Skip to main content

Advertisement

Log in

Brain Cancers in Genetic Syndromes

  • Neuro-Oncology (P.Y. Wen, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Although genetic conditions that cause primary central nervous system tumors are rare, their pathophysiology influences both treatment and surveillance. This article reviews the most frequently occurring genetic conditions associated with brain cancers and highlights the most recent therapeutic approaches in the treatment of Lynch syndrome (and other disorders of the mismatch repair system), neurofibromatosis 1, and Li–Fraumeni syndrome.

Recent Findings

Recent advances in molecular diagnostics have considerably improved the ability to diagnose genetic conditions in people with primary brain tumors. The common application of next-generation sequencing analyses of tissue increases the frequency with which clinicians are forced to address the possibility of an underlying genetic condition based on tissue molecular findings.

Summary

Clinicians must be aware of the clinical presentation of genetic conditions predisposing to brain tumors in order to discern which patients are appropriate for germline genetic testing. Advances in therapeutics for specific genetic variants are increasingly available, and accurately diagnosing an underlying genetic condition may directly impact patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen HZ, Reeser JW, Yu L, Roychowdhury S. Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017;2017:PO.17.00073.

  2. Bonadona V, Bonaiti B, Olschwang S, Grandjouan S, Huiart L, Longy M, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011;305(22):2304–10.

    Article  CAS  PubMed  Google Scholar 

  3. Hampel H, de la Chapelle A. How do we approach the goal of identifying everybody with Lynch syndrome? Fam Cancer. 2013;12(2):313–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cerretelli G, Ager A, Arends MJ, Frayling IM. Molecular pathology of Lynch syndrome. J Pathol. 2020;250(5):518–31.

    Article  PubMed  Google Scholar 

  5. Dowty JG, Win AK, Buchanan DD, Lindor NM, Macrae FA, Clendenning M, et al. Cancer risks for MLH1 and MSH2 mutation carriers. Hum Mutat. 2013;34(3):490–7.

    Article  CAS  PubMed  Google Scholar 

  6. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348(10):919–32.

    Article  CAS  PubMed  Google Scholar 

  7. Ryan NAJ, Morris J, Green K, Lalloo F, Woodward ER, Hill J, et al. Association of mismatch repair mutation with age at cancer onset in Lynch syndrome: implications for stratified surveillance strategies. JAMA Oncol. 2017;3(12):1702–6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vasen HF, Mecklin JP, Khan PM, Lynch HT. The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum. 1991;34(5):424–5.

    Article  CAS  PubMed  Google Scholar 

  9. Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology. 1999;116(6):1453–6.

    Article  CAS  PubMed  Google Scholar 

  10. Rodriguez-Bigas MA, Boland CR, Hamilton SR, Henson DE, Jass JR, Khan PM, et al. A National Cancer Institute Workshop on Hereditary Nonpolyposis Colorectal Cancer Syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst. 1997;89(23):1758–62.

    Article  CAS  PubMed  Google Scholar 

  11. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Ruschoff J, et al. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96(4):261–8.

    Article  CAS  PubMed  Google Scholar 

  12. Giardiello FM, Allen JI, Axilbund JE, Boland CR, Burke CA, Burt RW, et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-Society Task Force on colorectal cancer. Gastroenterology. 2014;147(2):502–26. Helpful guidelines for evaluation and management of Lynch Syndrome

  13. Stoffel EM, Mangu PB, Gruber SB, Hamilton SR, Kalady MF, Lau MW, et al. Hereditary colorectal cancer syndromes: American Society of Clinical Oncology Clinical Practice Guideline endorsement of the familial risk-colorectal cancer: European Society for Medical Oncology Clinical Practice Guidelines. J Clin Oncol. 2015;33(2):209–17.

    Article  PubMed  Google Scholar 

  14. Latham A, Srinivasan P, Kemel Y, Shia J, Bandlamudi C, Mandelker D, et al. Microsatellite instability is associated with the presence of Lynch syndrome pan-cancer. J Clin Oncol. 2019;37(4):286–95.

    Article  CAS  PubMed  Google Scholar 

  15. Snowsill T, Coelho H, Huxley N, Jones-Hughes T, Briscoe S, Frayling IM, et al. Molecular testing for Lynch syndrome in people with colorectal cancer: systematic reviews and economic evaluation. Health Technol Assess. 2017;21(51):1–238.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Snowsill T, Huxley N, Hoyle M, Jones-Hughes T, Coelho H, Cooper C, et al. A systematic review and economic evaluation of diagnostic strategies for Lynch syndrome. Health Technol Assess. 2014;18(58):1–406.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Therkildsen C, Ladelund S, Rambech E, Persson A, Petersen A, Nilbert M. Glioblastomas, astrocytomas and oligodendrogliomas linked to Lynch syndrome. Eur J Neurol. 2015;22(4):717–24.

    Article  CAS  PubMed  Google Scholar 

  18. Chang L, Chang M, Chang HM, Chang F. Microsatellite instability: a predictive biomarker for cancer immunotherapy. Appl Immunohistochem Mol Morphol. 2018;26(2):e15–21.

    Article  CAS  PubMed  Google Scholar 

  19. Green AK, Feinberg J, Makker V. A review of immune checkpoint blockade therapy in endometrial cancer. Am Soc Clin Oncol Educ Book. 2020;40:1–7.

    PubMed  Google Scholar 

  20. Jain R, Denlinger CS, Dotan E. Refining immunotherapy for the treatment of gastric cancer with high microsatellite instability. JAMA Oncol. 2021;7(6):902–3.

    Article  PubMed  Google Scholar 

  21. Khasraw M, Reardon DA, Weller M, Sampson JH. PD-1 Inhibitors: do they have a future in the treatment of glioblastoma? Clin Cancer Res. 2020;26(20):5287–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sherman WJ, Vitaz TW. Nivolumab with radiation therapy in a glioblastoma patient with Lynch syndrome. BMJ Case Rep. 2021;14(4):e241026.

  23. Anghileri E, Di Ianni N, Paterra R, Langella T, Zhao J, Eoli M, et al. High tumor mutational burden and T-cell activation are associated with long-term response to anti-PD1 therapy in Lynch syndrome recurrent glioblastoma patient. Cancer Immunol Immunother. 2021;70(3):831–42.

    Article  CAS  PubMed  Google Scholar 

  24. Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol. 2016;34(19):2206–11. This article demonstrates the efficacy of checkpoint inhibitors in people with biallelic mismatch repair deficiency

  25. Guerrini-Rousseau L, Varlet P, Colas C, Andreiuolo F, Bourdeaut F, Dahan K, et al. Constitutional mismatch repair deficiency-associated brain tumors: report from the European C4CMMRD consortium. Neurooncol Adv. 2019;1(1):vdz033.

    PubMed  PubMed Central  Google Scholar 

  26. Wimmer K, Kratz CP, Vasen HF, Caron O, Colas C, Entz-Werle N, et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium “care for CMMRD” (C4CMMRD). J Med Genet. 2014;51(6):355–65.

    Article  CAS  PubMed  Google Scholar 

  27. Tabori U, Hansford JR, Achatz MI, Kratz CP, Plon SE, Frebourg T, et al. Clinical management and tumor surveillance recommendations of inherited mismatch repair deficiency in childhood. Clin Cancer Res. 2017;23(11):e32–7. Helpful guidance for clinicians treating patients with inherited MMR deficiency

  28. Kallionpaa RA, Uusitalo E, Leppavirta J, Poyhonen M, Peltonen S, Peltonen J. Prevalence of neurofibromatosis type 1 in the Finnish population. Genet Med. 2018;20(9):1082–6.

    Article  PubMed  Google Scholar 

  29. Gutmann DH, Ferner RE, Listernick RH, Korf BR, Wolters PL, Johnson KJ. Neurofibromatosis type 1. Nat Rev Dis Primers. 2017;3:17004.

    Article  PubMed  Google Scholar 

  30. Legius E, Messiaen L, Wolkenstein P, Pancza P, Avery RA, Berman Y, et al. Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation. Genet Med. 2021;23(8):1506–13.

  31. Uusitalo E, Rantanen M, Kallionpaa RA, Poyhonen M, Leppavirta J, Yla-Outinen H, et al. Distinctive cancer associations in patients with neurofibromatosis type 1. J Clin Oncol. 2016;34(17):1978–86.

    Article  PubMed  Google Scholar 

  32. Plotkin SR, Bredella MA, Cai W, Kassarjian A, Harris GJ, Esparza S, et al. Quantitative assessment of whole-body tumor burden in adult patients with neurofibromatosis. PLoS One. 2012;7(4):e35711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ortonne N, Carroll SL, Rodriguez FJ, Miller DC, Nazarian RM, Blakeley JO, et al. Assessing interobserver variability and accuracy in the histological diagnosis and classification of cutaneous neurofibromass. Neurooncol Adv. 2020;2(Suppl 1):i117–23.

    PubMed  Google Scholar 

  34. Prada CE, Rangwala FA, Martin LJ, Lovell AM, Saal HM, Schorry EK, et al. Pediatric plexiform neurofibromas: impact on morbidity and mortality in neurofibromatosis type 1. J Pediatr. 2012;160(3):461–7.

    Article  PubMed  Google Scholar 

  35. Akshintala S, Baldwin A, Liewehr DJ, Goodwin A, Blakeley JO, Gross AM, et al. Longitudinal evaluation of peripheral nerve sheath tumors in neurofibromatosis type 1: growth analysis of plexiform neurofibromas and distinct nodular lesions. Neuro Oncol. 2020;22(9):1368–78.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gross AM, Wolters PL, Dombi E, Baldwin A, Whitcomb P, Fisher MJ, et al. Selumetinib in children with inoperable plexiform neurofibromas. N Engl J Med. 2020;382(15):1430–42. The authors describe the clinical experiences of a phase 2 clinical study of selumetinib treating children with neurofibromatosis type 1 and inoperable plexiform neurofibromas

  37. Listernick R, Ferner RE, Liu GT, Gutmann DH. Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol. 2007;61(3):189–98.

    Article  CAS  PubMed  Google Scholar 

  38. de Blank PMK, Fisher MJ, Liu GT, Gutmann DH, Listernick R, Ferner RE, et al. Optic Pathway gliomas in neurofibromatosis type 1: an update: surveillance, treatment indications, and biomarkers of vision. J Neuroophthalmol. 2017;37(Suppl 1):S23–32. Helpful guidance for surveillance and treatment indications for NF1 associated OPG

  39. Hernaiz Driever P, von Hornstein S, Pietsch T, Kortmann R, Warmuth-Metz M, Emser A, et al. Natural history and management of low-grade glioma in NF-1 children. J Neurooncol. 2010;100(2):199–207.

    Article  PubMed  Google Scholar 

  40. Fisher MJ, Loguidice M, Gutmann DH, Listernick R, Ferner RE, Ullrich NJ, et al. Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro Oncol. 2012;14(6):790–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kinori M, Armarnik S, Listernick R, Charrow J, Zeid JL. Neurofibromatosis type 1-associated optic pathway glioma in children: a follow-up of 10 years or more. Am J Ophthalmol. 2021;221:91–6.

    Article  PubMed  Google Scholar 

  42. Ater JL, Xia C, Mazewski CM, Booth TN, Freyer DR, Packer RJ, et al. Nonrandomized comparison of neurofibromatosis type 1 and non-neurofibromatosis type 1 children who received carboplatin and vincristine for progressive low-grade glioma: a report from the Children’s Oncology Group. Cancer. 2016;122(12):1928–36.

    Article  CAS  PubMed  Google Scholar 

  43. Fangusaro J, Onar-Thomas A, Young Poussaint T, Wu S, Ligon AH, Lindeman N, et al. Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol. 2019;20(7):1011–22. This article describes the clinical experiences with targeted therapy in pediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated gliomas

  44. Packer RJ, Pfister S, Bouffet E, Avery R, Bandopadhayay P, Bornhorst M, et al. Pediatric low-grade gliomas: implications of the biologic era. Neuro Oncol. 2017;19(6):750–61.

    CAS  PubMed  Google Scholar 

  45. Packer RJ, Iavarone A, Jones DTW, Blakeley JO, Bouffet E, Fisher MJ, et al. Implications of new understandings of gliomas in children and adults with NF1: report of a consensus conference. Neuro Oncol. 2020;22(6):773–84.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gutmann DH, James CD, Poyhonen M, Louis DN, Ferner R, Guha A, et al. Molecular analysis of astrocytomas presenting after age 10 in individuals with NF1. Neurology. 2003;61(10):1397–400.

    Article  CAS  PubMed  Google Scholar 

  47. Rodriguez FJ, Perry A, Gutmann DH, O’Neill BP, Leonard J, Bryant S, et al. Gliomas in neurofibromatosis type 1: a clinicopathologic study of 100 patients. J Neuropathol Exp Neurol. 2008;67(3):240–9.

    Article  PubMed  Google Scholar 

  48. Huttner AJ, Kieran MW, Yao X, Cruz L, Ladner J, Quayle K, et al. Clinicopathologic study of glioblastoma in children with neurofibromatosis type 1. Pediatr Blood Cancer. 2010;54(7):890–6.

    PubMed  Google Scholar 

  49. Shibahara I, Sonoda Y, Suzuki H, Mayama A, Kanamori M, Saito R, et al. Glioblastoma in neurofibromatosis 1 patients without IDH1, BRAF V600E, and TERT promoter mutations. Brain Tumor Pathol. 2018;35(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  50. Strowd RE 3rd, Rodriguez FJ, McLendon RE, Vredenburgh JJ, Chance AB, Jallo G, et al. Histologically benign, clinically aggressive: progressive non-optic pathway pilocytic astrocytomas in adults with NF1. Am J Med Genet A. 2016;170(6):1455–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–51. 

  52. D'Angelo F, Ceccarelli M, Tala, Garofano L, Zhang J, Frattini V, et al. The molecular landscape of glioma in patients with Neurofibromatosis 1. Nat Med. 2019;25(1):176–87. The authors describe the results of molecular analysis of low- and high-grade gliomas in patients with NF1

  53. Rodriguez FJ, Brosnan-Cashman JA, Allen SJ, Vizcaino MA, Giannini C, Camelo-Piragua S, et al. Alternative lengthening of telomeres, ATRX loss and H3–K27M mutations in histologically defined pilocytic astrocytoma with anaplasia. Brain Pathol. 2019;29(1):126–40.

    Article  CAS  PubMed  Google Scholar 

  54. Reinhardt A, Stichel D, Schrimpf D, Sahm F, Korshunov A, Reuss DE, et al. Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol. 2018;136(2):273–91.

    Article  CAS  PubMed  Google Scholar 

  55. Gonzalez KD, Buzin CH, Noltner KA, Gu D, Li W, Malkin D, et al. High frequency of de novo mutations in Li-Fraumeni syndrome. J Med Genet. 2009;46(10):689–93.

    Article  CAS  PubMed  Google Scholar 

  56. Li FP, Fraumeni JF Jr, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA, et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48(18):5358–62.

    CAS  PubMed  Google Scholar 

  57. Birch JM, Hartley AL, Tricker KJ, Prosser J, Condie A, Kelsey AM, et al. Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. Cancer Res. 1994;54(5):1298–304.

    CAS  PubMed  Google Scholar 

  58. Eeles RA. Germline mutations in the TP53 gene. Cancer Surv. 1995;25:101–24.

    CAS  PubMed  Google Scholar 

  59. Tinat J, Bougeard G, Baert-Desurmont S, Vasseur S, Martin C, Bouvignies E, et al. Version of the Chompret criteria for Li Fraumeni syndrome. J Clin Oncol. 2009;27(26):e108-9 (author reply e10).

  60. Chene P. The role of tetramerization in p53 function. Oncogene. 2001;20(21):2611–7.

    Article  CAS  PubMed  Google Scholar 

  61. Guha T, Malkin D. Inherited TP53 mutations and the Li-Fraumeni syndrome. Cold Spring Harb Perspect Med. 2017;7(4):a026187.

  62. Vital A, Bringuier PP, Huang H, San Galli F, Rivel J, Ansoborlo S, et al. Astrocytomas and choroid plexus tumors in two families with identical p53 germline mutations. J Neuropathol Exp Neurol. 1998;57(11):1061–9.

    Article  CAS  PubMed  Google Scholar 

  63. Orr BA, Clay MR, Pinto EM, Kesserwan C. An update on the central nervous system manifestations of Li-Fraumeni syndrome. Acta Neuropathol. 2020;139(4):669–87. This is a comprehensive review of Li-Fraumeni syndrome, including  diagnostic criteria, biology, genetics, and clinical presentation of associated brain tumors

  64. Tabori U, Shlien A, Baskin B, Levitt S, Ray P, Alon N, et al. TP53 alterations determine clinical subgroups and survival of patients with choroid plexus tumors. J Clin Oncol. 2010;28(12):1995–2001.

    Article  CAS  PubMed  Google Scholar 

  65. Watanabe T, Vital A, Nobusawa S, Kleihues P, Ohgaki H. Selective acquisition of IDH1 R132C mutations in astrocytomas associated with Li-Fraumeni syndrome. Acta Neuropathol. 2009;117(6):653–6.

    Article  CAS  PubMed  Google Scholar 

  66. Frebourg T, Bajalica Lagercrantz S, Oliveira C, Magenheim R, Evans DG. European Reference Network G. Guidelines for the Li-Fraumeni and heritable TP53-related cancer syndromes. Eur J Hum Genet. 2020;28(10):1379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kratz CP, Achatz MI, Brugieres L, Frebourg T, Garber JE, Greer MC, et al. Cancer screening recommendations for individuals with Li-Fraumeni syndrome. Clin Cancer Res. 2017;23(11):e38–45. Helpful guidelines for establishing a care plan for a person with Li-Fraumen

  68. Varley JM, Evans DG, Birch JM. Li-Fraumeni syndrome–a molecular and clinical review. Br J Cancer. 1997;76(1):1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hisada M, Garber JE, Fung CY, Fraumeni JF Jr, Li FP. Multiple primary cancers in families with Li-Fraumeni syndrome. J Natl Cancer Inst. 1998;90(8):606–11.

    Article  CAS  PubMed  Google Scholar 

  70. Villani A, Tabori U, Schiffman J, Shlien A, Beyene J, Druker H, et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncol. 2011;12(6):559–67.

    Article  CAS  PubMed  Google Scholar 

  71. Villani A, Shore A, Wasserman JD, Stephens D, Kim RH, Druker H, et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol. 2016;17(9):1295–305.

    Article  CAS  PubMed  Google Scholar 

  72. Heymann S, Delaloge S, Rahal A, Caron O, Frebourg T, Barreau L, et al. Radio-induced malignancies after breast cancer postoperative radiotherapy in patients with Li-Fraumeni syndrome. Radiat Oncol. 2010;5:104.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kappel S, Janschek E, Wolf B, Rudas M, Teleky B, Jakesz R, et al. TP53 germline mutation may affect response to anticancer treatments: analysis of an intensively treated Li-Fraumeni family. Breast Cancer Res Treat. 2015;151(3):671–8.

    Article  CAS  PubMed  Google Scholar 

  74. Zhou R, Xu A, Gingold J, Strong LC, Zhao R, Lee DF. Li-Fraumeni syndrome disease model: a platform to develop precision cancer therapy targeting oncogenic p53. Trends Pharmacol Sci. 2017;38(10):908–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaishri O. Blakeley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komlodi-Pasztor, E., Blakeley, J.O. Brain Cancers in Genetic Syndromes. Curr Neurol Neurosci Rep 21, 64 (2021). https://doi.org/10.1007/s11910-021-01149-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11910-021-01149-4

Keywords

Navigation