Skip to main content

Advertisement

Log in

Big data and predictive analytics in neurocritical care

  • Critical Care (S.A. Mayer, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To describe predictive data and workflow in the intensive care unit when managing neurologically ill patients.

Recent Findings

In the era of Big Data in medicine, intensive critical care units are data-rich environments. Neurocritical care adds another layer of data with advanced multimodal monitoring to prevent secondary brain injury from ischemia, tissue hypoxia, and a cascade of ongoing metabolic events. A step closer toward personalized medicine is the application of multimodal monitoring of cerebral hemodynamics, bran oxygenation, brain metabolism, and electrophysiologic indices, all of which have complex and dynamic interactions. These data are acquired and visualized using different tools and monitors facing multiple challenges toward the goal of the optimal decision support system.

Summary

In this review, we highlight some of the predictive data used to diagnose, treat, and prognosticate the neurologically ill patients. We describe information management in neurocritical care units including data acquisition, wrangling, analysis, and visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

AVDO2 :

Arterial venous difference in oxygen content

AWARE:

Ambient Warning and Response Evaluation

CBF:

Cerebral flood flow

CDS:

Clinical decision support

CMD:

Cerebral micro-dialysis

CMRO2 :

Cerebral metabolic rate of oxygen consumption

CPP:

Cerebral perfusion pressure

CSF:

Cerebral spinal fluid

CT:

Computer tomography

DICOM:

Digital Imaging in Medicine

EDF:

European data format

EEG:

Electroencephalography

EMR:

Electronic medical record

FDA:

Food and Drug Association

HDF:

Hierarchical data format

IEEE:

Institute of Electrical and Electronic Engineers

ICP:

Intracranial pressure

ICU:

Intensive care unit

ISO:

International Organization of Standardization

LDF:

Laser Doppler flowmetry

MMM:

Multimodal monitoring

MRI:

Magnetic resonance imaging

NIRS:

Near-infrared spectroscopy

PaCO2 :

Partial pressure of arterial carbon dioxide

PtiO2 :

Brain oxygen tension

PRx:

Cerebrovascular pressure reactivity

RJ45:

Registered Jack-45

RS-232:

Recommended Standard-232

SAH:

Subarachnoid hemorrhage

TBI:

Traumatic brain injury

TCD:

Transcranial Doppler ultrasonography

TCP:

Transmission control protocol

TDF:

Thermal diffusion flowmetry

UDP:

User data protocol

USB:

Universal serial bus

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ramon J, Fierens D, Güiza F, et al. Mining data from intensive care patients. Adv Eng Inform. 2007;21:243–56.

    Article  Google Scholar 

  2. Halford GS, Baker R, McCredden JE, Bain JD. How many variables can humans process? Psychol Sci. 2005;16:70–6.

    Article  PubMed  Google Scholar 

  3. Timofeev I, Dahyot-Fizelier C, Keong N, et al. Ventriculostomy for control of raised ICP in acute traumatic brain injury. Acta Neurochir Suppl. 2008;102:99–104.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang X, Medow JE, Iskandar BJ, et al. Invasive and noninvasive means of measuring intracranial pressure: a review. Physiol Meas. 2017;38:R143–82.

    Article  PubMed  Google Scholar 

  5. Marmarou A, Anderson RL, Ward JD, et al. NINDS Traumatic Coma Data Bank: intracranial pressure monitoring methodology. JNeurosurg. 1991;75(suppl):S21–7.

    Google Scholar 

  6. Stocchetti N, Rossi S, Buzzi F, Mattioli C, Paparella A, Colombo A. Intracranial hypertension in head injury: management and results. Intensive Care Med. 1999;25:371–6.

    Article  CAS  PubMed  Google Scholar 

  7. Chambers IR, Treadwell L, Mendelow AD. Determination of threshold levels of cerebral perfusion pressure and intracranial pressure in severe head injury by using receiver-operating characteristic curves: an observational study in 291 patients. J Neurosurg. 2001;94:412–6.

    Article  CAS  PubMed  Google Scholar 

  8. Chambers IR, Treadwell L, Mendelow AD. The cause and incidence of secondary insults in severely head-injured adults and children. Br J Neurosurg. 2000;14:424–31.

    Article  CAS  PubMed  Google Scholar 

  9. Kirkness CJ, Burr RL, Mitchell PH. Intracranial pressure variability and long-term outcome following traumatic brain injury. Acta Neurochir Suppl. 2008;102:105–8.

    Article  PubMed  Google Scholar 

  10. Hornero R, Aboy M, Abasolo D, McNames J, Goldstein B. Interpretation of approximate entropy: analysis of intracranial pressure approximate entropy during acute intracranial hypertension. IEEE Trans Biomed Eng. 2005;52:1671–80.

    Article  PubMed  Google Scholar 

  11. Burr RL, Kirkness CJ, Mitchell PH. Detrended fluctuation analysis of intracranial pressure predicts outcome following traumatic brain injury. IEEE Trans Biomed Eng. 2008;55:2509–18.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Czosnyka M, Guazzo E, Whitehouse M, et al. Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir (Wien). 1996;138:531–41 (discussion 41-2).

    Article  CAS  Google Scholar 

  13. Hu X, Xu P, Asgari S, Vespa P, Bergsneider M. Forecasting ICP elevation based on prescient changes of intracranial pressure waveform morphology. IEEE Trans Biomed Eng. 2010;57:1070–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rosner MJ, Coley IB. Cerebral perfusion pressure, intracranial pressure, and head elevation. J Neurosurg. 1986;65:636–41.

    Article  CAS  PubMed  Google Scholar 

  15. Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83:949–62.

    Article  CAS  PubMed  Google Scholar 

  16. Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. VIII. Intracranial pressure thresholds. J Neurotrauma. 2007;24(Suppl 1):S55-8.

    Article  PubMed  Google Scholar 

  17. Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma. 2007;24(Suppl 1):S59-64.

    Article  PubMed  Google Scholar 

  18. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–7 (discussion 7-9).

    Article  CAS  PubMed  Google Scholar 

  19. Steiner LA, Coles JP, Johnston AJ, et al. Assessment of cerebrovascular autoregulation in head-injured patients: a validation study. Stroke. 2003;34:2404–9.

    Article  PubMed  Google Scholar 

  20. Czosnyka M, Pickard JD. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry. 2004;75:813–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zweifel C, Lavinio A, Steiner LA, et al. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25:E2.

    Article  PubMed  Google Scholar 

  22. Vespa P. What is the optimal threshold for cerebral perfusion pressure following traumatic brain injury? Neurosurg Focus. 2003;15:E4.

    Article  PubMed  Google Scholar 

  23. Busija DW, Heistad DD. Factors involved in the physiological regulation of the cerebral circulation. Rev Physiol Biochem Pharmacol. 1984;101:161–211.

    Article  CAS  PubMed  Google Scholar 

  24. Jones TH, Morawetz RB, Crowell RM, et al. Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg. 1981;54:773–82.

    Article  CAS  PubMed  Google Scholar 

  25. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia - the ischemic penumbra. Stroke. 1981;12:723–5.

    Article  CAS  PubMed  Google Scholar 

  26. Bolognese P, Miller JI, et al. HIe. Laser Doppler flowmetery in neurosurgery. J Neurosurg Anesthesiol. 1993;5:151–8.

    Article  CAS  PubMed  Google Scholar 

  27. Carter LP, Weinand ME, Oommen KJ, et al. Cerebral blood flow (CBF) monitoring in intensive care by thermal diffusion. Acta Neurochir (supplement). 1993;59:43–6.

    CAS  Google Scholar 

  28. Hutchinson PJ, Kolias AG, Timofeev IS, et al. Trial of Decompressive Craniectomy for Traumatic Intracranial Hypertension. N Engl J Med. 2016;375:1119–30.

    Article  PubMed  Google Scholar 

  29. Carter LP, Weinand ME, Oommen KJ. Cerebral blood flow (CBF) monitoring in intensive care by thermal diffusion. Acta Neurochir Suppl (Wien). 1993;59:43–6.

    CAS  Google Scholar 

  30. Vajkoczy P, Horn P, Thome C, Munch E, Schmiedek P. Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2003;98:1227–34.

    Article  PubMed  Google Scholar 

  31. Sioutos PJ, Orozco JA, Carter LP, Weinand ME, Hamilton AJ, Williams FC. Continuous regional cerebral cortical blood flow monitoring in head-injured patients. Neurosurgery. 1995;36:943–9 (discussion 9-50).

    Article  CAS  PubMed  Google Scholar 

  32. Lysakowski C, Walder B, Costanza MC, Tramèr MR. Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: A systematic review. Stroke. 2001;32:2292–8.

    Article  CAS  PubMed  Google Scholar 

  33. Czosnyka M, Brady K, Reinhard M, Smielewski P, Steiner LA. Monitoring of cerebrovascular autoregulation: facts, myths, and missing links. Neurocrit Care. 2009;10:373–86.

    Article  PubMed  Google Scholar 

  34. Cardim D, Robba C, Bohdanowicz M, et al. Non-invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible? Neurocrit Care. 2016;25:473–91.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sarkar S, Ghosh S, Ghosh SK, Collier A. Role of transcranial Doppler ultrasonography in stroke. Postgrad Med J. 2007;83:683–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Leniger-Follert E. Mechanisms of regulation of cerebral microflow during bicuculline-induced seizures in anaesthetized cats. J Cereb Blood Flow Metab. 1984;4:150–65.

    Article  CAS  PubMed  Google Scholar 

  37. Maas AI, Fleckenstein W, de Jong DA, van Santbrink H. Monitoring cerebral oxygenation: experimental studies and preliminary clinical results of continuous monitoring of cerebrospinal fluid and brain tissue oxygen tension. Acta Neurochir Suppl (Wien). 1993;59:50–7.

    CAS  Google Scholar 

  38. Meixensberger J, Dings J, Kuhnigk H, Roosen K. Studies of tissue PO2 in normal and pathological human brain cortex. Acta Neurochir Suppl (Wien). 1993;59:58–63.

    CAS  Google Scholar 

  39. Zauner A, Bullock R, Di X, Young HF. Brain oxygen, CO2, pH, and temperature monitoring: evaluation in the feline brain. Neurosurgery. 1995;37:1168–76 (discussion 76-7).

    Article  CAS  PubMed  Google Scholar 

  40. Hoffman WE, Charbel FT, Edelman G, Hannigan K, Ausman JI. Brain tissue oxygen pressure, carbon dioxide pressure and pH during ischemia. Neurol Res. 1996;18:54–6.

    Article  CAS  PubMed  Google Scholar 

  41. van Santbrink H, Maas AI, Avezaat CJ. Continuous monitoring of partial pressure of brain tissue oxygen in patients with severe head injury. Neurosurgery. 1996;38:21–31.

    Article  PubMed  Google Scholar 

  42. Kett-White R, Hutchinson PJ, Al-Rawi PG, Gupta AK, Pickard JD, Kirkpatrick PJ. Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes. Neurosurgery. 2002;50:1213–21 (discussion 21-2).

    PubMed  Google Scholar 

  43. Vath A, Kunze E, Roosen K, Meixensberger J. Therapeutic aspects of brain tissue pO2 monitoring after subarachnoid hemorrhage. Acta Neurochir Suppl. 2002;81:307–9.

    CAS  PubMed  Google Scholar 

  44. Meixensberger J, Jaeger M, Vath A, Dings J, Kunze E, Roosen K. Brain tissue oxygen guided treatment supplementing ICP/CPP therapy after traumatic brain injury. J Neurol Neurosurg Psychiatry. 2003;74:760–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stiefel MF, Spiotta A, Gracias VH, et al. Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. J Neurosurg. 2005;103:805–11.

    Article  PubMed  Google Scholar 

  46. Spiotta AM, Stiefel MF, Gracias VH, et al. Brain tissue oxygen-directed management and outcome in patients with severe traumatic brain injury. J Neurosurg. 2010;113:571–80.

    Article  PubMed  Google Scholar 

  47. Okonkwo DO, Shutter LA, Moore C, et al. Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II: A Phase II Randomized Trial. Crit Care Med. 2017;45:1907–14.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gopinath SP, Robertson CS, Contant CF, et al. Jugular venous desaturation and outcome after head injury. J Neurol Neurosurg Psychiatry. 1994;57:717–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fandino J, Stocker R, Prokop S, Trentz O, Imhof HG. Cerebral oxygenation and systemic trauma related factors determining neurological outcome after brain injury. J Clin Neurosci. 2000;7:226–33.

    Article  CAS  PubMed  Google Scholar 

  50. Vigué B, Ract C, Benayed M, et al. Early SjvO2 monitoring in patients with severe brain trauma. Intensive Care Med. 1999;25:445–51.

    Article  PubMed  Google Scholar 

  51. Schneider GH, von Helden A, Lanksch WR, Unterberg A. Continuous monitoring of jugular bulb oxygen saturation in comatose patients–therapeutic implications. Acta Neurochir (Wien). 1995;134:71–5.

    Article  CAS  Google Scholar 

  52. Schaffranietz L, Heinke W. The effect of different ventilation regimes on jugular venous oxygen saturation in elective neurosurgical patients. Neurol Res. 1998;20(Suppl 1):S66-70.

    Article  PubMed  Google Scholar 

  53. Zweifel C, Castellani G, Czosnyka M, et al. Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients. J Neurotrauma. 2010;27:1951–8.

    Article  PubMed  Google Scholar 

  54. Rivera-Lara L, Zorrilla-Vaca A, Geocadin R, et al. Predictors of Outcome With Cerebral Autoregulation Monitoring: A Systematic Review and Meta-Analysis. Crit Care Med. 2017;45:695–704.

    Article  PubMed  Google Scholar 

  55. Kirkpatrick PJ, Smielewski P, Czosnyka M, Menon DK, Pickard JD. Near-infrared spectroscopy use in patients with head injury. J Neurosurg. 1995;83:963–70.

    Article  CAS  PubMed  Google Scholar 

  56. Rivera-Lara L, Geocadin R, Zorrilla-Vaca A, et al. Validation of Near-Infrared Spectroscopy for Monitoring Cerebral Autoregulation in Comatose Patients. Neurocrit Care. 2017;27:362–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hillman J, Aneman O, Anderson C, Sjogren F, Saberg C, Mellergard P. A microdialysis technique for routine measurement of macromolecules in the injured human brain. Neurosurgery. 2005;56:1264–8 (discussion 8-70).

    Article  PubMed  Google Scholar 

  58. Westerink BH, Damsma G, Rollema H, De Vries JB, Horn AS. Scope and limitations of in vivo brain dialysis: a comparison of its application to various neurotransmitter systems. Life Sci. 1987;41:1763–76.

    Article  CAS  PubMed  Google Scholar 

  59. Zauner A, Doppenberg E, Woodward JJ, et al. Multiparametric continuous monitoring of brain metabolism and substrate delivery in neurosurgical patients. Neurol Res. 1997;19:265–73.

    Article  CAS  PubMed  Google Scholar 

  60. Zauner A, Doppenberg EM, Woodward JJ, Choi SC, Young HF, Bullock R. Continuous monitoring of cerebral substrate delivery and clearance: initial experience in 24 patients with severe acute brain injuries. Neurosurgery. 1997;41:1082–91 (discussion 91-3).

    Article  CAS  PubMed  Google Scholar 

  61. Bullock R, Zauner A, Woodward JJ, et al. Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg. 1998;89:507–18.

    Article  CAS  PubMed  Google Scholar 

  62. Goodman JC, Valadka AB, Gopinath SP, Uzura M, Robertson CS. Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis. Crit Care Med. 1999;27:1965–73.

    Article  CAS  PubMed  Google Scholar 

  63. Valadka AB, Goodman JC, Gopinath SP, Uzura M, Robertson CS. Comparison of brain tissue oxygen tension to microdialysis-based measures of cerebral ischemia in fatally head-injured humans. J Neurotrauma. 1998;15:509–19.

    Article  CAS  PubMed  Google Scholar 

  64. Sarrafzadeh A, Haux D, Kuchler I, Lanksch WR, Unterberg AW. Poor-grade aneurysmal subarachnoid hemorrhage: relationship of cerebral metabolism to outcome. J Neurosurg. 2004;100:400–6.

    Article  PubMed  Google Scholar 

  65. Goodman JC, Robertson CS. Microdialysis: is it ready for prime time? Curr Opin Crit Care. 2009;15:110–7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hillered L, Valtysson J, Enblad P, Persson L. Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatry. 1998;64:486–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yazbeck M, Sra P, Parvizi J. Rapid Response Electroencephalography for Urgent Evaluation of Patients in Community Hospital Intensive Care Practice. J Neurosci Nurs. 2019;51:308–12.

    Article  PubMed  Google Scholar 

  68. Hobbs K, Krishnamohan P, Legault C, et al. Rapid Bedside Evaluation of Seizures in the ICU by Listening to the Sound of Brainwaves: A Prospective Observational Clinical Trial of Ceribell’s Brain Stethoscope Function. Neurocrit Care. 2018;29:302–12.

    Article  PubMed  Google Scholar 

  69. Parvizi J, Gururangan K, Razavi B, Chafe C. Detecting silent seizures by their sound. Epilepsia. 2018;59:877–84.

    Article  PubMed  Google Scholar 

  70. Khamis H, Mohamed A, Simpson S, McEwan A. Detection of temporal lobe seizures and identification of lateralisation from audified EEG. Clin Neurophysiol. 2012;123:1714–20.

    Article  CAS  PubMed  Google Scholar 

  71. Scheuer ML, Wilson SB. Data analysis for continuous EEG monitoring in the ICU: seeing the forest and the trees. J Clin Neurophysiol. 2004;21:353–78.

    PubMed  Google Scholar 

  72. van Putten MJ, Hofmeijer J. EEG Monitoring in Cerebral Ischemia: Basic Concepts and Clinical Applications. J Clin Neurophysiol. 2016;33:203–10.

    Article  PubMed  Google Scholar 

  73. Robba C, Bacigaluppi S, Cardim D, Donnelly J, Bertuccio A, Czosnyka M. Non-invasive assessment of intracranial pressure. Acta Neurol Scand. 2016;134:4–21.

    Article  CAS  PubMed  Google Scholar 

  74. Muhlhofer W, Szaflarski JP. Prognostic Value of EEG in Patients after Cardiac Arrest-An Updated Review. Curr Neurol Neurosci Rep. 2018;18:16.

    Article  PubMed  Google Scholar 

  75. Haveman ME, Van Putten MJAM, Hom HW, Eertman-Meyer CJ, Beishuizen A, Tjepkema-Cloostermans MC. Predicting outcome in patients with moderate to severe traumatic brain injury using electroencephalography. Crit Care. 2019;23:401. Using machine learning models, quantitative EEG features and relevant clinical parameters predicted 12-months functional recovery in patients with moderate and severe traumatic brain injury

  76. Claassen J, Hirsch LJ, Frontera JA, et al. Prognostic significance of continuous EEG monitoring in patients with poor-grade subarachnoid hemorrhage. Neurocrit Care. 2006;4:103–12.

    Article  PubMed  Google Scholar 

  77. Gavvala J, Abend N, LaRoche S, et al. Continuous EEG monitoring: a survey of neurophysiologists and neurointensivists. Epilepsia. 2014;55:1864–71.

    Article  PubMed  Google Scholar 

  78. Herman ST, Abend NS, Bleck TP, et al. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J Clin Neurophysiol. 2015;32:87–95.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Claassen J, Mayer SA, Kowalski RG, Emerson RG, Hirsch LJ. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 2004;62:1743–8.

    Article  CAS  PubMed  Google Scholar 

  80. Kramer AH, Jette N, Pillay N, Federico P, Zygun DA. Epileptiform activity in neurocritical care patients. Can J Neurol Sci. 2012;39:328–37.

    Article  PubMed  Google Scholar 

  81. Claassen J, Perotte A, Albers D, et al. Nonconvulsive seizures after subarachnoid hemorrhage: Multimodal detection and outcomes. Ann Neurol. 2013;74:53–64.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Vespa PM, O’Phelan K, Shah M, et al. Acute seizures after intracerebral hemorrhage: a factor in progressive midline shift and outcome. Neurology. 2003;60:1441–6.

    Article  CAS  PubMed  Google Scholar 

  83. Vespa P, Martin NA, Nenov V, et al. Delayed increase in extracellular glycerol with post-traumatic electrographic epileptic activity: support for the theory that seizures induce secondary injury. Acta Neurochir Suppl. 2002;81:355–7.

    CAS  PubMed  Google Scholar 

  84. Alkhachroum A, Eliseyev A, Der-Nigoghossian CA, et al. EEG to detect early recovery of consciousness in amantadine-treated acute brain injury patients. J Neurol Neurosurg Psychiatry. 2020;91:675–6.

    Article  PubMed  Google Scholar 

  85. Claassen J, Velazquez A, Meyers E, et al. Bedside quantitative electroencephalography improves assessment of consciousness in comatose subarachnoid hemorrhage patients. Ann Neurol. 2016;80:541–53.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sitt JD, King JR, El Karoui I, et al. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain. 2014;137:2258–70.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Edlow BL, Chatelle C, Spencer CA, et al. Early detection of consciousness in patients with acute severe traumatic brain injury. Brain. 2017;140:2399–414.

  88. Claassen J, Doyle K, Matory A, et al. Detection of Brain Activation in Unresponsive Patients with Acute Brain Injury. N Engl J Med. 2019;380:2497–505.  Brain activation to motor commands on EEG correlated with long term recovery after acute brain injury in unresponsive patients in the neurological intensive care unit

  89. Kemp B, Olivan J. European data format “plus” (EDF+), an EDF alike standard format for the exchange of physiological data. Clin Neurophysiol. 2003;114:1755–61.

    Article  PubMed  Google Scholar 

  90. Kemp B. SignalML from an EDF+ perspective. Comput Methods Programs Biomed. 2004;76:261–3.

    Article  PubMed  Google Scholar 

  91. Bidgood WD Jr, Horii SC, Prior FW, Van Syckle DE. Understanding and using DICOM, the data interchange standard for biomedical imaging. J Am Med Inform Assoc. 1997;4:199–212.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Suarez JI, Sheikh MK, Macdonald RL, et al. Common Data Elements for Unruptured Intracranial Aneurysms and Subarachnoid Hemorrhage Clinical Research: A National Institute for Neurological Disorders and Stroke and National Library of Medicine Project. Neurocrit Care. 2019;30:4–19.

    Article  PubMed  Google Scholar 

  93. Martich GD, Waldmann CS, Imhoff M. Clinical informatics in critical care. J Intensive Care Med. 2004;19:154–63.

    Article  PubMed  Google Scholar 

  94. Citerio G, Park S, Schmidt JM, et al. Data collection and interpretation. Neurocrit Care. 2015;22:360–8.

    Article  PubMed  Google Scholar 

  95. Rodriguez A, Smielewski P, Rosenthal E, Moberg D. Medical Device Connectivity Challenges Outline the Technical Requirements and Standards For Promoting Big Data Research and Personalized Medicine in Neurocritical Care. Mil Med. 2018;183:99–104.

    Article  PubMed  Google Scholar 

  96. Yue JK, Vassar MJ, Lingsma HF, et al. Transforming research and clinical knowledge in traumatic brain injury pilot: multicenter implementation of the common data elements for traumatic brain injury. J Neurotrauma. 2013;30:1831–44.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Maas AI, Menon DK, Steyerberg EW, et al. Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI): a prospective longitudinal observational study. Neurosurgery. 2015;76:67–80.

    Article  PubMed  Google Scholar 

  98. Alkhachroum A, Terilli, K., Megjhani, M. et al. Harnessing Big Data in Neurocritical Care in the Era of Precision Medicine. Curr Treat Options Neurol. 2020;22(5):1–24.

  99. Megjhani M, Alkhachroum A, Terilli K, et al. An active learning framework for enhancing identification of non-artifactual intracranial pressure waveforms. Physiol Meas. 2019;40:015002. An active machine learning framework can enhance ICP wave artifact-labeling in patients with brain injury

  100. Eide PK. A new method for processing of continuous intracranial pressure signals. Med Eng Phys. 2006;28:579–87.

    Article  PubMed  Google Scholar 

  101. Andrews PJ, Sleeman DH, Statham PF, et al. Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: a comparison between decision tree analysis and logistic regression. J Neurosurg. 2002;97:326–36.

    Article  PubMed  Google Scholar 

  102. Vath A, Meixensberger J, Dings J, Meinhardt M, Roosen K. Prognostic significance of advanced neuromonitoring after traumatic brain injury using neural networks. Zentralbl Neurochir. 2000;61:2–6.

    Article  CAS  PubMed  Google Scholar 

  103. Cohen MJ, Grossman AD, Morabito D, Knudson MM, Butte AJ, Manley GT. Identification of complex metabolic states in critically injured patients using bioinformatic cluster analysis. Crit Care. 2010;14:R10.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Peelen L, de Keizer NF, Jonge E, Bosman RJ, Abu-Hanna A, Peek N. Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the Intensive Care Unit. J Biomed Inform. 2010;43:273–86.

    Article  PubMed  Google Scholar 

  105. Buchman TG. The digital patient: predicting physiologic dynamics with mathematical models. Crit Care Med. 2009;37:1167–8.

    Article  PubMed  Google Scholar 

  106. M I. Detecting relationships between physiological variables using graphical modeling. Proc AMIA Symp 2002:340–4

  107. Morris AGR. Computer applications. In: Hall J, Schmidt G, Wood L, editors. Principles of critical care. New York: McGraw-Hil; 1992. p. 500–14.

    Google Scholar 

  108. Woods D.  The cognitive engineering of problem representations. Human-computer interaction and complex systems. 1991:169–188.

  109. Roth EM, Patterson ES, Mumaw RJ. Cognitive engineering: issues in user-centered system design. Encycl Softw Eng 2002:163–79

  110. Tufte E, editor. Envisioning Information. Cheshire, CT: Graphic Press; 1990.

    Google Scholar 

  111. Tufte ER, Graves-Morris PR. The visual display of quantitative information (Vol. 2, No. 9). Cheshire, CT: Graphics press. 1983.

  112. Tufte ER, Goeler NH, Benson R. Envisioning information (Vol. 2). Cheshire, CT: Graphics press. 1990.

  113. Woods DD. Visual momentum: a concept to improve the cognitive coupling of person and computer. Int J Man-Mach Stud. 1984;21:229–44.

    Article  Google Scholar 

  114. Koch SH, Staggers N, Weir C, Agutter J, Liu D, Westenskow DR. Integrated information displays for ICU nurses: field observations, display design, and display evaluation. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 54, No. 12, pp. 932–936). Sage CA: Los Angeles, CA: SAGE Publications. 2010.

  115. Elson RB, Connelly DP.  The impact of anticipatory patient data displays on physician decision making: a pilot study. In Proceedings of the AMIA Annual Fall Symposium (p. 233). American Medical Informatics Association. 1997.

  116. Balas EA. Interactive computer graphics support of medical decision-making (Doctoral dissertation, Department of Medical Informatics, University of Utah). 1991

  117. Plaisant C, Milash B, Rose A, Widoff, Shneiderman B. LifeLines: visualizing personal histories. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 221–227). 1996.

  118. Faiola A, Newlon C. Advancing critical care in the ICU: a human-centered biomedical data visualization systems. In International Conference on Ergonomics and Health Aspects of Work with Computers (pp. 119–128). Springer, Berlin, Heidelberg. 2011.

  119. Pickering BW, Gajic O, Ahmed A, Herasevich V, Keegan MT. Data Utilization for Medical Decision Making at the Time of Patient Admission to ICU*. Crit Care Med. 2013;41:1502–10.

    Article  PubMed  Google Scholar 

  120. Martich GD. Paradise by the dashboard light*. Crit Care Med. 2013;41:1586–7.

    Article  PubMed  Google Scholar 

  121. Berner ES. Clinical decision support systems (Vol. 233). New York: Springer Science+ Business Media, LLC. 2007.

  122. Mayhall CG. Hospital epidemiology and infection control. Lippincott Williams & Wilkins. 2012.

  123. Randolph AG, Haynes RB, Wyatt JC, Cook DJ, Guyatt GH. Users’ Guides to the Medical Literature: XVIII. How to use an article evaluating the clinical impact of a computer-based clinical decision support system. Jama. 1999;282:67–74.

    Article  CAS  PubMed  Google Scholar 

  124. Pryor A. Development of decision support systems. Int J Clin Monit Comput. 1990;7:137–46.

    Article  CAS  PubMed  Google Scholar 

  125. Ahmed A, Chandra S, Herasevich V, Gajic O, Pickering BW. The effect of two different electronic health record user interfaces on intensive care provider task load, errors of cognition, and performance. Crit Care Med. 2011;39:1626–34.

    Article  PubMed  Google Scholar 

  126. Ahmed A, Chandra S, Herasevich V, Gajic O, Pickering BW. The effect of two different electronic health record user interfaces on intensive care provider task load, errors of cognition, and performance. Crit Care Med 2011;39(7):1626–1634.

  127. Herasevich V, Yilmaz M, Khan H, Chute CG, Gajic O. Rule base system for identification of patients with specific critical care syndromes: The “sniffer” for acute lung injury. In AMIA Annual Symposium proceedings. AMIA Symposium. 2007:972–972.

  128. Herasevich V, Yilmaz M, Khan H, Hubmayr RD, Gajic O. Validation of an electronic surveillance system for acute lung injury. Intensive Care Med. 2009;35:1018–23.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Herasevich V, Afessa B, Chute CG, Gajic O. Designing and testing computer based screening engine for severe sepsis/septic shock. In AMIA Annual Symposium proceedings. AMIA Symposium 2008:966–966.

  130. Harrison AM, Thongprayoon C, Kashyap R, Chute CG, Gajic O, Pickering BW, Herasevich V. Developing the surveillance algorithm for detection of failure to recognize and treat severe sepsis. Mayo Clin Proc 2015;90(2):166–175.

  131. Umscheid CA, Betesh J, VanZandbergen C, Hanish A, Tait G, Mikkelsen ME, French B, Fuchs BD. Development, implementation, and impact of an automated early warning and response system for sepsis. J Hosp Med 2015;10(1):26–31.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. Alkhachroum contributed to the conception and design of the paper, drafting and revising of the manuscript for intellectual content and has approved the final version of the manuscript.

Dr. Kromm contributed to the conception and design of the paper, drafting and revising of the manuscript for intellectual content and has approved the final version of the manuscript.

Dr. De Georgia: contributed to the conception and design of the paper, drafting and revising of the manuscript for intellectual content and has approved the final version of the manuscript.

Corresponding author

Correspondence to Michael A. De Georgia.

Ethics declarations

Ethics Approval

As a review article, this work did not require ethics approval.

Conflicts of Interests/Competing Interests

Dr. Alkachroum is supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under the Miami CTSI KL2 Career Development Award UL1TR002736.

Dr Kromm reports grants from the University of Calgary Postgraduate Medical Education Office, grants from the University of Calgary Office of Health and Medical Education Scholarship, outside the submitted work.

Dr. Michael DeGeorgia reports no disclosures relevant to the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Critical Care

All authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkhachroum, A., Kromm, J. & De Georgia, M.A. Big data and predictive analytics in neurocritical care. Curr Neurol Neurosci Rep 22, 19–32 (2022). https://doi.org/10.1007/s11910-022-01167-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-022-01167-w

Keywords

Navigation