Skip to main content

Advertisement

Log in

Functional MRI to Study Gait Impairment in Parkinson’s Disease: a Systematic Review and Exploratory ALE Meta-Analysis

  • Neuroimaging (N. Pavese, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Whilst gait impairment is a main cause for disability in Parkinson’s disease (PD), its neural control remains poorly understood. We performed a systematic review and meta-analysis of neuroimaging studies of surrogate features of gait in PD.

Findings

Assessing the results from PET or SPECT scans after a period of actual walking as well as fMRI during mental imagery or virtual reality (VR) gait paradigms, we found a varying pattern of gait-related brain activity. Overall, a decrease in activation of the SMA during gait was found in PD compared to elderly controls. In addition, the meta-analysis showed that the most consistent gait-related activation was situated in the cerebellar locomotor region (CLR) in PD.

Summary

Despite methodological heterogeneity, the combined neuroimaging studies of gait provide new insights into its neural control in PD, suggesting that CLR activation likely serves a compensatory role in locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Allali G, Blumen HM, Devanne H, Pirondini E, Delval A, Van De Ville D. Brain imaging of locomotion in neurological conditions. Neurophysiol Clin. 2018;48:337–59 Review of the literature on brain imaging of locomotion in PD and other neurological conditions with pros and cons of different neuroimaging techniques highlighted.

    Article  Google Scholar 

  2. Allen NE, Schwarzel AK, Canning CG. Recurrent falls in Parkinson's disease: a systematic review. Parkinsons Dis. 2013;2013:906274–16.

    PubMed  PubMed Central  Google Scholar 

  3. Bekkers EMJ, Dijkstra BW, Heremans E, Verschueren SMP, Bloem BR, Nieuwboer A. Balancing between the two: are freezing of gait and postural instability in Parkinson's disease connected? Neurosci Biobehav Rev. 2018;94:113–25.

    Article  CAS  Google Scholar 

  4. Bloem BR, Hausdorff JM, Visser JE, Giladi N. Falls and freezing of gait in Parkinson's disease: a review of two interconnected, episodic phenomena. Mov Disord. 2004;19:871–84.

    Article  Google Scholar 

  5. • Bluett B, Bayram E, Litvan I. The virtual reality of Parkinson's disease freezing of gait: a systematic review. Parkinsonism Relat Disord. 2018. Systematic review on the different utilities of virtual reality to study freezing of gait in PD, including its ability to be combined with neuroimaging to study the neural underpinnings of freezing.

  6. Bohnen NI, Jahn K. Imaging: what can it tell us about parkinsonian gait? Mov Disord. 2013;28:1492–500.

    Article  Google Scholar 

  7. • Bürki CN, Bridenbaugh SA, Reinhardt J, Stippich C, Kressig RW, Blatow M. Imaging gait analysis: An fMRI dual task study. Brain Behav. 2017;7:e00724 Healthy older participants in this study performed two cognitive dual-tasks while simultaneously tapping their feet inside the fMRI scanner. Such paradigms could be used to study the neural basis underlying gait automaticity impairments in PD.

    Article  Google Scholar 

  8. Crémers J, D'Ostilio K, Stamatakis J, Delvaux V, Garraux G. Brain activation pattern related to gait disturbances in Parkinson's disease. Mov Disord. 2012;27:1498–505.

    Article  Google Scholar 

  9. • de Lima-Pardini AC, de Azevedo Neto RM, Coelho DB, Boffino CC, Shergill SS, de Oliveira Souza C, et al. An fMRI-compatible force measurement system for the evaluation of the neural correlates of step initiation. Sci Rep. 2017;7:43088 The authors present a new apparatus that allows for the investigation of anticipatory postural adjustments during fMRI.

    Article  Google Scholar 

  10. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp. 2009;30:2907–26.

    Article  Google Scholar 

  11. Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT. Activation likelihood estimation meta-analysis revisited. Neuroimage. 2012;59:2349–61.

    Article  Google Scholar 

  12. •• Eickhoff SB, Nichols TE, Laird AR, Hoffstaedter F, Amunts K, Fox PT, et al. Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. Neuroimage. 2016;137:70–85 Methodological paper by the developers of the ALE meta-analysis technique, presenting simulations on thresholding methods and sample-size requirements.

    Article  Google Scholar 

  13. •• Fasano A, Laganiere SE, Lam S, Fox MD. Lesions causing freezing of gait localize to a cerebellar functional network. Ann Neurol. 2017;81:129–41 This neuroanatomical study showed that the large majority of brain lesions that result in freezing of gait are located in areas that have strong functional connections with the cerebellar locomotor regions.

    Article  Google Scholar 

  14. Fling BW, Cohen RG, Mancini M, Carpenter SD, Fair DA, Nutt JG, et al. Functional reorganization of the locomotor network in Parkinson patients with freezing of gait. PLoS One. 2014;9:e100291.

    Article  Google Scholar 

  15. Gilat M, Shine JM, Walton CC, O'Callaghan C, Hall JM, Lewis SJG. Brain activation underlying turning in Parkinson's disease patients with and without freezing of gait: a virtual reality fMRI study. Nat Partner J Parkinsons Dis. 2015; 1. Available from: http://www.nature.com/articles/npjparkd201520. Accessed 12 Mar 2018

  16. Gilat M, Bell PT, Ehgoetz Martens KA, Georgiades MJ, Hall JM, Walton CC, et al. Dopamine depletion impairs gait automaticity by altering cortico-striatal and cerebellar processing in Parkinson's disease. Neuroimage. 2017;152:207–20.

    Article  CAS  Google Scholar 

  17. Gilat M, Lígia Silva de Lima A, Bloem BR, Shine JM, Nonnekes J, Lewis SJG. Freezing of gait: promising avenues for future treatment. Parkinsonism Relat Disord. 2018;52:7–16.

    Article  Google Scholar 

  18. Hanakawa T, Fukuyama H, Katsumi Y, Honda M, Shibasaki H. Enhanced lateral premotor activity during paradoxical gait in Parkinson's disease. Ann Neurol. 1999a;45:329–36.

    Article  CAS  Google Scholar 

  19. Hanakawa T, Katsumi Y, Fukuyama H, Honda M, Hayashi T, Kimura J, et al. Mechanisms underlying gait disturbance in Parkinson's disease: a single photon emission computed tomography study. Brain. 1999b;122 (Pt 7:1271–82.

    Article  Google Scholar 

  20. •• Hardwick RM, Caspers S, Eickhoff SB, Swinnen SP. Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution. Neurosci Biobehav Rev. 2018;94:31–44 Systematic review with ALE meta-analysis assessing the neural basis of motor imagery, action observation and motor execution in young healthy adults as derived from fMRI or PET, including locomotor tasks.

    Article  Google Scholar 

  21. Hausdorff JM, Lowenthal J, Herman T, Gruendlinger L, Peretz C, Giladi N. Rhythmic auditory stimulation modulates gait variability in Parkinson's disease. Eur J Neurosci. 2007;26:2369–75.

    Article  Google Scholar 

  22. Jacobs JV, Nutt JG, Carlson-Kuhta P, Stephens M, Horak FB. Knee trembling during freezing of gait represents multiple anticipatory postural adjustments. Exp Neurol. 2009;215:334–41.

    Article  Google Scholar 

  23. Kerr GK, Worringham CJ, Cole MH, Lacherez PF, Wood JM, Silburn PA. Predictors of future falls in Parkinson disease. Neurology. 2010;75:116–24.

    Article  CAS  Google Scholar 

  24. Lord S, Galna B, Yarnall AJ, Coleman S, Burn D, Rochester L. Predicting first fall in newly diagnosed Parkinson's disease: insights from a fall-naïve cohort. Mov Disord. 2016;31:1829–36.

    Article  Google Scholar 

  25. Maillet A, Pollak P, Debû B. Imaging gait disorders in parkinsonism: a review. J Neurol Neurosurg Psychiatry. 2012;83:986–93.

    Article  Google Scholar 

  26. Maillet A, Thobois S, Fraix V, Redouté J, Le Bars D, Lavenne F, et al. Neural substrates of levodopa-responsive gait disorders and freezing in advanced Parkinson's disease: a kinesthetic imagery approach. Hum Brain Mapp. 2015;36:959–80.

    Article  Google Scholar 

  27. Matar E, Shine JM, Gilat M, Ehgoetz Martens KA, Ward PB, Frank MJ, et al. Identifying the neural correlates of doorway freezing in Parkinson's disease. Hum Brain Mapp. 2019;40:2055–64.

    Article  Google Scholar 

  28. Michely J, Volz LJ, Barbe MT, Hoffstaedter F, Viswanathan S, Timmermann L, et al. Dopaminergic modulation of motor network dynamics in Parkinson's disease. Brain. 2015;138:664–78.

    Article  Google Scholar 

  29. Nieuwhof F, Bloem BR, Reelick MF, Aarts E, Maidan I, Mirelman A, et al. Impaired dual tasking in Parkinson's disease is associated with reduced focusing of cortico-striatal activity. Brain. 2017;140:1384–98.

    Article  Google Scholar 

  30. Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 2011;10:734–44.

    Article  Google Scholar 

  31. Ouchi Y, Kanno T, Okada H, Yoshikawa E, Futatsubashi M, Nobezawa S, et al. Changes in dopamine availability in the nigrostriatal and mesocortical dopaminergic systems by gait in Parkinson's disease. Brain. 2001;124:784–92.

    Article  CAS  Google Scholar 

  32. Peterson DS, Horak FB. Neural control of walking in people with parkinsonism. Physiology (Bethesda). 2016;31:95–107.

    CAS  Google Scholar 

  33. Peterson DS, Pickett KA, Duncan R, Perlmutter J, Earhart GM. Gait-related brain activity in people with Parkinson disease with freezing of gait. PLoS One. 2014;9:e90634.

    Article  Google Scholar 

  34. Shine JM, Matar E, Ward PB, Bolitho SJ, Gilat M, Pearson M, et al. Exploring the cortical and subcortical functional magnetic resonance imaging changes associated with freezing in Parkinson's disease. Brain. 2013;136:1204–15.

    Article  Google Scholar 

  35. Shulman LM, Gruber-Baldini AL, Anderson KE, Vaughan CG, Reich SG, Fishman PS, et al. The evolution of disability in Parkinson disease. Mov Disord. 2008;23:790–6.

    Article  Google Scholar 

  36. Snijders AH, Leunissen I, Bakker M, Overeem S, Helmich RC, Bloem BR, et al. Gait-related cerebral alterations in patients with Parkinson's disease with freezing of gait. Brain. 2011;134:59–72.

    Article  Google Scholar 

  37. Tard C, Delval A, Devos D, Lopes R, Lenfant P, Dujardin K, et al. Brain metabolic abnormalities during gait with freezing in Parkinson's disease. Neuroscience. 2015;307:281–301.

    Article  CAS  Google Scholar 

  38. Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA. Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage. 2002;16:765–80.

    Article  Google Scholar 

  39. van der Hoorn A, Renken RJ, Leenders KL, de Jong BM. Parkinson-related changes of activation in visuomotor brain regions during perceived forward self-motion. PLoS One. 2014;9:e95861.

    Article  Google Scholar 

  40. Walton CC, Shine JM, Hall JM, O'Callaghan C, Mowszowski L, Gilat M, et al. The major impact of freezing of gait on quality of life in Parkinson's disease. J Neurol. 2015;262:108–15.

    Article  CAS  Google Scholar 

  41. Weiss PH, Herzog J, Pötter-Nerger M, Falk D, Herzog H, Deuschl G, et al. Subthalamic nucleus stimulation improves parkinsonian gait via brainstem locomotor centers. Mov Disord. 2015;30:1121–5.

    Article  Google Scholar 

  42. Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136(3):696–709.

    Article  Google Scholar 

  43. Wu T, Hallett M, Chan P. Motor automaticity in Parkinson's disease. Neurobiol. Dis. 2015;82:226–34.

    Article  CAS  Google Scholar 

  44. Gilman S, Koeppe RA, Nan B, Wang C-N, Wang X, Junck L, et al. Cerebral cortical and subcortical cholinergic deficits in parkinsoni an syndromes. Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 2010;74:1416–23.

    Article  CAS  Google Scholar 

  45. Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J. Neurosci. Society for Neuroscience. 2006;26:9107–16.

    Article  CAS  Google Scholar 

  46. Janssen AM, Munneke MAM, Nonnekes J, van der Kraan T, Nieuwboer A, Toni I, et al. Cerebellar theta burst stimulation does not improve freezing of gait in patients with Parkinson's disease. J. Neurol. Springer Berlin Heidelberg. 2017;264:963–72.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Robert Hardwick for assisting with the ALE meta-analysis.

Funding

MG is supported by a Postdoctoral Mandate of the KU Leuven Internal Fund; AN and BWD are supported by Flanders Research Funds (G086715N), ND is supported by Jacques & Gloria Gossweiler Foundation, SJGL is supported by a NHMRC–Australia Research Council dementia fellowship (#1110414).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moran Gilat.

Ethics declarations

Conflict of Interest

Moran Gilat, Bauke W. Dijkstra, Nicholas D’Cruz, Alice Nieuwboer and Simon JG Lewis each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuroimaging

Electronic supplementary material

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilat, M., Dijkstra, B.W., D’Cruz, N. et al. Functional MRI to Study Gait Impairment in Parkinson’s Disease: a Systematic Review and Exploratory ALE Meta-Analysis. Curr Neurol Neurosci Rep 19, 49 (2019). https://doi.org/10.1007/s11910-019-0967-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-019-0967-2

Keywords

Navigation