outcomes: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). Crit Care Med. 2012;40(2):484–90.

    Article  PubMed  Google Scholar 

  85. Robinson D, Thompson S, Bauerschmidt A, Melmed K, Couch C, Park S, et al. Dispersion in scores on the Richmond Agitation and Sedation Scale as a measure of delirium in patients with subdural hematomas. Neurocrit Care. 2019;30(3):626–34.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bosselmann C, Zurloh J, Stefanou MI, Stadler V, Weber Y, Lerche H, et al. Delirium screening in aphasic patients with the Intensive Care Delirium Screening Checklist (ICDSC): a prospective cohort study. Front Neurol. 2019;10:1198.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Patel MB, Bednarik J, Lee P, Shehabi Y, Salluh JI, Slooter AJ, et al. Delirium monitoring in neurocritically ill patients: a systematic review. Crit Care Med. 2018;46(11):1832–41.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lobo-Valbuena B, Gordo F, Abella A, Garcia-Manzanedo S, Garcia-Arias MM, Torrejon I, et al. Risk factors associated with the development of delirium in general ICU patients. A prospective observational study. PLoS One. 2021;16(9): e0255522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chyou TY, Nishtala PS. Identifying frequent drug combinations associated with delirium in older adults: application of association rules method to a case-time-control design. Pharmacoepidemiol Drug Saf. 2021;30(10):1402–10.

    Article  CAS  PubMed  Google Scholar 

  90. Egberts A, Alan H, Ziere G, Mattace-Raso FU. Antipsychotics and lorazepam during delirium: are we harming older patients? A real-life data study. Drugs Aging. 2021;38(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  91. Smit L, Dijkstra-Kersten SMA, Zaal IJ, van der Jagt M, Slooter AJC. Haloperidol, clonidine and resolution of delirium in critically ill patients: a prospective cohort study. Intensive Care Med. 2021;47(3):316–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shiddapur A, Kistler CE, Busby-Whitehead J, Austin CA. Association of histamine-2 blockers and proton-pump inhibitors with delirium development in critically ill adults: a retrospective cohort study. Crit Care Explor. 2021;3(8): e0507.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lin P, Zhang J, Shi F, Liang ZA. Can haloperidol prophylaxis reduce the incidence of delirium in critically ill patients in intensive care units? A systematic review and meta-analysis. Heart Lung. 2020;49(3):265–72.

    Article  PubMed  Google Scholar 

  94. Abraham MP, Hinds M, Tayidi I, Jeffcoach DR, Corder JM, Hamilton LA, et al. Quetiapine for delirium prophylaxis in high-risk critically ill patients. Surgeon. 2021;19(2):65–71.

    Article  PubMed  Google Scholar 

  95. Marra A, Vargas M, Buonanno P, Iacovazzo C, Kotfis K, Servillo G. Haloperidol for preventing delirium in ICU patients: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 2021;25(3):1582–91.

    CAS  PubMed  Google Scholar 

  96. Sanaa M, Elham A, Elkhair HA, Islam AT. prophylactic use of haloperidol versus atypical antipsychotics (quetiapine) in prophylaxis against ICU delirium in high risk patients. Med J Cairo Univ. 2021;89:2283–92.

    Article  Google Scholar 

  97. Girard TD, Exline MC, Carson SS, Hough CL, Rock P, Gong MN, et al. Haloperidol and ziprasidone for treatment of delirium in critical illness. N Engl J Med. 2018;379(26):2506–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pereira JV, Sanjanwala RM, Mohammed MK, Le ML, Arora RC. Dexmedetomidine versus propofol sedation in reducing delirium among older adults in the ICU: a systematic review and meta-analysis. Eur J Anaesthesiol. 2020;37(2):121–31.

    Article  PubMed  Google Scholar 

  99. Soltani F, Tabatabaei S, Jannatmakan F, Nasajian N, Amiri F, Darkhor R, et al. Comparison of the effects of haloperidol and dexmedetomidine on delirium and agitation in patients with a traumatic brain injury admitted to the intensive care unit. Anesth Pain Med. 2021;11(3): e113802.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Crowley KE, Urben L, Hacobian G, Geiger KL. Valproic acid for the management of agitation and delirium in the intensive care setting: a retrospective analysis. Clin Ther. 2020;42(4):e65–73.

    Article  CAS  PubMed  Google Scholar 

  101. Quinn NJ, Hohlfelder B, Wanek MR, Duggal A, Torbic H. Prescribing practices of valproic acid for agitation and delirium in the intensive care unit. Ann Pharmacother. 2021;55(3):311–7.

    Article  PubMed  Google Scholar 

  102. Abraha I, Trotta F, Rimland JM, Cruz-Jentoft A, Lozano-Montoya I, Soiza RL, et al. Efficacy of non-pharmacological interventions to prevent and treat delirium in older patients: a systematic overview The SENATOR project ONTOP Series. PLoS One. 2015;10(6):e0123090.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hipp DM, Ely EW. Pharmacological and nonpharmacological management of delirium in critically ill patients. Neurotherapeutics. 2012;9(1):158–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Bauerschmidt.

Ethics declarations

Conflict of Interest

The authors have no relevant funding sources nor conflicts of interest to report.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauerschmidt, A., Al-Bermani, T., Ali, S. et al. Modern Sedation and Analgesia Strategies in Neurocritical Care. Curr Neurol Neurosci Rep 23, 149–158 (2023). https://doi.org/10.1007/s11910-023-01261-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-023-01261-7

Keywords

Navigation