Skip to main content
Log in

Polysomnographic Predictors of Sleep, Motor, and Cognitive Dysfunction Progression in Parkinson’s Disease

  • Sleep (M. Thorpy and M. Billiard, Section Editors)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Sleep disturbances are an important nonmotor feature of Parkinson’s disease (PD) that can cause polysomnographic (PSG) alterations. These alterations are already present in early PD and may be associated with a specific disease course. This systematic review describes the role of PSG variables as predictors of sleep dysfunction, motor and cognitive dysfunction progression in PD.

Recent Findings

Nineteen longitudinal cohort studies were included. Their main findings were that (1) REM sleep behavioral events, REM sleep without atonia (RSWA), and electroencephalography (EEG) changes (mainly microsleep instability) are predictors of the development of REM sleep behavior disorder (RBD); (2) RBD, RSWA, and lower slow-wave sleep energy predict motor progression; (3) RBD, EEG slowing, and sleep spindles changes are predictors of cognitive deterioration; and (4) OSA is associated with severe motor and cognitive symptoms at baseline, with inconsistent findings on the effect of continuous positive airway pressure (CPAP) therapy for these symptoms.

Summary

The results of our systematic review support a role of the video-PSG in disease progression prediction in PD and its usefulness as a biomarker. However, future studies are needed to investigate whether treatment of these PSG abnormalities and sleep disturbances may have a neuroprotective effect on disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, et al. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:459–80.

    Article  Google Scholar 

  2. Chaudhuri KR, Healy DG, Schapira AH. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. 2006;5:235–45.

    Article  PubMed  Google Scholar 

  3. Schenck CH, Mahowald MW. REM sleep behavior disorder: clinical, developmental, and neuroscience perspectives 16 years after its formal identification in SLEEP. Sleep. 2002;25:120–38.

    Article  PubMed  Google Scholar 

  4. Zhang Y, Ren R, Sanford LD, Yang L, Zhou J, Tan L, et al. Sleep in Parkinson’s disease: a systematic review and meta-analysis of polysomnographic findings. Sleep Med Rev. 2020;51:101281. https://doi.org/10.1016/j.smrv.2020.101281. This meta-analysis investigated and summarized all polysomnographic changes in Parkinson's disease compared to controls with a cross-sectional design.

  5. Brunner H, Wetter TC, Hogl B, Yassouridis A, Trenkwalder C, Friess E. Microstructure of the non-rapid eye movement sleep electroencephalogram in patients with newly diagnosed Parkinson’s disease: effects of dopaminergic treatment. Mov Disord. 2002;17:928–33.

    Article  PubMed  Google Scholar 

  6. Puca FM, Bricolo A, Turella G. Effect of L-dopa or amantadine therapy on sleep spindles in Parkinsonism. Electroencephalogr Clin Neurophysiol. 1973;35:327–30.

    Article  CAS  PubMed  Google Scholar 

  7. Emser W, Brenner M, Stober T, Schimrigk K. Changes in nocturnal sleep in Huntington’s and Parkinson’s disease. J Neurol. 1988;235:177–9.

    Article  CAS  PubMed  Google Scholar 

  8. Christensen JAE, Kempfner J, Zoetmulder M, Leonthin HL, Arvastson L, Christensen SR, et al. Decreased sleep spindle density in patients with idiopathic REM sleep behavior disorder and patients with Parkinson’s disease. Clin Neurophysiol. 2014;125:512–9.

    Article  PubMed  Google Scholar 

  9. Schroeder LA, Rufra O, Sauvageot N, Fays F, Pieri V, Diederich NJ. Reduced] rapid eye movement density in Parkinson disease: a polysomnography-based case-control study. Sleep. 2016;39:2133–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kallio M, Suominen K, Haapaniemi T, Sotaniemi K, Myllylä VV, Astafiev S, et al. Nocturnal cardiac autonomic regulation in Parkinson’s disease. Clin Auton Res. 2004;14:119–24.

    Article  PubMed  Google Scholar 

  11. Sauvageot N, Vaillant M, Diederich NJ. Reduced sympathetically driven heart rate variability during sleep in Parkinson’s disease: a case-control polysomnography-based study. Mov Disord. 2011;26:234–40.

    Article  PubMed  Google Scholar 

  12. Palma J-A, Urrestarazu E, Alegre M, Pastor MA, Valencia M, Artieda J, et al. Cardiac autonomic impairment during sleep is linked with disease severity in Parkinson’s disease. Clin Neurophysiol. 2013;124:1163–8.

    Article  PubMed  Google Scholar 

  13. Sommerauer M, Werth E, Poryazova R, Gavrilov YV, Hauser S, Valko PO. Bound to supine sleep: Parkinson’s disease and the impact of nocturnal immobility. Parkinsonism Relat Disord. 2015;21:1269–72.

    Article  PubMed  Google Scholar 

  14. Cochen De Cock V, Benard-Serre N, Driss V, Granier M, Charif M, Carlander B, et al. Supine sleep and obstructive sleep apnea syndrome in Parkinson’s disease. Sleep Med. (2015)16:1497–501.

  15. Dijkstra F, Reyn N, de Bruyn B, van den Bossche K, de Volder I, Willemen M, et al. REM sleep without atonia and nocturnal body position in prediagnostic Parkinson’s disease. Sleep Med. 2021;84:308–16.

    Article  PubMed  Google Scholar 

  16. Högl B, Stefani A, Videnovic A. Idiopathic REM sleep behaviour disorder and neurodegeneration—an update. Nat Rev Neurol. 2018;14:40–55.

    Article  PubMed  Google Scholar 

  17. Bohnen NI, Hu MTM. Sleep Disturbance as Potential Risk and Progression Factor for Parkinson’s Disease. J Parkinsons Dis. 2019;9:603–14. This review describes possible underlying mechanism in which sleep disorders can influence disease progression in PD.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Berry RB, Brooks R, Gamaldo CE, et al. for the American Academy of Sleep Medicine. The AASM Manual for the Scoring of Sleep and Associated Events: rules, terminology and technical specifications. Darien, IL: Ame Acad Sleep Med; (2017).

  19. Lim DC, Mazzotti DR, Sutherland K, Mindel JW, Kim J, Cistulli PA, et al. Reinventing polysomnography in the age of precision medicine. Sleep Med Rev. 2020;52:101313.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wells G, Shea B, O’Connell D, Peterson, J, Welch V, Losos M, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of non-randomized studies in meta-analysis. (2000). https://www.ohri.ca//programs/clinical_epidemiology/oxford.asp.

  22. Zimansky L, Muntean M-L, Leha A, Mollenhauer B, Trenkwalder C, Sixel-Döring F. Incidence and progression of rapid eye movement behavior disorder in early Parkinson’s disease. Mov Disord Clin Pract. 2021;8:534–40.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nomura T, Inoue Y, Kagimura T, Nakashima K. Clinical significance of REM sleep behavior disorder in Parkinson’s disease. Sleep Med. 2013;14:131–5.

    Article  PubMed  Google Scholar 

  24. Figorilli M, Marques AR, Vidal T, Delaby L, Meloni M, Pereira B, et al. Does REM sleep behavior disorder change in the progression of Parkinson’s disease? Sleep Med. 2020;68:190–8.

    Article  CAS  PubMed  Google Scholar 

  25. Bugalho P, Ladeira F, Barbosa R, Marto JP, Borbinha C, da Conceição L, et al. Polysomnographic predictors of sleep, motor and cognitive dysfunction progression in Parkinson’s disease: a longitudinal study. Sleep Med. 2021;77:205–8.

    Article  PubMed  Google Scholar 

  26. Mollenhauer B, Zimmermann J, Sixel-Döring F, Focke NK, Wicke T, Ebentheuer J, et al. Baseline predictors for progression 4 years after Parkinson’s disease diagnosis in the De Novo Parkinson Cohort (DeNoPa). Mov Disord. 2019;34:67–77.

    Article  PubMed  Google Scholar 

  27. Sommerauer M, Valko PO, Werth E, Poryazova R, Hauser S, Baumann CR. Revisiting the impact of REM sleep behavior disorder on motor progression in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20:460–2.

    Article  PubMed  Google Scholar 

  28. Bugalho P, Magriço M, Alves L, Borbinha C. Objective sleep data as predictors of cognitive decline in dementia with Lewy Bodies and Parkinson’s disease. Sleep Med. 2021;80:273–8.

    Article  PubMed  Google Scholar 

  29. Anang JBM, Gagnon J-F, Bertrand J-A, Romenets SR, Latreille V, Panisset M, et al. Predictors of dementia in Parkinson disease: a prospective cohort study. Neurology. 2014;83:1253–60.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Anang JBM, Nomura T, Romenets SR, Nakashima K, Gagnon J-F, Postuma RB. Dementia predictors in Parkinson disease: a validation study. J Parkinsons Dis. 2017;7:159–62.

    Article  PubMed  Google Scholar 

  31. Onofrj M, Thomas A, D’Andreamatteo G, Iacono D, Luciano AL, Di Rollo A, et al. Incidence of RBD and hallucination in patients affected by Parkinson’s disease: 8-year follow-up. Neurol Sci. 2002;23:s91–4.

    Article  PubMed  Google Scholar 

  32. Marinus J, Visser M, van Hilten JJ, Lammers GJ, Stiggelbout AM. Assessment of sleep and sleepiness in Parkinson disease. Sleep. 2003;26:1049–54.

    Article  PubMed  Google Scholar 

  33. Fahn S, Marsden C, Calne D, Goldstein, M. Unified Parkinson’s disease rating scale. Recent developments in Parkinson’s disease, Macmillan, Florham Park, USA (1987) pp. 153–163.

  34. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.

    Article  CAS  PubMed  Google Scholar 

  35. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9.

    Article  PubMed  Google Scholar 

  36. Neikrug AB, Liu L, Avanzino JA, Maglione JE, Natarajan L, Bradley L, et al. Continuous positive airway pressure improves sleep and daytime sleepiness in patients with Parkinson disease and sleep apnea. Sleep. 2014;37:177–85.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Harmell AL, Neikrug AB, Palmer BW, Avanzino JA, Liu L, Maglione JE, et al. Obstructive sleep apnea and cognition in Parkinson’s disease. Sleep Med. 2016;21:28–34.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Meng L, Benedetti A, Lafontaine A-L, Mery V, Robinson AR, Kimoff J, et al. Obstructive sleep apnea, CPAP therapy and Parkinson’s disease motor function: a longitudinal study. Parkinsonism Relat Disord. 2020;70:45–50.

    Article  PubMed  Google Scholar 

  39. Kaminska M, Mery VP, Lafontaine A-L, Robinson A, Benedetti A, Gros P, et al. Change in cognition and other non-motor symptoms with obstructive sleep apnea treatment in Parkinson disease. J Clin Sleep Med. 2018;14:819–28.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Terzaghi M, Spelta L, Minafra B, Rustioni V, Zangaglia R, Pacchetti C, et al. Treating sleep apnea in Parkinson’s disease with C-PAP: feasibility concerns and effects on cognition and alertness. Sleep Med. 2017;33:114–8.

    Article  PubMed  Google Scholar 

  41. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39:142–8.

    Article  CAS  PubMed  Google Scholar 

  42. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14(6):540–5.

    Article  CAS  PubMed  Google Scholar 

  43. Cesari M, Christensen JAE, Muntean M-L, Mollenhauer B, Sixel-Döring F, Sorensen HBD, et al. A data-driven system to identify REM sleep behavior disorder and to predict its progression from the prodromal stage in Parkinson’s disease. Sleep Med. 2021;77:238–48.

    Article  PubMed  Google Scholar 

  44. Schreiner SJ, Imbach LL, Werth E, Poryazova R, Baumann-Vogel H, Valko PO, et al. Slow-wave sleep and motor progression in Parkinson disease. Ann Neurol. 2019;85:765–70.

    Article  PubMed  Google Scholar 

  45. Latreille V, Carrier J, Gaudet-Fex B, Rodrigues-Brazète J, Panisset M, Chouinard S, et al. Electroencephalographic prodromal markers of dementia across conscious states in Parkinson’s disease. Brain. 2016;139:1189–99.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Latreille V, Carrier J, Lafortune M, Postuma RB, Bertrand J-A, Panisset M, et al. Sleep spindles in Parkinson’s disease may predict the development of dementia. Neurobiol Aging. 2015;36:1083–90.

    Article  PubMed  Google Scholar 

  47. Zhang X, Sun X, Wang J, Tang L, Xie A. Prevalence of rapid eye movement sleep behavior disorder (RBD) in Parkinson’s disease: a meta and meta-regression analysis. Neurol Sci. 2017;38:163–70.

    Article  PubMed  Google Scholar 

  48. Xu Z, Anderson KN, Saffari SE, Lawson RA, Chaudhuri KR, Brooks D, et al. Progression of sleep disturbances in Parkinson’s disease: a 5-year longitudinal study. J Neurol. 2021;268:312–20.

    Article  PubMed  Google Scholar 

  49. Boeve BF, Silber MH, Saper CB, Ferman TJ, Dickson DW, Parisi JE, et al. Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain. 2007;130:2770–88.

    Article  CAS  PubMed  Google Scholar 

  50. Dijkstra F, Van den Bossche K, de Bruyn B, Reyn N, Viaene M, De Volder I, et al. REM sleep without atonia and the relation with Lewy body disease. Parkinsonism Relat Disord. 2019;67:90–8.

    Article  PubMed  Google Scholar 

  51. Sixel-Döring F, Trautmann E, Mollenhauer B, Trenkwalder C. Rapid eye movement sleep behavioral events: a new marker for neurodegeneration in early Parkinson disease? Sleep. 2014;37:431–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pagano G, Micco RD, Yousaf T, Wilson H, Chandra A, Politis M. REM behavior disorder predicts motor progression and cognitive decline in Parkinson disease. Neurology. 2018;91:e894-905.

    Article  PubMed  Google Scholar 

  53. Liu Y, Lawton MA, Lo C, Bowring F, Klein JC, Querejeta-Coma A, et al. Longitudinal changes in Parkinson’s disease symptoms with and without rapid eye movement sleep behavior disorder: The Oxford Discovery Cohort Study. Mov Disord. 2021;36:2821–32.

    Article  CAS  PubMed  Google Scholar 

  54. Duarte Folle A, Paul KC, Bronstein JM, Keener AM, Ritz B. Clinical progression in Parkinson’s disease with features of REM sleep behavior disorder: a population-based longitudinal study. Parkinsonism Relat Disord. 2019;62:105–11.

    Article  PubMed  Google Scholar 

  55. Kumru H, Santamaria J, Tolosa E, Iranzo A. Relation between subtype of Parkinson’s disease and REM sleep behavior disorder. Sleep Med. 2007;8:779–83.

    Article  PubMed  Google Scholar 

  56. Postuma RB, Gagnon JF, Vendette M, Charland K, Montplaisir J. REM sleep behaviour disorder in Parkinson’s disease is associated with specific motor features. J Neurol Neurosurg Psychiatry. 2008;79:1117–21.

    Article  CAS  PubMed  Google Scholar 

  57. Elfil M, Bahbah EI, Attia MM, Eldokmak M, Koo BB. Impact of Obstructive Sleep Apnea on Cognitive and Motor Functions in Parkinson’s Disease. Mov Disord. 2021;36:570–80. This meta-analysis investigated and summarized the impact of obstructive sleep apnea on Parkinson symptoms.

    Article  PubMed  Google Scholar 

  58. Kaminska M, Lafontaine A-L, Kimoff RJ. The interaction between obstructive sleep apnea and Parkinson’s disease: possible mechanisms and implications for cognitive function. Parkinsons Dis. 2015;2015:849472.

    PubMed  PubMed Central  Google Scholar 

  59. Morawska MM, Moreira CG, Ginde VR, Valko PO, Weiss T, Büchele F, et al. Slow-wave sleep affects synucleinopathy and regulates proteostatic processes in mouse models of Parkinson’s disease. Sci Trans Med 2021;13:eabe7099. https://doi.org/10.1126/scitranslmed.abe7099.

  60. Hablitz LM, Vinitsky HS, Sun Q, Stæger FF, Sigurdsson B, Mortensen KN, et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv. 2019;5:eaav5447. https://doi.org/10.1126/sciadv.aav5447.

  61. Lee H-J, Lee DA, Shin KJ, Park KM. Glymphatic system dysfunction in obstructive sleep apnea evidenced by DTI-ALPS. Sleep Med. 2022;89:176–81.

    Article  PubMed  Google Scholar 

  62. Ding XB, Wang XX, Xia DH, Liu H, Tian HY, Fu Y, et al. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson’s disease. Nat Med. 2021;27(3):411–8.

    Article  CAS  PubMed  Google Scholar 

  63. Vendette M, Gagnon J-F, Décary A, Massicotte-Marquez J, Postuma RB, Doyon J, et al. REM sleep behavior disorder predicts cognitive impairment in Parkinson disease without dementia. Neurology. 2007;69:1843–9.

    Article  CAS  PubMed  Google Scholar 

  64. Müller MLTM, Bohnen NI, Kotagal V, Scott PJH, Koeppe RA, Frey KA, et al. Clinical markers for identifying cholinergic deficits in Parkinson’s disease: clinical marers of cholinergic deficits in PD. Mov Disord. 2015;30:269–73.

    Article  PubMed  Google Scholar 

  65. Fereshtehnejad S-M, Zeighami Y, Dagher A, Postuma RB. Clinical criteria for subtyping Parkinson’s disease: biomarkers and longitudinal progression. Brain. 2017;140:1959–76.

    Article  PubMed  Google Scholar 

  66. Menšíková K, Matěj R, Colosimo C, Rosales R, Tučková L, Ehrmann J, et al. Lewy body disease or diseases with Lewy bodies? npj Parkinsons Dis. 2022;8:1–11. https://doi.org/10.1038/s41531-021-00273-9.

  67. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor J-P, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89:88–100.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bubu OM, Andrade AG, Umasabor-Bubu OQ, Hogan MM, Turner AD, de Leon MJ, et al. Obstructive sleep apnea, cognition and Alzheimer’s disease: a systematic review integrating three decades of multidisciplinary research. Sleep Med Rev. 2020;50:101250.

    Article  PubMed  Google Scholar 

  69. Kozak VV, Chaturvedi M, Gschwandtner U, Hatz F, Meyer A, Roth V, et al. EEG slowing and axial motor impairment are independent predictors of cognitive worsening in a three-year cohort of patients with Parkinson’s disease. Front Aging Neurosci. 2020;12:171.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cozac VV, Chaturvedi M, Hatz F, Meyer A, Fuhr P, Gschwandtner U. Increase of EEG spectral theta power indicates higher risk of the development of severe cognitive decline in Parkinson’s disease after 3 years. Front Aging Neurosci. 2016;8:284.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Caviness JN, Hentz JG, Belden CM, Shill HA, Driver-Dunckley ED, Sabbagh MN, et al. Longitudinal EEG changes correlate with cognitive measure deterioration in Parkinson’s disease. J Parkinsons Dis. 2015;5:117–24.

    Article  PubMed  Google Scholar 

  72. Arnaldi D, De Carli F, Famà F, Brugnolo A, Girtler N, Picco A, et al. Prediction of cognitive worsening in de novo Parkinson’s disease: clinical use of biomarkers. Mov Disord. 2017;32:1738–47.

    Article  PubMed  Google Scholar 

  73. Klassen BT, Hentz JG, Shill HA, Driver-Dunckley E, Evidente VGH, Sabbagh MN, et al. Quantitative EEG as a predictive biomarker for Parkinson disease dementia. Neurology. 2011;77:118–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Steriade M, Gloor P, Llinás RR, Lopes da Silva FH, Mesulam M-M. Basic mechanisms of cerebral rhythmic activities. Electroencephal Clin Neurophysiol. 1990;76:481–508.

    Article  CAS  Google Scholar 

  75. Jellinger KA. Morphological basis of Parkinson disease-associated cognitive impairment: an update. J Neural Transm. 2022;129:977–999. https://doi.org/10.1007/s00702-022-02522-4.

  76. Caporro M, Haneef Z, Yeh HJ, Lenartowicz A, Buttinelli C, Parvizi J, et al. Functional MRI of sleep spindles and K-complexes. Clin Neurophysiol. 2012;123:303–9.

    Article  PubMed  Google Scholar 

Download references

Funding

We thank the patient support group “Move for Parkinson”, Rotary Belgium and the Koning Boudewijn Stichting/Fondsen Druwé-Eerdekens/Van Ael/Vlaamse Parkinson Liga for their participation in funding the project. Funding sources were not involved in the research or manuscript editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Femke Dijkstra.

Ethics declarations

Conflict of Interest

All authors: no financial or non-financial disclosures.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sleep.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dijkstra, F., de Volder, I., Viaene, M. et al. Polysomnographic Predictors of Sleep, Motor, and Cognitive Dysfunction Progression in Parkinson’s Disease. Curr Neurol Neurosci Rep 22, 657–674 (2022). https://doi.org/10.1007/s11910-022-01226-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-022-01226-2

Keywords

Navigation