Skip to main content
Log in

Face Recognition

  • Behavior (HS Kirshner, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Functional imaging studies, intracranial recordings, and lesion-deficit correlations in neurological patients have produced unique insights into the cognitive mechanisms and neural substrates of face recognition. In this review, we highlight recent advances in the field and integrate data from these complementary lines of research to propose a functional neuroanatomical model of face identity recognition.

Recent Findings

Rather than being localized to a single specialized cortical region, face recognition is supported by a distributed neural network. Core components of the network include face-selective visual areas in the ventral occipito-temporal cortex, whereas the extended network is comprised of anterior temporal lobe structures involved in the retrieval of multimodal identity-specific knowledge about familiar individuals, the amygdala responsible for generating emotional responses to faces, and prefrontal regions that provide top-down executive control of the recognition process. Damage to different network components results in neuropsychological disorders of face identity processing manifested either as impaired recognition of familiar faces (prosopagnosia, person recognition disorders) or as false recognition/misidentification of unfamiliar faces.

Summary

Face identity recognition requires the coordinated activity of a large-scale neural network. Neurological damage can compromise the structural/functional integrity of specific network nodes or their connections and give rise to face recognition disorders with distinct clinical features and underlying cognitive mechanisms determined primarily by the location of the lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bruce V, Young AW. Understanding face recognition. Br J Psychol. 1986;77:305–27.

    PubMed  Google Scholar 

  2. Rossion B. Understanding face perception by means of prosopagnosia and neuroimaging. Front Bioscience (Elite Ed). 2014;6:308–17.

    Google Scholar 

  3. Haxby JV, Hoffman EA, Gobbini MI. The distributed human neural system for face perception. Trends Cogn Sci. 2000;4:223–33.

    CAS  PubMed  Google Scholar 

  4. Gobbini IM, Haxby JV. Neural systems for recognition of familiar faces. Neuropsychologia. 2007;45:32–41.

    PubMed  Google Scholar 

  5. Haxby JV, Gobbini IM. Distributed neural systems for face perception. In: Rhodes G, Calder A, Johnson M, Haxby JV, editors. Oxford handbook of face perception. New York: Oxford University Press; 2011.

    Google Scholar 

  6. Rapcsak SZ, Edmonds EC. The executive control of face memory. Behav Neurol. 2011;24:285–98.

    PubMed  PubMed Central  Google Scholar 

  7. Rapcsak SZ. Face recognition. In: Chatterjee A, Coslett HB, editors. The roots of cognitive neuroscience: behavioral neurology and neuropsychology. New York: Oxford University Press; 2014.

    Google Scholar 

  8. Ishai A. Let’s face it: it’s a cortical network. Neuroimage. 2008;40:415–9.

    PubMed  Google Scholar 

  9. Kanwisher N, Barton JJS. The functional architecture of the face system: integrating evidence from fMRI and patient studies. In: Rhodes G, Calder A, Johnson M, Haxby JV, editors. Oxford handbook of face perception. New York: Oxford University Press; 2011.

    Google Scholar 

  10. Duchaine B, Yovel G. A revised neural framework for face processing. Ann Rev Vision Sci. 2015;1:393–416.

    Google Scholar 

  11. •• Freiwald W, Duchaine B, Yovel G. Face processing systems: from neurons to real-world social perception. Ann Rev Neurosci. 2016;39:325–46 This paper reviews evidence from multiple sources relevant to the functional organization of the face recognition network.

    CAS  PubMed  Google Scholar 

  12. •• Grill-Spector K, Weiner KS, Kay K, Gomez J. The functional neuroanatomy of human face perception. Ann Rev Vision Sci. 2017;3:167–96 An in-depth review of neuroimaging studies of face recognition.

    Google Scholar 

  13. Elbich DB, Scherf S. Beyond the FFA: brain-behavior correspondences in face recognition abilities. Neuroimage. 2017;147:409–22.

    PubMed  Google Scholar 

  14. • Mueller VI, Hohner Y, Eickhoff SB. Influence of task instructions and stimuli on the neural network for face processing: an ALE meta-analysis. Cortex. 2018;103:2410–255 This paper provides a meta-analysis of brain regions that show reliable activation across different imaging studies of face processing.

    Google Scholar 

  15. Gschwind M, Pourtois G, Schwartz S, Van De Ville D, Vuilleumier P. White-matter connectivity between face-responsive regions in the human brain. Cereb Cortex. 2012;22:1564–76.

    PubMed  Google Scholar 

  16. Pyles JA, Verstynen TD, Schneider W, Tarr MJ. Explicating the face perception network with white matter connectivity. PLoS One. 2013;8(4):e61611. https://doi.org/10.1371/journal.pone.0061611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu Q, Zhang J, Luo YLL, Dilks DD, Liu J. Resting-state neural activity across face-selective cortical regions is behaviorally relevant. J Neurosci. 2011;31:10323–103030.

    CAS  PubMed  Google Scholar 

  18. O’Neill EB, Hutchinson RM, McLean DA, Kohler S. Resting-state fMRI reveals functional connectivity between face-selective perirhinal cortex and fusiform face area related to face inversion. Neuroimage. 2014;92:349–55.

    Google Scholar 

  19. Nasr S, Tootell RBH. Role of the fusiform and anterior temporal cortical areas in face recognition. Neuroimage. 2012;63:1743–53.

    PubMed  PubMed Central  Google Scholar 

  20. Collins JA, Olson IR. Beyond the FFA: the role of the ventral anterior temporal lobes in face processing. Neuropsychologia. 2014;61:65–79.

    PubMed  Google Scholar 

  21. Collins JA, Koski JE, Olson IR. More than meets the eye: the merging of perceptual and conceptual knowledge in the anterior temporal face area. Front Hum Neurosci. 2016;10. https://doi.org/10.3389/fnhum.2016.00189.

  22. Von Der Heide R, Skipper LM, Olson IR. Anterior temporal face patches: a meta-analysis and empirical study. Front Hum Neurosci. 2013;7. https://doi.org/10.3389/fnhum.2013.00017.

  23. Nestor A, Plaut DC, Behrmann M. Unraveling the distributed neural code of facial identity through spatiotemporal pattern analysis. PNAS. 2011;108:9998–10003.

    CAS  PubMed  Google Scholar 

  24. Axelrod V, Yovel G. Successful decoding of famous faces in the fusiform area. PLoS One. 2015;10(2):e0117126. https://doi.org/10.1371/journal.pone.0117126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weibert K, Andrews TJ. Activity in the right fusiform face area predicts the behavioral advantage for the perception of familiar faces. Neuropsychologia. 2015;75:588–96.

    PubMed  Google Scholar 

  26. Yang H, Susilo T, Duchaine B. The anterior face area contains invariant representations of face identity that can persist despite the loss of right FFA and OFA. Cereb Cortex. 2014;1–12.

  27. Perrodin C, Kayser C, Abel TJ, Logothetis NK, Petkov CI. Who is that? Brain networks and mechanisms for identifying individuals. Trends Cogn Sci. 2015;19:783–96.

    PubMed  PubMed Central  Google Scholar 

  28. Maguinness C, Rowandowitz C, von Kriegstein K. Understanding the mechanisms of familiar voice identity recognition in the human brain. Neuropsychologia. 2018;116:179–93.

    PubMed  Google Scholar 

  29. • Rice GE, Hoffman P, Binney RJ, Lambon Ralph MA. Concrete versus abstract forms of social concept: and fMRI comparison of knowledge about people vs. social terms. Philos Trans R So B. 2017;373. https://doi.org/10.1098/rstb.2017.0136. Neuroimaging evidence for the central role of the ATL in representing multimodal semantic knowledge about familiar people.

    Google Scholar 

  30. Nielson KA, Seidenberg M, Woodard JL, Durgerian S, Zhang Q, Gross WL, et al. Common neural systems associated with the recognition of famous faces and names: an event-related fMRI study. Brain Cogn. 2010;72:491–8.

    PubMed  PubMed Central  Google Scholar 

  31. Von Kriegstein K, Giraud AL. Implicit multisensory associations influence voice recognition. PLoS Biol. 2006;4(10):e326. https://doi.org/10.1371/journal.pbio.0040326.

    Article  CAS  Google Scholar 

  32. Blank H, Kiebel SJ, von Kriegstein K. How the human brain exchanges information across sensory modalities to recognize other people. Hum Brain Mapp. 2015;36:324–39.

    PubMed  Google Scholar 

  33. Hasan BAS, Valdes-Sosa M, Gross J, Belin P. “Hearing faces and seeing voices”: amodal coding of person identity in the human brain. Nat Sci Rep. 2016;6:37494.

    Google Scholar 

  34. Tsukiura T, Suzuki C, Shigemune Y, Mokizuki-Kawai H. Differential contributions of the anterior temporal and medial temporal lobe to the retrieval of memory for person identity information. Hum Brain Mapp. 2008;29:1343–54.

    PubMed  Google Scholar 

  35. Tsukiura T, Mokizuki-Kawai H, Fujii T. Dissociable roles of the bilateral anterior lobe in face-name associations: an event-related fMRI study. Neuroimage. 2006;30:617–26.

    PubMed  Google Scholar 

  36. Tsukiura T, Mano Y, Sekiguchi A, Yomogida Y, Hoshi K, Kambara T, et al. Dissociable roles of the anterior temporal regions in successful encoding of memory for person identity information. J Cogn Neurosci. 2009;22:2226–37.

    Google Scholar 

  37. • Wang Y, Collins JA, Koski J, Nugiel T, Metoki A, Olson, IR. Dynamic neural architecture for social knowledge retrieval. PNAS. 2017;E3305–E3314.https://doi.org/10.1073/pnas.1621234114. Neuroimaging evidence for the critical contribution of the ATL to the encoding and retrieval of novel multimodal person-specific information.

    CAS  Google Scholar 

  38. Blank H, Wieland N, von Kriegstein K. Person recognition and the brain: merging evidence from patients and healthy individuals. Neurosci Biobehav Rev. 2014;47:717–34.

    PubMed  Google Scholar 

  39. Barton JJS, Corrow SL. Recognizing and identifying people: a neuropsychological review. Cortex. 2016;75:132–50.

    PubMed  Google Scholar 

  40. Gazzaley A, Cooney JW, McEvoy K, Knight RT, D’Esposito M. Top-down enhancement and suppression of the magnitude and speed of neural activity. J Cogn Neurosci. 2005;17:507–17.

    PubMed  Google Scholar 

  41. Chadick JZ, Gazzaley A. Differential coupling of visual cortex with default or frontoparietal network based on goals. Nat Neurosci. 2011;14:830–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. •• Rossion B, Jacques C, Jonas J. Mapping face categorization in the human ventral occipitotemporal cortex with direct neural intracranial recordings. Ann N Y Acad Sci. 2018;1426:5–24 A comprehensive review of intracranial recording studies of face processing.

    Google Scholar 

  43. Jonas J, Jacques C, Liu-Shuang J, Brissart H, Colnat-Coulbois S, Maillard L, et al. A face selective ventral occiptio-temporal map of the human brain with intracerebral potentials. PNAS. 2016;113:E4088–97. https://doi.org/10.1073/pnas.1522033113.

    Article  CAS  PubMed  Google Scholar 

  44. Quiroga RQ. Concept cells: the building blocks of declarative memory functions. Nat Rev Neurosci. 2012;13:587–97.

    CAS  PubMed  Google Scholar 

  45. Quiroga RQ. Neural codes for visual perception and memory. Neuropsychologia. 2016;83:227–41.

    Google Scholar 

  46. Abel TJ, Rhone AE, Nourski Kirill V, Kawasaki H, Oya H, Griffiths TD, et al. Direct physiologic evidence of a heteromodal convergence region for proper naming in human left anterior temporal lobe. J Neurosci. 2015;35:1513–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Viskontas IV, Quiroga RQ, Fried I. Human medial temporal lobe neurons respond preferentially to personally relevant images. PNAS. 2009;106:21329–34.

    CAS  PubMed  Google Scholar 

  48. Mormann F, Niediek J, Tudusciuc O, Quesda CM, Coenen V, Elger C, et al. Neurons in human amygdala encode face identity but not gaze direction. Nat Neurosci. 2015;18:1568–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Vignal JP, Chauvel P, Halgren E. Localized face processing by the human prefrontal cortex: stimulation-evoked hallucinations of faces. Cogn Neuropsychol. 2000;17:281–91.

    CAS  PubMed  Google Scholar 

  50. Barbeau JE, Taylor MJ, Regis J, Marquis P, Chauvel P, Liegeois-Chauvel C. Spatio temporal dynamics of face recognition. Cereb Cortex. 2008;18:997–1009.

    PubMed  Google Scholar 

  51. Rangarajan V, Hermes D, Foster BL, Weiner KS, Jacques C, Grill-Spector K, et al. Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J Neurosci. 2014;34:12828–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jonas J, Rossion B, Brissart H, Frismand S, Jacques C, Hossu G, et al. Beyond the core face processing network: intracerebral stimulation of a face-selective area in the right anterior fusiform gyrus elicits transient prosopagnosia. Cortex. 2015;72:140–55.

    PubMed  Google Scholar 

  53. Jonas J, Descoins M, Koessler L, Colnat-Coulbois S, Sauvee M, Guye M, et al. Focal electrical intracranial stimulation of the face sensitive area causes transient prosopagnosia. Neuroscience. 2012;22:281–8.

    Google Scholar 

  54. Pitcher D, Walsh V, Duchaine B. Transcranial magnetic stimulation studies of face processing. In: Rhodes G, Calder A, Johnson M, Haxby JV, editors. Oxford handbook of face perception. New York: Oxford University Press; 2011.

    Google Scholar 

  55. Rapcsak SZ. Face memory and its disorders. Curr Neurol Neurosci Rep. 2003;3:494–501.

    PubMed  Google Scholar 

  56. Rapcsak SZ. Prosopagnosia. In: Wenzel AE, editor. The SAGE Encyclopedia of Abnormal and Clinical Psychology. SAGE Publications; 2017.

  57. Davies-Thompson J, Pancaroglu R, Barton J. Acquired prosopagnosia: structural basis and processing impairments. Front Biosci (Elite Ed). 2014;6:159–74.

    Google Scholar 

  58. Barton JS. Structure and function in acquired prosopagnosia: lessons from a series of 10 patients with brain damage. J Neuropsychol. 2008;2:197–225.

    PubMed  Google Scholar 

  59. Busigny T, Joubert S, Felician O, Ceccaldi M, Rossion B. Holistic perception of the individual face is specific and necessary: evidence from an extensive case study of acquired prosopagnosia. Neuropsychologia. 2010;48:4057–92.

    PubMed  Google Scholar 

  60. Busigny T, Van Belle G, Jemel B, Hosein A, Joubert S, Rossion B. Face-specific impairment in holistic perception following focal lesion of he right anterior temporal lobe. Neuropsychologia. 2014;56:312–33.

    PubMed  Google Scholar 

  61. Barton JJS, Press DZ, Keenan JP, O’Connor M. Lesions of the fusiform area impair perception of facial configuration in prosopagnosia. Neurology. 2002;58:71–8.

    PubMed  Google Scholar 

  62. Barton JJS, Cherkasova M. Face imagery and its relation to perception and covert recognition in prosopagnosia. Neurology. 2003;61:220–5.

    PubMed  Google Scholar 

  63. Barton JSS, Cherkasova M, O’Connor M. Covert recognition in acquired and developmental prosopagnosia. Neurology. 2001;57:1161–8.

    CAS  PubMed  Google Scholar 

  64. Barton JSS, Cherkasova M, Hefter R. The covert priming effect of faces in prosopagnosia. Neurology. 2004;63:2062–8.

    PubMed  Google Scholar 

  65. Tranel D, Damasio AR. Knowledge without awareness: an autonomic index of facial recognition by prosopagnosics. Science. 1985;228:1453–4.

    CAS  PubMed  Google Scholar 

  66. Fox JC, Iaria G, Barton JJS. Disconnection in prosopagnosia and face processing. Cortex. 2008;44:996–1009.

    PubMed  Google Scholar 

  67. Grossi D, Soricelli A, Ponari M, Salvatore E, Quarantelli M, Prinster A, et al. Structural connectivity in a single case of progressive prosopagnosia: the role of the right inferior longitudinal fasciculus. Cortex. 2104, 56:111–20.

    PubMed  Google Scholar 

  68. Bouvier SE, Engel SA. Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cereb Cortex. 2006;16:183–91.

    PubMed  Google Scholar 

  69. Omar R, Rohrer JD, Hailstone JC, Warren JD. Structural neuroanatomy of face processing in frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry. 2011;82:1341–3.

    PubMed  Google Scholar 

  70. Josephs KA, Whitwell JL, Vemuri P, Senjem ML, Boeve BF, Knopman DS, et al. The anatomic correlate of prosopagnosia in semantic dementia. Neurology. 2008;71:1628–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rossion B. Constraining the cortical face network by neuroimaging studies of acquired prosopagnosia. Neuroimage. 2008;40:423–6.

    PubMed  Google Scholar 

  72. Gao X, Vuong QC, Rossion B. The cortical face network of the prosopagnosic patient PS with fast periodic stimulation in fMRI. Cortex. 2018. https://doi.org/10.1016/j.cortex.2018.11.008.

  73. Fox JC, Iaria G, Duchaine BC, Barton JSS. Residual fMRI sensitivity for identity changes in acquired prosopagnosia. Front Psychol. 2013;4. https://doi.org/10.3389/fpsyg.2013.00756.

  74. Bernstein M, Yovel G. Two neural pathways of face processing: a critical evaluation of current models. Neurosci Behav Rev. 2015;55:536–46.

    Google Scholar 

  75. Liu J, Wang M, Shi X, Feng L, Li L, Thacker JM, et al. Neural correlates of covert face processing: fMRI evidence from a prosopagnosic patient. Cereb Cortex. 2014;24:2081–92.

    PubMed  Google Scholar 

  76. Valdes-Sosa M, Bobes MA, Quinones I, Garcia L, Valdes-Henrandez PA, Iturria Y, et al. Covert face recognition without the fusiform-temporal pathways. Neuroimage. 2011;57:1162–76.

    PubMed  Google Scholar 

  77. Gainotti G. Different patterns of famous person recognition disorders in patients with right and left anterior temporal lesions: a systematic review. Neuropsychologia. 2007;45:1591–607.

    PubMed  Google Scholar 

  78. Gainotti G. Is the right anterior temporal variant of prosopagnosia a form of ‘associative prosopagnosia’ of a form of ‘multimodal person recognition disorder’? Neuropsychol Rev. 2013;23:99–110.

    PubMed  Google Scholar 

  79. Gainotti G. Implications of recent findings for current cognitive models of familiar people recognition. Neuropsychologia. 2015;77:279–87.

    PubMed  Google Scholar 

  80. • Gainotti G. The differential contributions of conceptual representation format and language structure to levels of semantic abstraction capacity. Neuropsychol Rev. 2017;27:134–45 A review of different patterns of person recognition impairment following left vs. right ATL damage and their implications for the representation of person semantic knowledge.

    PubMed  Google Scholar 

  81. Busigny T, Robaye L, Dricot L, Rossion B. Right anterior temporal lobe atrophy and person-based semantic defect: a detailed case study. Neurocase. 2009;15:485–508.

    PubMed  Google Scholar 

  82. Snowden JS, Thompson JC, Neary D. Knowledge of famous faces and names in semantic dementia. Brain. 2004;127:1–13.

    Google Scholar 

  83. Snowden JS, Thompson JC, Neary D. Famous people knowledge and the right and left temporal lobes. Behav Neurol. 2012;25:35–44.

    PubMed  Google Scholar 

  84. •• Borghesani V, Narvid J, Battistella G, Shwe W, Watson C, Binney JR, et al. “Looks familiar, but I don’t know who she is”: the role of the right anterior temporal lobe in famous face recognition. Cortex. 2019;115:72–85 A large-scale investigation of the neuroanatomical substrates of face recognition impairment in patients with neurodegenerative disease.

    PubMed  Google Scholar 

  85. Gefen T, Wieneke C, Martersteck A, Whitney K, Weintraub S, Mesulam M-M, et al. Naming and knowing faces in primary progressive aphasia: a tale of 2 hemispheres. Neurology. 2013;81:658–64.

    PubMed  PubMed Central  Google Scholar 

  86. Cosseddu M, Gazzina S, Borroni B, Padovani A, Gainotti G. Multimodal face and voice recognition disorders in a case with unilateral right anterior temporal lobe atrophy. Neuropsychology. 2018;32:920–30.

    PubMed  Google Scholar 

  87. • Luzzi S, Baldinelli S, Ranaldi V, Fabi K, Cafazzo V, Fringuelli F, et al. Famous faces and voices: differential profiles in early right and left semantic dementia and in Alzheimer’s disease. Neuropsychologia. 2017;94:118–28 A comparison of the cognitive mechanisms and neural substrates of multimodal person recognition impairment in FTD vs. AD.

    PubMed  Google Scholar 

  88. Montembeault M, Brambati SM, Joubert S, Boukadi M, Chapleau M, RJr L, et al. Naming unique entities in the semantic variant of primary progressive aphasia and Alzheimer’s disease: towards a better understanding of the semantic impairment. Neuropsychologia. 2017;95:11–20.

    CAS  PubMed  Google Scholar 

  89. Werheid K, Clare L. Are faces special in Alzheimer’s disease? Cognitive conceptualization, neural correlates and diagnostic relevance of impaired memory for faces and names. Cortex. 2007;43:898–906.

    PubMed  Google Scholar 

  90. Grilli MD, Bercel JJ, Wank AA, Rapcsak SZ. The contribution of left anterior ventrolateral temporal lobe to the retrieval of personal semantics. Neuropsychologia. 2018;117:178–87.

    PubMed  Google Scholar 

  91. Drane DL, Ojemann JG, Phatak V, Loring DW, Gross RE, Hebb AO, et al. Famous face identification in temporal lobe epilepsy: support for a multimodal integration model of semantic memory. Cortex. 2013;49:1648–67.

    PubMed  Google Scholar 

  92. Benke T, Kuen E, Schwarz M, Walser G. Proper name retrieval in temporal lobe epilepsy: naming of famous faces and landmarks. Epilepsy Behav. 2013;27:371–7.

    PubMed  Google Scholar 

  93. Gainotti G. Face familiarity feelings, the right temporal lobe and the possible underlying neural mechanisms. Brain Res Rev. 2007;56:214–35.

    PubMed  Google Scholar 

  94. Rapcsak SZ, Nielsen MA, Littrell LD, Glisky EL, Kaszniak AW, Laguna JF. Face memory impairments in patients with frontal lobe damage. Neurology. 2001;57:1168–75.

    CAS  PubMed  Google Scholar 

  95. Rapcsak SZ, Reminger SL, Glisky EL, Kaszniak AW, Comer JF. Neuropsychological mechanisms of false facial recognition following frontal lobe damage. Cogn Neuropsychol. 1999;16:267–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Z. Rapcsak.

Ethics declarations

Conflict of Interest

Steven Z. Rapcsak declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Behavior

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapcsak, S.Z. Face Recognition. Curr Neurol Neurosci Rep 19, 41 (2019). https://doi.org/10.1007/s11910-019-0960-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-019-0960-9

Keywords

Navigation