Skip to main content

Advertisement

Log in

Advances in the Treatment of Thyroid Eye Disease Associated Extraocular Muscle Myopathy and Optic Neuropathy

  • Neuro-Ophthalmology (H. Moss, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review emerging treatments for thyroid eye disease (TED) associated extraocular muscle myopathy and dysthyroid optic neuropathy (DON).

Recent Findings

Emerging targeted biologic therapies may alter the disease course in TED. Teprotumumab, a type I insulin-like growth factor receptor inhibitor, is the most recent addition to the treatments available for TED-associated extraocular muscle myopathy causing diplopia. Small studies also suggest a potential therapeutic benefit for DON. Various recent studies have also expanded our knowledge on conventional TED therapies.

Summary

The therapeutic landscape of TED and its sequelae has evolved in recent years. New targeted therapies have the potential to reduce the extraocular muscle and orbital volume expansion which can lead to diplopia and vision loss from optic nerve compression. Longer term efficacy and durability data is needed to determine the role biologics, such as teprotumumab, should play in the treatment of TED patients compared to the current standard of care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bahn RS. Graves’ ophthalmopathy. N Engl J Med. 2010;362(8):726–38. https://doi.org/10.1056/NEJMra0905750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rundle FF, Wilson CW. Development and course of exophthalmos and ophthalmoplegia in Graves’ disease with special reference to the effect of thyroidectomy. Clin Sci. 1945;5(3–4):177–94.

    CAS  PubMed  Google Scholar 

  3. Terwee CB, Prummel MF, Gerding MN, Kahaly GJ, Dekker FW, Wiersinga WM. Measuring disease activity to predict therapeutic outcome in Graves’ ophthalmopathy. Clin Endocrinol (Oxf). 2005;62(2):145–55. https://doi.org/10.1111/j.1365-2265.2005.02186.x.

    Article  CAS  Google Scholar 

  4. Bothun ED, Scheurer RA, Harrison AR, Lee MS. Update on thyroid eye disease and management. Clin Ophthalmol. 2009;3:543–51. https://doi.org/10.2147/opth.s5228.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pfeilschifter J, Ziegler R. Smoking and endocrine ophthalmopathy: impact of smoking severity and current vs lifetime cigarette consumption. Clin Endocrinol (Oxf). 1996;45(4):477–81. https://doi.org/10.1046/j.1365-2265.1996.8220832.x.

    Article  CAS  Google Scholar 

  6. McAlinden C. An overview of thyroid eye disease. Eye Vis (Lond). 2014;1:9. https://doi.org/10.1186/s40662-014-0009-8.

    Article  Google Scholar 

  7. Heisel CJ, Riddering AL, Andrews CA, Kahana A. Serum vitamin D deficiency is an independent risk factor for thyroid eye disease. Ophthalmic Plast Reconstr Surg. 2020;36(1):17–20. https://doi.org/10.1097/iop.0000000000001437.

    Article  PubMed  Google Scholar 

  8. Habib LA, Godfrey KJ, Mathews P, De Rojas J, Kazim M. Association of risk of obstructive sleep apnea with thyroid eye disease: compressive optic neuropathy. Ophthalmic Plast Reconstr Surg. 2019;35(3):232–4. https://doi.org/10.1097/IOP.0000000000001211.

    Article  PubMed  Google Scholar 

  9. • Godfrey KJ, Schmuter G, Hu B, et al. Prospective correlation of risk of obstructive sleep apnea with severe clinical features of thyroid eye disease. Ophthalmic Plast Reconstr Surg. 2021;37(3S):S58–61. https://doi.org/10.1097/IOP.0000000000001809. This paper reports a significant correlation between obstructive sleep apnea and progression to dysthyroid optic neuropathy.

    Article  PubMed  Google Scholar 

  10. Rath S, Pattnaik M, Tripathy D, Mohapatra S, Panigrahy B, Ali MH. Sight-threatening thyroid eye disease: role of diabetes mellitus and interaction with other risk factors. Ophthalmic Plast Reconstr Surg. 2021;37(4):352–60. https://doi.org/10.1097/iop.0000000000001871.

    Article  PubMed  Google Scholar 

  11. Weiler DL. Thyroid eye disease: a review. Clin Exp Optom. 2017;100(1):20–5. https://doi.org/10.1111/cxo.12472.

    Article  PubMed  Google Scholar 

  12. Dolman PJ. Evaluating Graves’ orbitopathy. Best Pract Res Clin Endocrinol Metab. 2012;26(3):229–48. https://doi.org/10.1016/j.beem.2011.11.007.

    Article  PubMed  Google Scholar 

  13. Mourits MP, Prummel MF, Wiersinga WM, Koornneef L. Clinical activity score as a guide in the management of patients with Graves’ ophthalmopathy. Clin Endocrinol (Oxf). 1997;47(1):9–14. https://doi.org/10.1046/j.1365-2265.1997.2331047.x.

    Article  CAS  Google Scholar 

  14. Bartalena L, Baldeschi L, Dickinson A, et al. Consensus statement of the European Group on Graves’ orbitopathy (EUGOGO) on management of GO. Eur J Endocrinol. 2008;158(3):273–85.

    Article  CAS  PubMed  Google Scholar 

  15. Bartley GB, Fatourechi V, Kadrmas EF, et al. The treatment of Graves’ ophthalmopathy in an incidence cohort. Am J Ophthalmol. 1996;121(2):200–6. https://doi.org/10.1016/s0002-9394(14)70585-9.

    Article  CAS  PubMed  Google Scholar 

  16. Tanda ML, Piantanida E, Liparulo L, et al. Prevalence and natural history of Graves’ orbitopathy in a large series of patients with newly diagnosed Graves’ hyperthyroidism seen at a single center. J Clin Endocrinol Metab. 2013;98(4):1443–9. https://doi.org/10.1210/jc.2012-3873.

    Article  CAS  PubMed  Google Scholar 

  17. Ippolito S, Cusini C, Lasalvia P, et al. Change in newly diagnosed Graves’ disease phenotype between the twentieth and the twenty-first centuries: meta-analysis and meta-regression. J Endocrinol Invest. 2021;44(8):1707–18. https://doi.org/10.1007/s40618-020-01479-z.

    Article  CAS  PubMed  Google Scholar 

  18. Enzmann DR, Donaldson SS, Kriss JP. Appearance of Graves-disease on orbital computed-tomography. J Comput Assist Tomogr. 1979;3(6):815–9.

    Article  CAS  PubMed  Google Scholar 

  19. Nugent RA, Belkin RI, Neigel JM, et al. Graves orbitopathy: correlation of CT and clinical findings. Radiology. 1990;177(3):675–82. https://doi.org/10.1148/radiology.177.3.2243967.

    Article  CAS  PubMed  Google Scholar 

  20. Tanenbaum RE, Lobo R, Kahana A, Wester ST. Advances in magnetic resonance imaging of orbital disease. Can J Ophthalmol. 2021. https://doi.org/10.1016/j.jcjo.2021.04.025.

    Article  PubMed  Google Scholar 

  21. Siakallis LC, Uddin JM, Miszkiel KA. Imaging investigation of thyroid eye disease. Ophthalmic Plast Reconstr Surg. 2018;34(4S Suppl 1):S41–51. https://doi.org/10.1097/IOP.0000000000001139.

    Article  PubMed  Google Scholar 

  22. Tran C, Pham CM, Simmons BA, Warner LL, Fuhrmeister LJ, Shriver EM. Echographic assessment of extraocular muscle response to teprotumumab. Ophthalmic Plast Reconstr Surg. 2021. https://doi.org/10.1097/IOP.0000000000002072.

    Article  PubMed  Google Scholar 

  23. Demer JL, Kerman BM. Comparison of standardized echography with magnetic resonance imaging to measure extraocular muscle size. Am J Ophthalmol. 1994;118(3):351–61. https://doi.org/10.1016/s0002-9394(14)72960-5.

    Article  CAS  PubMed  Google Scholar 

  24. Lennerstrand G, Tian S, Isberg B, et al. Magnetic resonance imaging and ultrasound measurements of extraocular muscles in thyroid-associated ophthalmopathy at different stages of the disease. Acta Ophthalmol Scand. 2007;85(2):192–201. https://doi.org/10.1111/j.1600-0420.2006.00807.x.

    Article  PubMed  Google Scholar 

  25. Bartalena L. Diagnosis and management of Graves disease: a global overview. Nat Rev Endocrinol. 2013;9(12):724–34. https://doi.org/10.1038/nrendo.2013.193.

    Article  CAS  PubMed  Google Scholar 

  26. Dragan LR, Seiff SR, Lee DC. Longitudinal correlation of thyroid-stimulating immunoglobulin with clinical activity of disease in thyroid-associated orbitopathy. Ophthalmic Plast Reconstr Surg. 2006;22(1):13–9. https://doi.org/10.1097/01.iop.0000192649.23508.f7.

    Article  PubMed  Google Scholar 

  27. Lytton S, Ponto K, Kanitz M, Matheis N, Kohn L, Kahaly G. A novel thyroid stimulating immunoglobulin bioassay is a functional indicator of activity and severity of Graves’ orbitopathy. J Clin Endocrinol Metab. 2010;95(5):2123–31.

    Article  CAS  PubMed  Google Scholar 

  28. Lee HJ, Li CW, Hammerstad SS, Stefan M, Tomer Y. Immunogenetics of autoimmune thyroid diseases: a comprehensive review. J Autoimmun. 2015;64:82–90. https://doi.org/10.1016/j.jaut.2015.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khong JJ, McNab AA, Ebeling PR, Craig JE, Selva D. Pathogenesis of thyroid eye disease: review and update on molecular mechanisms. Br J Ophthalmol. 2016;100(1):142–50. https://doi.org/10.1136/bjophthalmol-2015-307399.

    Article  PubMed  Google Scholar 

  30. Shan SJ, Douglas RS. The pathophysiology of thyroid eye disease. J Neuroophthalmol. 2014;34(2):177–85. https://doi.org/10.1097/WNO.0000000000000132.

    Article  PubMed  Google Scholar 

  31. Smith TJ, Hegedus L. Graves’ disease. N Engl J Med. 2016;375(16):1552–65. https://doi.org/10.1056/NEJMra1510030.

    Article  PubMed  Google Scholar 

  32. Douglas RS, McCoy AN, Gupta S, et al. Thyroid Eye Disease. Springer New York, NY; 2015. https://doi.org/10.1007/978-1-4939-1746-4 

  33. Patel A, Yang H, Douglas RS. A new era in the treatment of thyroid eye disease. Am J Ophthalmol. 2019;208:281–8. https://doi.org/10.1016/j.ajo.2019.07.021.

    Article  CAS  PubMed  Google Scholar 

  34. •• Douglas RS, Kahaly GJ, Patel A, et al. Teprotumumab for the treatment of active thyroid eye disease. N Engl J Med. 2020;382(4):341–52. https://doi.org/10.1056/NEJMoa1910434. This stage 3 trial demonstrated teprotumumab’s resounding efficacy for improving proptosis, diplopia, and CAS score in patients with moderate-to-severe TED.

    Article  CAS  PubMed  Google Scholar 

  35. Smith TJ, Kahaly GJ, Ezra DG, et al. Teprotumumab for thyroid-associated ophthalmopathy. N Engl J Med. 2017;376(18):1748–61. https://doi.org/10.1056/NEJMoa1614949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Skov CM, Mazow ML. Managing strabismus in endocrine eye disease. Can J Ophthalmol. 1984;19(6):269–74.

    CAS  PubMed  Google Scholar 

  37. Bahn RS, Gorman CA. Choice of therapy and criteria for assessing treatment outcome in thyroid-associated ophthalmopathy. Endocrinol Metab Clin North Am. 1987;16(2):391–407.

    Article  CAS  PubMed  Google Scholar 

  38. Antony J. Prisms in clinical practice. Kerala J Ophthalmol. 2017;29(2):79.

    Article  Google Scholar 

  39. Neigel JM, Rootman J, Belkin RI, et al. Dysthyroid optic neuropathy The crowded orbital apex syndrome. Ophthalmology. 1988;95(11):1515–21. https://doi.org/10.1016/s0161-6420(88)32978-7.

    Article  CAS  PubMed  Google Scholar 

  40. Blandford AD, Zhang D, Chundury RV, Perry JD. Dysthyroid optic neuropathy: update on pathogenesis, diagnosis, and management. Expert Rev Ophthalmol. 2017;12(2):111–21. https://doi.org/10.1080/17469899.2017.1276444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rose GE, Vahdani K. Optic nerve stretch is unlikely to be a significant causative factor in dysthyroid optic neuropathy. Ophthalmic Plast Reconstr Surg. 2020;36(2):157–63. https://doi.org/10.1097/IOP.0000000000001501.

    Article  PubMed  Google Scholar 

  42. Soni CR, Johnson LN. Visual neuropraxia and progressive vision loss from thyroid-associated stretch optic neuropathy. Eur J Ophthalmol. 2010;20(2):429–36. https://doi.org/10.1177/112067211002000226.

    Article  PubMed  Google Scholar 

  43. Anderson RL, Tweeten JP, Patrinely JR, Garland PE, Thiese SM. Dysthyroid optic neuropathy without extraocular muscle involvement. Ophthalmic Surg Lasers Imaging Retina. 1989;20(8):568–74. https://doi.org/10.3928/1542-8877-19890801-09.

    Article  CAS  Google Scholar 

  44. •• Bartalena L, Kahaly GJ, Baldeschi L, et al. The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur J Endocrinol. 2021;185(4):G43–67. https://doi.org/10.1530/EJE-21-0479. This paper updates the most cited guidelines on assessment and management of TED for 2021.

    Article  CAS  PubMed  Google Scholar 

  45. Bartalena L, Baldeschi L, Boboridis K, et al. The 2016 European Thyroid Association/European Group on Graves’ Orbitopathy guidelines for the management of Graves’ orbitopathy. Eur Thyroid J. 2016;5(1):9–26. https://doi.org/10.1159/000443828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kahaly GJ, Pitz S, Hommel G, Dittmar M. Randomized, single blind trial of intravenous versus oral steroid monotherapy in Graves’ orbitopathy. J Clin Endocrinol Metab. 2005;90(9):5234–40. https://doi.org/10.1210/jc.2005-0148.

    Article  CAS  PubMed  Google Scholar 

  47. • Men CJ, Kossler AL, Wester ST. Updates on the understanding and management of thyroid eye disease. Ther Adv Ophthalmol. 2021;13:25158414211027760. https://doi.org/10.1177/25158414211027760. This review details new and upcoming therapies for thyroid eye disease.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zang S, Ponto KA, Kahaly GJ. Clinical review: intravenous glucocorticoids for Graves’ orbitopathy: efficacy and morbidity. J Clin Endocrinol Metab. 2011;96(2):320–32. https://doi.org/10.1210/jc.2010-1962.

    Article  CAS  PubMed  Google Scholar 

  49. Marcocci C, Bartalena L, Tanda ML, et al. Comparison of the effectiveness and tolerability of intravenous or oral glucocorticoids associated with orbital radiotherapy in the management of severe Graves’ ophthalmopathy: results of a prospective, single-blind, randomized study. J Clin Endocrinol Metab. 2001;86(8):3562–7. https://doi.org/10.1210/jcem.86.8.7737.

    Article  CAS  PubMed  Google Scholar 

  50. Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000;47(2–3):85–118. https://doi.org/10.1016/s0162-3109(00)00188-0.

    Article  CAS  PubMed  Google Scholar 

  51. • Kahaly GJ, Riedl M, König J, et al. Mycophenolate plus methylprednisolone versus methylprednisolone alone in active, moderate-to-severe Graves’ orbitopathy (MINGO): a randomised, observer-masked, multicentre trial. Lancet Diabetes Endocrinol. 2018;6(4):287–98. https://doi.org/10.1016/s2213-8587(18)30020-2. The authors conducted a large RCT demonstrating efficacy of MMF added onto IVMP in terms of composite ophthalmic score but not in terms of diplopia specifically.

    Article  CAS  PubMed  Google Scholar 

  52. • Ye X, Bo X, Hu X, et al. Efficacy and safety of mycophenolate mofetil in patients with active moderate-to-severe Graves’ orbitopathy. Clin Endocrinol (Oxf). 2017;86(2):247–55. https://doi.org/10.1111/cen.13170. The results of a large RCT demonstrated significantly improved inflammation and diplopia in patients treated with MMF monotherapy compared to IVMP + oral steroid taper.

    Article  CAS  Google Scholar 

  53. Lee ACH, Riedl M, Frommer L, Diana T, Kahaly GJ. Systemic safety analysis of mycophenolate in Graves’ orbitopathy. J Endocrinol Invest. 2020;43(6):767–77. https://doi.org/10.1007/s40618-019-01161-z.

    Article  CAS  PubMed  Google Scholar 

  54. Quah Qin Xian N, Alnahrawy A, Akshikar R, Lee V. Real-world efficacy and safety of mycophenolate mofetil in active moderate-to-sight-threatening thyroid eye disease. Clin Ophthalmol. 2021;15:1921–32. https://doi.org/10.2147/opth.S305717.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shams PN, Ma R, Pickles T, Rootman J, Dolman PJ. Reduced risk of compressive optic neuropathy using orbital radiotherapy in patients with active thyroid eye disease. Am J Ophthalmol. 2014;157(6):1299–305. https://doi.org/10.1016/j.ajo.2014.02.044.

    Article  PubMed  Google Scholar 

  56. Bartalena L, Marcocci C, Chiovato L, et al. Orbital cobalt irradiation combined with systemic corticosteroids for Graves’ ophthalmopathy: comparison with systemic corticosteroids alone*. J Clin Endocrinol Metab. 1983;56(6):1139–44. https://doi.org/10.1210/jcem-56-6-1139.

    Article  CAS  PubMed  Google Scholar 

  57. Tu X, Dong Y, Zhang H, Su Q. Corticosteroids for Graves’ ophthalmopathy: systematic review and meta-analysis. BioMed Re Int. 2018;2018:4845894. https://doi.org/10.1155/2018/4845894.

    Article  CAS  Google Scholar 

  58. Kahaly GJ. Immunotherapies for thyroid eye disease. Curr Opin Endocrinol Diabetes Obes. 2019;26(5):250–5. https://doi.org/10.1097/med.0000000000000493.

    Article  CAS  PubMed  Google Scholar 

  59. Stan MN, Garrity JA, Carranza Leon BG, Prabin T, Bradley EA, Bahn RS. Randomized controlled trial of rituximab in patients with Graves’ orbitopathy. J Clin Endocrinol Metab. 2015;100(2):432–41. https://doi.org/10.1210/jc.2014-2572.

    Article  CAS  PubMed  Google Scholar 

  60. Salvi M, Vannucchi G, Curro N, et al. Efficacy of B-cell targeted therapy with rituximab in patients with active moderate to severe Graves’ orbitopathy: a randomized controlled study. J Clin Endocrinol Metab. 2015;100(2):422–31. https://doi.org/10.1210/jc.2014-3014.

    Article  CAS  PubMed  Google Scholar 

  61. Stan MN, Salvi M. Management of endocrine disease: rituximab therapy for Graves’ orbitopathy - lessons from randomized control trials. Eur J Endocrinol. 2017;176(2):R101–9. https://doi.org/10.1530/EJE-16-0552.

    Article  CAS  PubMed  Google Scholar 

  62. Vannucchi G, Campi I, Covelli D, et al. Efficacy profile and safety of very low-dose rituximab in patients with Graves’ orbitopathy. Thyroid. 2021;31(5):821–8. https://doi.org/10.1089/thy.2020.0269.

    Article  CAS  PubMed  Google Scholar 

  63. Deltour JB, d’Assigny Flamen M, Ladsous M, et al. Efficacy of rituximab in patients with Graves’ orbitopathy: a retrospective multicenter nationwide study. Graefes Arch Clin Exp Ophthalmol. 2020;258(9):2013–21. https://doi.org/10.1007/s00417-020-04651-6.

    Article  CAS  PubMed  Google Scholar 

  64. • Perez-Moreiras JV, Gomez-Reino JJ, Maneiro JR, et al. Efficacy of tocilizumab in patients with moderate-to-severe corticosteroid-resistant Graves orbitopathy: a randomized clinical trial. Am J Ophthalmol. 2018;195:181–90. https://doi.org/10.1016/j.ajo.2018.07.038. This is the only tocilizumab RCT which demonstrated tocilizumab’s efficacy for improving orbital inflammation but not for diplopia.

    Article  CAS  PubMed  Google Scholar 

  65. Bartalena L, Krassas G, Wiersinga W, et al. Efficacy and safety of three different cumulative doses of intravenous methylprednisolone for moderate to severe and active Graves’ orbitopathy. J Clin Endocrinol Metab. 2012;97(12):4454–63.

    Article  CAS  PubMed  Google Scholar 

  66. Ebner R, Devoto MH, Weil D, et al. Treatment of thyroid associated ophthalmopathy with periocular injections of triamcinolone. Br J Ophthalmol. 2004;88(11):1380–6. https://doi.org/10.1136/bjo.2004.046193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mourits MP, van Kempen-Harteveld ML, García MB, Koppeschaar HP, Tick L, Terwee CB. Radiotherapy for Graves’ orbitopathy: randomised placebo-controlled study. Lancet. 2000;355(9214):1505–9. https://doi.org/10.1016/s0140-6736(00)02165-6.

    Article  CAS  PubMed  Google Scholar 

  68. Prummel MF, Terwee CB, Gerding MN, et al. A randomized controlled trial of orbital radiotherapy versus sham irradiation in patients with mild Graves’ ophthalmopathy. J Clin Endocrinol Metab. 2004;89(1):15–20. https://doi.org/10.1210/jc.2003-030809.

    Article  CAS  PubMed  Google Scholar 

  69. Gorman CA, Garrity JA, Fatourechi V, et al. A prospective, randomized, double-blind, placebo-controlled study of orbital radiotherapy for Graves’ ophthalmopathy. Ophthalmology. 2020;127(4s):S160-s171. https://doi.org/10.1016/j.ophtha.2020.01.031.

    Article  PubMed  Google Scholar 

  70. Rajendram R, Taylor PN, Wilson VJ, et al. Combined immunosuppression and radiotherapy in thyroid eye disease (CIRTED): a multicentre, 2 × 2 factorial, double-blind, randomised controlled trial. Lancet Diabetes Endocrinol. 2018;6(4):299–309. https://doi.org/10.1016/s2213-8587(18)30021-4.

    Article  PubMed  Google Scholar 

  71. •• Kahaly G, Douglas R, Holt R, Perdok R, Ball J, Smith T. 48-Week follow-up of a multicenter, randomized, double-masked, placebo-controlled treatment trial of teprotumumab in thyroid-associated ophthalmopathy. Thyroid. 2018;28(Suppl 1):A1. This review pools and analyzes the results of the two landmark teprotumumab clinical trials.

    Google Scholar 

  72. Douglas RS, Holt RJ, Vescio T, et al. Long-term assessment of proptosis and diplopia from the OPTIC trial of teprotumumab in thyroid eye disease. In: American Academy of Ophthalmology, AAO. Presented at: AAO 2020 Virtual; 2020.

  73. Sears CM, Amarikwa L, Men CJ,  et al. Teprotumumab for the treatment of recalcitrant thyroid eye disease. Presented at: ASOPRS 52nd Annual Fall Scientific Symposium. New Orleans; 2021.

  74. Bartiss MJ. Nonsurgical treatment of diplopia. Curr Opin Ophthalmol. 2018;29(5):381–4. https://doi.org/10.1097/icu.0000000000000513.

    Article  PubMed  Google Scholar 

  75. Granet DB, Hodgson N, Godfrey KJ, et al. Chemodenervation of extraocular muscles with botulinum toxin in thyroid eye disease. Graefes Arch Clin Exp Ophthalmol. 2016;254(5):999–1003. https://doi.org/10.1007/s00417-016-3281-6.

    Article  CAS  PubMed  Google Scholar 

  76. Akbari MR, Ameri A, Keshtkar Jaafari AR, Mirmohammadsadeghi A. Botulinum toxin injection for restrictive myopathy of thyroid-associated orbitopathy: success rate and predictive factors. J AAPOS. 2016;20(2):126-130.e1. https://doi.org/10.1016/j.jaapos.2016.01.007.

    Article  PubMed  Google Scholar 

  77. Maamari RN, Couch SM. Combined orbital decompression and strabismus surgery in thyroid eye disease. Int Ophthalmol Clin. 2021;61(2):127–36. https://doi.org/10.1097/iio.0000000000000350.

    Article  PubMed  Google Scholar 

  78. Goldberg RA, Perry JD, Hortaleza V, Tong JT. Strabismus after balanced medial plus lateral wall versus lateral wall only orbital decompression for dysthyroid orbitopathy. Ophthalmic Plast Reconstr Surg. 2000;16(4):271–7. https://doi.org/10.1097/00002341-200007000-00004.

    Article  CAS  PubMed  Google Scholar 

  79. Harrad R. Management of strabismus in thyroid eye disease. Eye (Lond). 2015;29(2):234–7. https://doi.org/10.1038/eye.2014.282.

    Article  CAS  Google Scholar 

  80. • Diniz SB, Cohen LM, Roelofs KA, Rootman DB. Early experience with the clinical use of teprotumumab in a heterogenous thyroid eye disease population. Ophthalmic Plast Reconstr Surg. 2021. https://doi.org/10.1097/IOP.0000000000001959. This is the first paper demonstrating teprotumumab’s efficacy on a heterogeneous patient population regardless of stage or grade of disease.

    Article  PubMed  Google Scholar 

  81. • Ozzello DJ, Kikkawa DO, Korn BS. Early experience with teprotumumab for chronic thyroid eye disease. Am J Ophthalmol Case Rep. 2020;19: 100744. https://doi.org/10.1016/j.ajoc.2020.100744. This case report details the first case in the literature of a patient with chronic TED treated with teprotumumab.

    Article  PubMed  PubMed Central  Google Scholar 

  82. •• Ugradar S, Kang J, Kossler AL, et al. Teprotumumab for the treatment of chronic thyroid eye disease. Eye. 2021. https://doi.org/10.1038/s41433-021-01593-z. The authors conducted the largest study to date of teprotumumab, demonstrating its efficacy for chronic TED in terms of overall inflammation as well as diplopia.

    Article  PubMed  Google Scholar 

  83. Kaback LA, Smith TJ. Expression of hyaluronan synthase messenger ribonucleic acids and their induction by interleukin-1beta in human orbital fibroblasts: potential insight into the molecular pathogenesis of thyroid-associated ophthalmopathy. J Clin Endocrinol Metab. 1999;84(11):4079–84. https://doi.org/10.1210/jcem.84.11.6111.

    Article  CAS  PubMed  Google Scholar 

  84. Wakelkamp IM, Baldeschi L, Saeed P, Mourits MP, Prummel MF, Wiersinga WM. Surgical or medical decompression as a first-line treatment of optic neuropathy in Graves' ophthalmopathy? A randomized controlled trial. Clin Endocrinol (Oxf). Sep 2005;63(3):323–8. https://doi.org/10.1111/j.1365-2265.2005.02345.

  85. Threlkeld A, Miller NR, Wharam M. The efficacy of supervoltage radiation therapy in the treatment of dysthyroid optic neuropathy. Orbit. 2009;8(4):253–64. https://doi.org/10.3109/01676838909012334.

    Article  Google Scholar 

  86. Beckendorf V, Maalouf T, George J-L, Bey P, Leclere J, Luporsi E. Place of radiotherapy in the treatment of Graves’ orbitopathy. Int J Radiat Oncol Biol Phys. 1999;43(4):805–15. https://doi.org/10.1016/s0360-3016(98)00405-2.

    Article  CAS  PubMed  Google Scholar 

  87. Kazim M, Garrity JA. Orbital radiation therapy for thyroid eye disease. J Neuroophthalmol. 2012;32(2):172–6. https://doi.org/10.1097/WNO.0b013e318255d7c7.

    Article  PubMed  Google Scholar 

  88. Rush S, Winterkorn JMS, Zak R. Objective evaluation of improvement in optic neuropathy following radiation therapy for thyroid eye disease. Int J Radiat Oncol Biol Phys. 2000;47(1):191–4. https://doi.org/10.1016/s0360-3016(99)00528-3.

    Article  CAS  PubMed  Google Scholar 

  89. Li YJ, Luo Y, Xie XQ, et al. The efficacy of intensity modulated radiation therapy in treating thyroid-associated ophthalmopathy and predictive factors for treatment response. Sci Rep. 2017;7(1):17533. https://doi.org/10.1038/s41598-017-17893-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Matthiesen C, Thompson JS, Thompson D, et al. The efficacy of radiation therapy in the treatment of Graves’ orbitopathy. Int J Radiat Oncol Biol Phys. 2012;82(1):117–23. https://doi.org/10.1016/j.ijrobp.2010.08.053.

    Article  PubMed  Google Scholar 

  91. Choi JH, Lee JK. Efficacy of orbital radiotherapy in moderate-to-severe active Graves’ orbitopathy including long-lasting disease: a retrospective analysis. Radiat Oncol. 2020;15(1):220. https://doi.org/10.1186/s13014-020-01663-8.

    Article  PubMed  PubMed Central  Google Scholar 

  92. • Gold KG, Scofield S, Isaacson SR, Stewart MW, Kazim M. Orbital radiotherapy combined with corticosteroid treatment for thyroid eye disease-compressive optic neuropathy. Ophthalmic Plast Reconstr Surg. 2018;34(2):172–7. https://doi.org/10.1097/IOP.0000000000001003. The authors conducted the largest retrospective study to date detailing the response to treatment in DON patients treated with combined steroids and ORT, which other reports have suggested have a synergistic effect.

    Article  PubMed  Google Scholar 

  93. Godfrey KJ, Kazim M. Radiotherapy for active thyroid eye disease. Ophthalmic Plast Reconstr Surg. 2018;34(4S Suppl 1):S98–104. https://doi.org/10.1097/IOP.0000000000001074.

    Article  PubMed  Google Scholar 

  94. Marcocci C, Bartalena L, Bogazzi F, Bruno-Bossio G, Lepri A, Pinchera A. Orbital radiotherapy combined with high dose systemic glucocorticoids for Graves’ ophthalmopathy is more effective than radiotherapy alone: results of a prospective randomized study. J Endocrinol Invest. 1991;14(10):853–60. https://doi.org/10.1007/BF03347943.

    Article  CAS  PubMed  Google Scholar 

  95. Nicosia L, Reverberi C, Agolli L, et al. Orbital radiotherapy plus concomitant steroids in moderate-to-severe Graves’ ophthalmopathy: good results after long-term follow-up. Int J Endocrinol Metab. 2019;17(1): e84427. https://doi.org/10.5812/ijem.84427.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ito M, Takahashi Y, Katsuda E, et al. Predictive factors of prognosis after radiation and steroid pulse therapy in thyroid eye disease. Sci Rep. 2019;9(1):2027. https://doi.org/10.1038/s41598-019-38640-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rootman DB. Orbital decompression for thyroid eye disease. Surv Ophthalmol. 2018;63(1):86–104. https://doi.org/10.1016/j.survophthal.2017.03.007.

    Article  PubMed  Google Scholar 

  98. Boboridis KG, Uddin J, Mikropoulos DG, et al. Critical appraisal on orbital decompression for thyroid eye disease: a systematic review and literature search. Adv Ther. 2015;32(7):595–611. https://doi.org/10.1007/s12325-015-0228-y.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Garip Kuebler A, Wiecha C, Reznicek L, et al. Evaluation of medical and surgical decompression in patients with dysthyroid optic neuropathy. Eye (Lond). 2020;34(9):1702–9. https://doi.org/10.1038/s41433-020-0897-x.

    Article  Google Scholar 

  100. Zhang B, Li Y, Xu W, Peng B, Yuan G. Use of rituximab after orbital decompression surgery in two Grave’s ophthalmopathy patients progressing to optic neuropathy. Front Endocrinol (Lausanne). 2020;11: 583565. https://doi.org/10.3389/fendo.2020.583565.

    Article  Google Scholar 

  101. Insull EA, Sipkova Z, David J, Turner HE, Norris JH. Early low-dose rituximab for active thyroid eye disease: an effective and well-tolerated treatment. Clin Endocrinol (Oxf). 2019;91(1):179–86. https://doi.org/10.1111/cen.13970.

    Article  CAS  Google Scholar 

  102. Précausta F, Arsène S, Renoult-Pierre P, Laure B, Crinière L, Pisella PJ. Treatment by rituximab on six Grave’s ophthalmopathies resistant to corticosteroids. Ann Endocrinol (Paris). 2017;78(1):20–6. https://doi.org/10.1016/j.ando.2016.12.002.

    Article  Google Scholar 

  103. Pascual-Camps I, Molina-Pallete R, Bort-Martí MA, Todolí J, España-Gregori E. Tocilizumab as first treatment option in optic neuropathy secondary to Graves’ orbitopathy. Orbit. 2018;37(6):450–3. https://doi.org/10.1080/01676830.2018.1435694.

    Article  CAS  PubMed  Google Scholar 

  104. • Kaplan D, Erickson B, Kossler A, Chen J, Dosiou C. SAT-500 response to tocilizumab retreatment in refractory thyroid eye disease. J Endocrine Soc. 2020; 4(Supplement_1). https://doi.org/10.1210/jendso/bvaa046.1316. The authors present the only report in the literature of a case that was retreated with tocilizumab.

  105. Sánchez-Bilbao L, Martínez-López D, Revenga M, et al. Anti-IL-6 receptor tocilizumab in refractory Graves’ orbitopathy: national multicenter observational study of 48 patients. J Clin Med. 2020;9(9). https://doi.org/10.3390/jcm9092816.

  106. Maldiney T, Deschasse C, Bielefeld P. Tocilizumab for the management of corticosteroid-resistant mild to severe Graves’ ophthalmopathy, a report of three cases. Ocul Immunol Inflamm. 2020;28(2):281–4. https://doi.org/10.1080/09273948.2018.1545914.

    Article  CAS  PubMed  Google Scholar 

  107. Chiou CA, Reshef ER, Freitag SK. Teprotumumab for the treatment of mild compressive optic neuropathy in thyroid eye disease: a report of two cases. Am J Ophthalmol Case Rep. 2021;22: 101075. https://doi.org/10.1016/j.ajoc.2021.101075.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Sears CM, Azad AD, Dosiou C, Kossler AL. Teprotumumab for dysthyroid optic neuropathy early response to therapy. Ophthalmic Plast Reconstr Surg. 2021;37(3s):S157-s160. https://doi.org/10.1097/iop.0000000000001831. This is the first published case of DON managed with teprotumumab, which demonstrated efficacy in a particularly severe case of DON.

    Article  PubMed  Google Scholar 

  109. •• Sears CM, Wang Y, Bailey LA, et al. Early efficacy of teprotumumab for the treatment of dysthyroid optic neuropathy: a multicenter study. Am J Ophthalmol Case Rep. 2021;23: 101111. https://doi.org/10.1016/j.ajoc.2021.101111. The authors conducted the largest published study on DON patients treated with teprotumumab to date.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lopez MJ, Herring JL, Thomas C, Bertram BA, Thomas DA. Visual recovery of dysthyroid optic neuropathy with teprotumumab. J Neuroophthalmol. 2021. https://doi.org/10.1097/wno.0000000000001298.

    Article  PubMed  Google Scholar 

  111. Hwang CJ, Nichols EE, Chon BH, Perry JD. Bilateral dysthyroid compressive optic neuropathy responsive to teprotumumab. Eur J Ophthalmol. 2021:1120672121991042. https://doi.org/10.1177/1120672121991042.

  112. Slentz DH, Smith TJ, Kim DS, Joseph SS. Teprotumumab for optic neuropathy in thyroid eye disease. JAMA Ophthalmol. 2021;139(2):244–7. https://doi.org/10.1001/jamaophthalmol.2020.5296.

    Article  PubMed  Google Scholar 

Download references

Funding

NIH P30 026877, Unrestricted Grant from Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and writing of this manuscript. The literature review was completed by Tracy J. Lu, Linus Amarikwa, and Connie M. Sears. The first draft was written by Connie M. Sears, Tracy J. Lu, and Andrea Kossler; major edits were made to diplopia-related and dysthyroid optic neuropathy-related sections by Tracy Lu and Linus Amarikwa, respectively. Formatting of the paper was done by Linus Amarikwa. The analysis and findings in this work were supervised and edited by Andrea Kossler. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Andrea L. Kossler.

Ethics declarations

Conflict of Interest

Dr. Andrea Kossler is a consultant for Horizon Therapeutics and Immunovant Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-Ophthalmology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T.J., Amarikwa, L., Sears, C.M. et al. Advances in the Treatment of Thyroid Eye Disease Associated Extraocular Muscle Myopathy and Optic Neuropathy. Curr Neurol Neurosci Rep 22, 313–325 (2022). https://doi.org/10.1007/s11910-022-01194-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-022-01194-7

Keywords

Navigation