Skip to main content

Advertisement

Log in

Patient-Centered Approaches to Cognitive Assessment in Acute TBI

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

The purpose of this article is to help clinicians understand how underlying pathophysiologies and medical comorbidities associated with acute traumatic brain injury (TBI) can impact assessment of cognition during the initial stages of recovery. Clinicians can use information from this article to develop assessment plans rooted in patient-centered care.

Recent Findings

The authors conducted a review of the literature related to the assessment of cognition in acute TBI, focusing on pathophysiology, medical comorbidities, and assessment approaches.

Summary

Results indicated that TBI pathophysiologies associated with white and gray matter changes make many patients vulnerable to cognitive deficits. Acute comorbidities such as psychological and pain status influence cognitive abilities as well. The current approaches to cognitive assessment can be limited in many ways, though by using the patient’s neuropathological profile, noted comorbidities, and other patient specific factors, clinicians can potentially improve the effectiveness of assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung Y, Punchak M, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130:1080–97. https://doi.org/10.3171/2017.10.jns17352.

    Article  Google Scholar 

  2. Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation. 2007;22:341–53. https://doi.org/10.3233/nre-2007-22502.

    Article  PubMed  Google Scholar 

  3. Farace E, Alves WM. Do women fare worse: a metaanalysis of gender differences in traumatic brain injury outcome. J Neurosurg. 2000;93:539–45. https://doi.org/10.3171/jns.2000.93.4.0539.

    Article  CAS  PubMed  Google Scholar 

  4. Munivenkatappa A, Agrawal A, Shukla D, Kumaraswamy D, Devi B. Traumatic brain injury: does gender influence outcomes? Int J Crit Illn Inj Sci. 2016;6:70–3. https://doi.org/10.4103/2229-5151.183024.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Roozenbeek B, Maas AI, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nature Rev Neurology. 2013;9:231–6. https://doi.org/10.1038/nrneurol.2013.22.

    Article  Google Scholar 

  6. Shores EA, Lammel A, Hullick C, Sheedy J, Flynn M, Levick W, et al. The diagnostic accuracy of the revised westmead PTA scale as an adjunct to the glasgow coma scale in the early identification of cognitive impairment in patients with mild traumatic brain injury. J Neurol Neurosurg Psychiatry 2008:79:1100–06. Doi.org10.1136/jnnp.2007.132571.

  7. • Tsai YC, Liu CJ, Huang HC, Lin JH, Chen PY, Su YK, et al. A meta-analysis of dynamic prevalence of cognitive deficits in the acute, subacute, and chronic phases after traumatic brain injury. J Neurosci Nurs. 2021;53:63–8. https://doi.org/10.1097/JNN.0000000000000570. This study delineates the prevalence of cognitive deficits across the acute and chronic stages after TBI. The study categorized prevalence rates for memory, attention, information processing speed, and executive function impairments across stages of recovery.

    Article  PubMed  Google Scholar 

  8. Arulsamy A, Teng J, Colton H, Corrigan F, Collins-Praino, L. Evaluation of early chronic functional outcomes and their relationship to pre-frontal cortex and hippocampal pathology following moderate-severe traumatic brain injury. Behav Brain Res 2018:348:127–38. 10.1016.j.bbr.2018.04.009.

  9. Byom L, O’Neil-Pirozzi TM, Lemoncello R, MacDonald S, Meulenbroek P, Ness B, et al. Social communication following adult traumatic brain injury: a scoping review of theoretical models. Am J Speech Lang Pathol. 2020;29:1735–48. https://doi.org/10.1044/2020_AJSLP-19-0020.

    Article  PubMed  Google Scholar 

  10. Iverson GL, Karr JE, Gardner AJ, Silverberg ND, Terry DP. Results of scoping review do not support mild traumatic brain injury being associated with a high incidence of chronic cognitive impairment: Commentary on McInnes et al. 2017. PLoS One 2019:14. https://doi.org/10.1371/journal.pone.0218997.

  11. Steel J, Ferguson A, Spencer E, Togher L. Speech-language pathologists’ perspectives on cognitive communication assessment during post-traumatic amnesia. Brain Inj. 2016;30:1131–42. https://doi.org/10.1080/02699052.2016.1174785.

    Article  PubMed  Google Scholar 

  12. •• Johnson LW, Hall KD. A scoping review of cognitive assessment in adults with acute traumatic brain injury. Am J Speech Lang Pathol. 2021;31:1–18. https://doi.org/10.1044/2021_AJSLP-21-00132. The authors provide a scoping review of the prevailing cognitive deficits noted after TBI and their underlying pathophysiologies. Also detailed are potential comorbidities impacting cognitive function in the acute stages of injury. Finally, the authors provide information on the most frequently used assessment tools, and what gaps in knowledge remain related to assessment of cognition in the acute stages.

    Article  Google Scholar 

  13. Rabinowitz AR, Levin HS. Cognitive sequelae of traumatic brain injury. Psychiatr Clin N Am. 2014;37:1–11. https://doi.org/10.1016/j.psc.2013.11.004.

    Article  Google Scholar 

  14. Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99:4–9. https://doi.org/10.1093/bja/aem131.

    Article  CAS  PubMed  Google Scholar 

  15. Graham NSN, Jolly A, Zimmerman K, Bourke NJ, Scott G, Cole JH, et al. Diffuse axonal injury predicts neurodegeneration after moderate–severe traumatic brain injury. Brain. 2020;143:3685–98. https://doi.org/10.1093/brain/awaa316.

    Article  PubMed  Google Scholar 

  16. Wolf JA, Koch PF. Disruption of network synchrony and cognitive dysfunction after traumatic brain injury. Front Syst Neurosci. 2016;10:43. https://doi.org/10.3389/fnsys.2016.00043.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Eijck MM, Schoonman GG, Naalt J, Vries J, Roks G. Diffuse axonal injury after traumatic brain injury is a prognostic factor for functional outcome: a systematic review and meta-analysis. Brain Inj. 2018;32:395–402. https://doi.org/10.1080/02699052.2018.1429018.

    Article  PubMed  Google Scholar 

  18. da Silva N, Cowie CJA, Blamire AM, Forsyth R, Taylor PN. Investigating brain network changes and their association with cognitive recovery after traumatic brain injury: a longitudinal analysis. Front Neurol. 2020;11:369. https://doi.org/10.3389/fneur.2020.00369.

    Article  Google Scholar 

  19. Genarelli T, Grabau D. Neuropathology of head injuries. Semin Clin Neuropsychiatry. 1998;3:160–75.

    Google Scholar 

  20. Bernier RA, Hillary FG. Traumatic brain injury and frontal lobe plasticity. Handb Clin Neurol. 2019;163:411–31. https://doi.org/10.1016/B978-0-12-804281-6.00022-7.

    Article  PubMed  Google Scholar 

  21. Bigler ED, Bazarian JJ. Diffusion tensor imaging: a biomarker for mild traumatic brain injury? Neurology. 2010;74:626–7. https://doi.org/10.1212/wnl.0b013e3181d3e43a.

    Article  PubMed  Google Scholar 

  22. Mayer AR, Ling J, Mannell MV, Gasparovic C, Phillips JP, Doezema D, et al. A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology. 2010;74:643–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wilde EA, McCauley SR, Hunter JV, Bigler ED, Chu Z, Wang ZJ, et al. Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology. 2008;70:948–55.

    Article  CAS  PubMed  Google Scholar 

  24. Lutkenhoff ES, Wright MJ, Shrestha V, Real C, McArthur DL, Buitrago-Blanco M, et al. The subcortical basis of outcome and cognitive impairment in TBI: a longitudinal cohort study. Neurology. 2020;95:e2398–408. https://doi.org/10.1212/WNL.0000000000010825.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Newcombe VF, Outtrim JG, Chatfield DA, Manktelow A, Hutchinson PJ, Coles JP, et al. Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury. Brain. 2011;134:759–68. https://doi.org/10.1093/brain/awq388.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bechara A, Damasio H, Damasio AR. Emotion, decision making and the orbitofrontal cortex. Cereb Cortex. 2000;10:295–307. https://doi.org/10.1093/cercor/10.3.295.

    Article  CAS  PubMed  Google Scholar 

  27. Ichkova A, Rodriguez-Grande B, Bar C, Villega F, Konsman JP, Badaut J. Vascular impairment as a pathological mechanism underlying long-lasting cognitive dysfunction after pediatric traumatic brain injury. Neurochem Int. 2017;111:93–102. https://doi.org/10.1016/j.neuint.2017.03.022.

    Article  CAS  PubMed  Google Scholar 

  28. Logsdon AF, Lucke-Wold BP, Turner RC, Huber JD, Rosen CL, Simpkins JW. Role of microvascular disruption in brain damage from traumatic brain injury. Compr Physiol. 2015;5:1147–60. https://doi.org/10.1002/cphy.c140057.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zheng P, Tong W. Understanding the neurotransmitter changes underlying cognitive dysfunction in traumatic brain injury and possible therapeutic targets: a review. Arch Med Sci. 2015;11:696–8. https://doi.org/10.5114/aoms.2015.52380.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stovell MG, Mada MO, Carpenter TA, Yan JL, Guilfoyle MR, Jalloh I, et al. Phosphorus spectroscopy in acute TBI demonstrates metabolic changes that relate to outcome in the presence of normal structural MRI. J Cereb Blood Flow Metab. 2020;40:67–84. https://doi.org/10.1177/0271678X18799176.

    Article  PubMed  Google Scholar 

  31. Ladak AA, Enam SA, Ibrahim MT. A review of the molecular mechanisms of traumatic brain injury. World Neurosurg. 2019;131:126–32. https://doi.org/10.1016/j.wneu.2019.07.039.

    Article  PubMed  Google Scholar 

  32. Coles JP, Fryer TD, Smielewski P, Rice K, Clark JC, Pickard JD, et al. Defining ischemic burden after traumatic brain injury using 15O PET imaging of cerebral physiology. J Cereb Blood Flow Metab. 2004;24:191–201. https://doi.org/10.1097/01.wcb.0000100045.07481.de.

    Article  PubMed  Google Scholar 

  33. Inoue Y, Shiozaki T, Tasaki O, Hayakata T, Ikegawa H, Yoshiya K, et al. Changes in cerebral blood flow from the acute to the chronic phase of severe head injury. J Neurotrauma. 2005;22:1411–8. https://doi.org/10.1089/neu.2005.22.1411.

    Article  PubMed  Google Scholar 

  34. Launey Y, Fryer TD, Hong YT, Steiner LA, Nortje J, Veenith TV, et al. Spatial and temporal pattern of ischemia and abnormal vascular function following traumatic brain injury. JAMA Neurol. 2020;77:339–49. https://doi.org/10.1001/jamaneurol.2019.3854.

    Article  PubMed  Google Scholar 

  35. Potts MB, Koh SE, Whetstone WD, Walker BA, Yoneyama T, Claus CP, et al. Traumatic injury to the immature brain: inflammation, oxidative injury, and iron-mediated damage as potential therapeutic targets. NeuroRx. 2006;3:143–53. https://doi.org/10.1016/j.nurx.2006.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bramlett HM, Dietrich WD. Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab. 2004;24:133–50. https://doi.org/10.1097/01.wcb.0000111614.19196.04.

    Article  PubMed  Google Scholar 

  37. Dewitt DS, Prough DS. Traumatic cerebral vascular injury: the effects of concussive brain injury on the cerebral vasculature. J Neurotrauma. 2003;20:795–825. https://doi.org/10.1089/089771503322385755.

    Article  PubMed  Google Scholar 

  38. Rodríguez-Baeza A, Torre FR-DL, Poca A, Martí M, Garnacho A. Morphological features in human cortical brain microvessels after head injury: a three-dimensional and immunocytochemical study. Anat Rec A Discov Mol Cell Evol Biol 2003:237A:583–93. https://doi.org/10.1002/ar.a.10069.

  39. Teichner EM, You JC, Hriso C, Wintering NA, Zabrecky GP, Alavi A, et al. Alterations in cerebral glucose metabolism as measured by 18F-fluorodeoxyglucose-PET in patients with persistent postconcussion syndrome. Nucl Med Commun. 2021;42:772–81. https://doi.org/10.1097/MNM.0000000000001397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Figueira Rodrigues Vieira G, Guedes Correa JF. Early computed tomography for acute post-traumatic diffuse axonal injury: a systematic review. Neuroradiology 2020:62:653–660. https://doi.org/10.1007/s00234-020-02383-2.

  41. Walker KR, Tesco G. Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Front Aging Neurosci. 2013;5:29. https://doi.org/10.3389/fnagi.2013.00029.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Simpson G, Tate R. Suicidality in people surviving a traumatic brain injury: prevalence, risk factors and implications for clinical management. Brain Inj. 2007;21:1335–51. https://doi.org/10.1080/02699050701785542.

    Article  PubMed  Google Scholar 

  43. Beetar JT, Guilmette TJ, Sparadeo FR. Sleep and pain complaints in symptomatic traumatic brain injury and neurologic populations. Arch Phys Med Rehabil. 1996;77:1298–302.

    Article  CAS  PubMed  Google Scholar 

  44. Labastida-Ramírez A, Benemei S, Albanese M, D’Amico A, Grillo G, Grosu O, et al. Persistent post-traumatic headache: a migrainous loop or not? The clinical evidence. J Headache Pain. 2020;21:55. https://doi.org/10.1186/s10194-020-01122-5.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kumar RG, Gao S, Juengst SB, Wagner AK, Fabio A. The effects of post-traumatic depression on cognition, pain, fatigue, and headache after moderate-to-severe traumatic brain injury: a thematic review. Brain Inj. 2018;32:383–94. https://doi.org/10.1080/02699052.2018.1427888.

    Article  CAS  PubMed  Google Scholar 

  46. Pagulayan KF, Temkin NR, Machamer JE, Dikmen SS. The measurement and magnitude of awareness difficulties after traumatic brain injury: a longitudinal study. J Int Neuropsychol Soc. 2007;13:561–70. https://doi.org/10.1017/s1355617707070713.

    Article  PubMed  Google Scholar 

  47. Zhang JY, Feinstein A. Screening for cognitive impairments after traumatic brain injury: a comparison of a brief computerized battery with the montreal cognitive assessment. J Neuropsychiatry Clin Neurosci. 2016;28:328–31. https://doi.org/10.1176/appi.neuropsych.16010005.

    Article  PubMed  Google Scholar 

  48. Arciniegas DB, Frey KL, Newman J, Wortzel HS. Evaluation and management of posttraumatic cognitive impairments. Psychiatr ann. 2010;40:540–52.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kurowski BG, Treble-Barna A, Pitzer AJ, Wade SL, Martin LJ, Chima RS, Jegga A. Applying systems biology methodology to identify genetic factors possibly associated with recovery after traumatic brain injury. J Neurotrauma. 2017;34:2280–90. https://doi.org/10.1089/neu.2016.4856.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Barton DJ, Kumar RG, Schuster AA, Juengst SB, Oh BM, Wagner AK. Acute cortisol profile associations with cognitive impairment after severe traumatic brain injury. Neurorehabil Neural Repair. 2021;35:1088–99. https://doi.org/10.1177/15459683211048771.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ni P, Qiao Y, Tong W, Zhao C, Zheng P. Associations between serum tau, neurological outcome, and cognition following traumatic brain injury. Neurol India. 2020;68:462–7. https://doi.org/10.4103/0028-3886.284380.

    Article  PubMed  Google Scholar 

  52. Hwang PH, Nelson LD, Sharon JD, McCrea MA, Dikmen SS, Markowitz AJ, et al. Association between TBI-related hearing impairment and cognition: a TRACK-TBI study. J Head Trauma Rehabil. 2021. https://doi.org/10.1097/HTR.0000000000000735.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Abdullah MI, Aryati A, Yusoff NAM, Wafa SW, Latif AZA, Udin N, et al. Effect of calorie on cognitive function among TBI patients: a pilot study. Research J Pharm Tech. 2020;13:4545–9. https://doi.org/10.5958/0974-360X.2020.00801.X.

    Article  Google Scholar 

  54. Lee JM, Jeong SW, Kim MY, Park JB, Kim MS. The effect of vitamin D supplementation in patients with acute traumatic brain injury. World Neurosurg. 2019;126:e1421–6. https://doi.org/10.1016/j.wneu.2019.02.244.

    Article  PubMed  Google Scholar 

  55. Miller G, Daugherty J, Waltzman D, Sarmiento K. Predictors of traumatic brain injury morbidity and mortality: examination of data from the national trauma data bank: predictors of TBI morbidity & mortality. Injury. 2021;5:1138–44. https://doi.org/10.1016/j.injury.2021.01.042.

    Article  Google Scholar 

  56. Shibahashi K, Ohbe H, Yasunaga H. Urban-rural inequalities in care and outcomes of severe traumatic brain injury: a nationwide inpatient database analysis in japan. World Neurosurg. 2022;163:e628–34. https://doi.org/10.1016/j.wneu.2022.04.051.

    Article  PubMed  Google Scholar 

  57. •• Fuentes A, Schoen C, Kulzer RR, Long C, Bushnik T, Rath JF. Impact of racial-ethnic minority status and systemic vulnerabilities on time to acute TBI rehabilitation admission in an urban public hospital setting. Rehabil Psychol. 2019;64:229–36. https://doi.org/10.1037/rep0000260. This study provides a comprehensive overview of the impact of race, ethnicity, and sociodemographic vulnerabilities faced by many marginalized groups in seeking intervention after TBI. Findings indicate that these systemic vulnerabilities may impact injury severity and time to acute TBI rehabilitation.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hardin KY, Black C, Caldbick K, Kelly M, Malhotra A, Tidd C, et al. Current practices among speech-language pathologists for mild traumatic brain injury: a mixed-methods modified delphi approach. Am J Speech Lang Pathol. 2021;30:1625–55. https://doi.org/10.1044/2021_AJSLP-20-00311.

    Article  PubMed  Google Scholar 

  59. Teasdale G, Jennett B. Assessment of coma and impaired consciousness. Lancet. 1974;304:81–4. https://doi.org/10.1016/s0140-6736(74)91639-0.

    Article  Google Scholar 

  60. Levin HS, OʼDonnell VM, Grossman RG. The Galveston orientation and amnesia test. J Nerv Ment Dis 1979:167:675–84. https://doi.org/10.1097/00005053-197911000-00004.

  61. Giacino JT, Kalmar K, Whyte J. The JFK coma recovery scale-revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 2004:85:2020–29. 10.1016.j.apmr.2004.02.033.

  62. Hagen C, Malkmus D, Durham P. Rancho los amigos scale: levels of cognitive functioning. Communication disorders service 1972 RANCHO scales. Downey, CA: Rancho Los Amigos Hospital.

  63. Nasreddine ZS, Phillips NA, Bedirian V, et al. The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9. https://doi.org/10.1111/j.1532-5415.2005.53221.x.

    Article  PubMed  Google Scholar 

  64. Turkstra L, Ylvisaker M, Coelho C, Kennedy M, Sohlberg MM, Avery J, et al. Practice guidelines for standardized assessment for persons with traumatic brain injury. J Med Speech Lang Pathol 2005:13:9–38. Ancds.org/assets/docs/EBP/turkstra2005.pdf.

  65. Coelho C, Ylvisaker M, Turkstra LS. Nonstandardized assessment approaches for individuals with traumatic brain injuries. Semin Speech Lang. 2005;26:223–41. https://doi.org/10.1055/s-2005-922102.

    Article  PubMed  Google Scholar 

  66. Leblanc JM, Hayden ME, Paulman RG. A comparison of neuropsychological and situational assessment for predicting employability after closed head injury. J Head Trauma Rehabil. 2000;15:1022–40. https://doi.org/10.1097/00001199-200008000-00005.

    Article  CAS  PubMed  Google Scholar 

  67. • Bokhour BG, Fix GM, Mueller NM, Barker AM, Lavela SL, Hill JN, et al. How can healthcare organizations implement patient-centered care? Examining a large-scale cultural transformation. BMC Health Serv Res 2018:18:168. https://doi.org/10.1186/s12913-018-2949-5. These authors describe 7 domains that facilitate the incorporation of patient-centered care to better serve both the patient and the organization. Buy in to patient-centered care requires a cultural transformation at all levels of the organization and will be impacted by a variety of challenges along the way.

  68. Wilson L, Horton L, Kunzmann K, Sahakian B, Newcombe V, Stamatakis E, et al. Understanding the relationship between cognitive performance and function in daily life after traumatic brain injury. J Neurol Neurosurg Psychiatry. 2021;92:407–17. https://doi.org/10.1136/jnnp-2020-32449.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie W. Johnson.

Ethics declarations

Conflict of Interest

Leslie W. Johnson, Carley Prenshaw, and Amber Corbin declare that they have no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, L.W., Prenshaw, C. & Corbin, A. Patient-Centered Approaches to Cognitive Assessment in Acute TBI. Curr Neurol Neurosci Rep 23, 59–66 (2023). https://doi.org/10.1007/s11910-023-01253-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-023-01253-7

Keywords

Navigation