Skip to main content
Log in

Unbiased Screens for Modifiers of Alpha-Synuclein Toxicity

  • Genetics (V Bonifati, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We provide an overview about unbiased screens to identify modifiers of alpha-synuclein (αSyn)-induced toxicity, present the models and the libraries that have been used for screening, and describe how hits from primary screens were selected and validated.

Recent Findings

Screens can be classified as either genetic or chemical compound modifier screens, but a few screens do not fit this classification. Most screens addressing αSyn-induced toxicity, including genome-wide overexpressing and deletion, were performed in yeast. More recently, newer methods such as CRISPR-Cas9 became available and were used for screening purposes. Paradoxically, given that αSyn-induced toxicity plays a role in neurological diseases, there is a shortage of human cell-based models for screening. Moreover, most screens used mutant or fluorescently tagged forms of αSyn and only very few screens investigated wild-type αSyn. Particularly, no genome-wide αSyn toxicity screen in human dopaminergic neurons has been published so far.

Summary

Most unbiased screens for modifiers of αSyn toxicity were performed in yeast, and there is a lack of screens performed in human and particularly dopaminergic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Uversky VN. Looking at the recent advances in understanding α-synuclein and its aggregation through the proteoform prism. F1000Res. 2017;6:525. https://doi.org/10.12688/f1000research.10536.1 A recent review about the function of alpha-synuclein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alafuzoff I, Hartikainen P. Alpha-synucleinopathies. Handb Clin Neurol. 2017;145:339–53. https://doi.org/10.1016/B978-0-12-802395-2.00024-9.

    Article  PubMed  Google Scholar 

  3. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–40. https://doi.org/10.1038/42166.

    Article  CAS  PubMed  Google Scholar 

  4. Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M. Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett. 1998;251:205–8.

    Article  CAS  Google Scholar 

  5. Tysnes O-B, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm (Vienna). 2017;124:901–5. https://doi.org/10.1007/s00702-017-1686-y.

    Article  Google Scholar 

  6. Petrucci S, Ginevrino M, Valente EM. Phenotypic spectrum of alpha-synuclein mutations: new insights from patients and cellular models. Parkinsonism Relat Disord. 2016;22(Suppl 1):S16–20. https://doi.org/10.1016/j.parkreldis.2015.08.015.

    Article  PubMed  Google Scholar 

  7. Chartier-Harlin M-C, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, et al. Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet. 2004;364:1167–9. https://doi.org/10.1016/S0140-6736(04)17103-1.

    Article  CAS  PubMed  Google Scholar 

  8. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, et al. alpha-Synuclein locus triplication causes Parkinson’s disease. Science. 2003;302:841. https://doi.org/10.1126/science.1090278.

    Article  CAS  PubMed  Google Scholar 

  9. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014;46:989–93. https://doi.org/10.1038/ng.3043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oertel WH. Recent advances in treating Parkinson’s disease. F1000Res. 2017;6:260. https://doi.org/10.12688/f1000research.10100.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dijkstra AA, Voorn P, Berendse HW, Groenewegen HJ, Rozemuller AJM, van de Berg WDJ. Stage-dependent nigral neuronal loss in incidental Lewy body and Parkinson’s disease. Mov Disord. 2014;29:1244–51. https://doi.org/10.1002/mds.25952.

    Article  PubMed  Google Scholar 

  12. Goetz CG, Pal G. Initial management of Parkinson’s disease. BMJ. 2014;349:g6258. https://doi.org/10.1136/bmj.g6258.

    Article  PubMed  Google Scholar 

  13. Reichmann H, Brandt MD, Klingelhoefer L. The nonmotor features of Parkinson’s disease: pathophysiology and management advances. Curr Opin Neurol. 2016;29:467–73. https://doi.org/10.1097/WCO.0000000000000348.

    Article  PubMed  Google Scholar 

  14. Fanciulli A, Wenning GK. Multiple-system atrophy. N Engl J Med. 2015;372:249–63. https://doi.org/10.1056/NEJMra1311488.

    Article  CAS  PubMed  Google Scholar 

  15. Velayudhan L, Ffytche D, Ballard C, Aarsland D. New therapeutic strategies for Lewy body dementias. Curr Neurol Neurosci Rep. 2017;17:68. https://doi.org/10.1007/s11910-017-0778-2.

    Article  CAS  PubMed  Google Scholar 

  16. Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci. 2013;14:38–48. https://doi.org/10.1038/nrn3406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Levin J, Maaß S, Schuberth M, Respondek G, Paul F, Mansmann U, et al. The PROMESA-protocol: progression rate of multiple system atrophy under EGCG supplementation as anti-aggregation-approach. J Neural Transm (Vienna). 2016;123:439–45. https://doi.org/10.1007/s00702-016-1507-8.

    Article  CAS  Google Scholar 

  18. Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA. Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc Natl Acad Sci U S A. 2008;105:728–33. https://doi.org/10.1073/pnas.0711018105.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gonçalves SA, Macedo D, Raquel H, Simões PD, Giorgini F, Ramalho JS, et al. shRNA-based screen identifies endocytic recycling pathway components that act as genetic modifiers of alpha-synuclein aggregation, secretion and toxicity. PLoS Genet. 2016;12:e1005995. https://doi.org/10.1371/journal.pgen.1005995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, et al. Life with 6000 genes. Science. 1996;274(546):563–7.

    Google Scholar 

  21. Wagner J, Ryazanov S, Leonov A, Levin J, Shi S, Schmidt F, et al. Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol. 2013;125:795–813. https://doi.org/10.1007/s00401-013-1114-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tardiff DF, Lindquist S. Phenotypic screens for compounds that target the cellular pathologies underlying Parkinson’s disease. Drug Discov Today Technol. 2013;10:e121–8. https://doi.org/10.1016/j.ddtec.2012.02.003.

    Article  PubMed  Google Scholar 

  23. Botstein D, Chervitz SA, Cherry JM. Yeast as a model organism. Science. 1997;277:1259–60.

    Article  CAS  Google Scholar 

  24. Giaever G, Nislow C. The yeast deletion collection: a decade of functional genomics. Genetics. 2014;197:451–65. https://doi.org/10.1534/genetics.114.161620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fleming MS, Gitler AD. High-throughput yeast plasmid overexpression screen. J Vis Exp. 2011. https://doi.org/10.3791/2836.

  26. Outeiro TF, Lindquist S. Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science. 2003;302:1772–5. https://doi.org/10.1126/science.1090439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Willingham S, Outeiro TF, DeVit MJ, Lindquist SL, Muchowski PJ. Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein. Science. 2003;302:1769–72. https://doi.org/10.1126/science.1090389.

    Article  CAS  PubMed  Google Scholar 

  28. Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, et al. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science. 2006;313:324–8. https://doi.org/10.1126/science.1129462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yeger-Lotem E, Riva L, Su LJ, Gitler AD, Cashikar AG, King OD, et al. Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity. Nat Genet. 2009;41:316–23. https://doi.org/10.1038/ng.337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S, Hill KJ, et al. Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet. 2009;41:308–15. https://doi.org/10.1038/ng.300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Flower TR, Clark-Dixon C, Metoyer C, Yang H, Shi R, Zhang Z, et al. YGR198w (YPP1) targets A30P alpha-synuclein to the vacuole for degradation. J Cell Biol. 2007;177:1091–104. https://doi.org/10.1083/jcb.200610071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang J, Clark-Dixon C, Wang S, Flower TR, Williams-Hart T, Zweig R, et al. Novel suppressors of alpha-synuclein toxicity identified using yeast. Hum Mol Genet. 2008;17:3784–95. https://doi.org/10.1093/hmg/ddn276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. • Chen Y-C, Farzadfard F, Gharaei N, Chen WCW, Cao J, Lu TK. Randomized CRISPR-Cas transcriptional perturbation screening reveals protective genes against alpha-synuclein toxicity. Mol Cell. 2017;68:247–257.e5. https://doi.org/10.1016/j.molcel.2017.09.014 A screen identifying genes differentially expressed upon alpha-synuclein overexpression by an innovative CRISPR-Cas approach to pertube transcriptional networks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Griffioen G, Duhamel H, van Damme N, Pellens K, Zabrocki P, Pannecouque C, et al. A yeast-based model of alpha-synucleinopathy identifies compounds with therapeutic potential. Biochim Biophys Acta. 2006, 1762:312–8. https://doi.org/10.1016/j.bbadis.2005.11.009.

    Article  CAS  Google Scholar 

  35. Williams RB, Gutekunst WR, Joyner PM, Duan W, Li Q, Ross CA, et al. Bioactivity profiling with parallel mass spectrometry reveals an assemblage of green tea metabolites affording protection against human huntingtin and alpha-synuclein toxicity. J Agric Food Chem. 2007;55:9450–6. https://doi.org/10.1021/jf072241x.

    Article  CAS  PubMed  Google Scholar 

  36. Su LJ, Auluck PK, Outeiro TF, Yeger-Lotem E, Kritzer JA, Tardiff DF, et al. Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson’s disease models. Dis Model Mech. 2010;3:194–208. https://doi.org/10.1242/dmm.004267.

    Article  CAS  PubMed  Google Scholar 

  37. Kim J, Sasaki Y, Yoshida W, Kobayashi N, Veloso AJ, Kerman K, et al. Rapid cytotoxicity screening platform for amyloid inhibitors using a membrane-potential sensitive fluorescent probe. Anal Chem. 2013;85:185–92. https://doi.org/10.1021/ac302442q.

    Article  CAS  PubMed  Google Scholar 

  38. •• Höllerhage M, Moebius C, Melms J, Chiu W-H, Goebel JN, Chakroun T, et al. Protective efficacy of phosphodiesterase-1 inhibition against alpha-synuclein toxicity revealed by compound screening in LUHMES cells. Sci Rep. 2017;7:11469. https://doi.org/10.1038/s41598-017-11664-5 The first and only unbiased screen of small compounds as modifiers of alpha-synuclein induced toxicity in human dopaminergic cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kritzer JA, Hamamichi S, McCaffery JM, Santagata S, Naumann TA, Caldwell KA, et al. Rapid selection of cyclic peptides that reduce alpha-synuclein toxicity in yeast and animal models. Nat Chem Biol. 2009;5:655–63. https://doi.org/10.1038/nchembio.193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheruvara H, Allen-Baume VL, Kad NM, Mason JM. Intracellular screening of a peptide library to derive a potent peptide inhibitor of α-synuclein aggregation. J Biol Chem. 2015;290:7426–35. https://doi.org/10.1074/jbc.M114.620484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. • Mittal S, Bjørnevik K, Im DS, Flierl A, Dong X, Locascio JJ, et al. β2-Adrenoreceptor is a regulator of the α-synuclein gene driving risk of Parkinson’s disease. Science. 2017;357:891–8. https://doi.org/10.1126/science.aaf3934 A screen identifying β-receptor blockers as enhancers of alpha-synuclein expression, important due to its possible clinical implications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cao S, Gelwix CC, Caldwell KA, Caldwell GA. Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J Neurosci. 2005;25:3801–12. https://doi.org/10.1523/JNEUROSCI.5157-04.2005.

    Article  CAS  PubMed  Google Scholar 

  43. Lan A, Smoly IY, Rapaport G, Lindquist S, Fraenkel E, Yeger-Lotem E. ResponseNet: revealing signaling and regulatory networks linking genetic and transcriptomic screening data. Nucleic Acids Res. 2011;39:W424–9. https://doi.org/10.1093/nar/gkr359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Basha O, Tirman S, Eluk A, Yeger-Lotem E. ResponseNet2.0: revealing signaling and regulatory pathways connecting your proteins and genes—now with human data. Nucleic Acids Res. 2013;41:W198–203. https://doi.org/10.1093/nar/gkt532.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vekrellis K, Xilouri M, Emmanouilidou E, Stefanis L. Inducible over-expression of wild type alpha-synuclein in human neuronal cells leads to caspase-dependent non-apoptotic death. J Neurochem. 2009;109:1348–62. https://doi.org/10.1111/j.1471-4159.2009.06054.x.

    Article  CAS  PubMed  Google Scholar 

  46. Lotharius J, Barg S, Wiekop P, Lundberg C, Raymon HK, Brundin P. Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem. 2002;277:38884–94. https://doi.org/10.1074/jbc.M205518200.

    Article  CAS  PubMed  Google Scholar 

  47. Lotharius J, Falsig J, van Beek J, Payne S, Dringen R, Brundin P, et al. Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. J Neurosci. 2005;25:6329–42. https://doi.org/10.1523/JNEUROSCI.1746-05.2005.

    Article  CAS  PubMed  Google Scholar 

  48. Höllerhage M, Goebel JN, de Andrade A, Hildebrandt T, Dolga A, Culmsee C, et al. Trifluoperazine rescues human dopaminergic cells from wild-type α-synuclein-induced toxicity. Neurobiol Aging. 2014;35:1700–11. https://doi.org/10.1016/j.neurobiolaging.2014.01.027.

    Article  CAS  PubMed  Google Scholar 

  49. Jung HJ, Kwon HJ. Target deconvolution of bioactive small molecules: the heart of chemical biology and drug discovery. Arch Pharm Res. 2015;38:1627–41. https://doi.org/10.1007/s12272-015-0618-3.

    Article  CAS  PubMed  Google Scholar 

  50. Lee H, Lee JW. Target identification for biologically active small molecules using chemical biology approaches. Arch Pharm Res. 2016;39:1193–201. https://doi.org/10.1007/s12272-016-0791-z.

    Article  CAS  PubMed  Google Scholar 

  51. Eckermann K, Kügler S, Bähr M. Dimerization propensities of synucleins are not predictive for synuclein aggregation. Biochim Biophys Acta. 1852;2015:1658–64. https://doi.org/10.1016/j.bbadis.2015.05.002.

    Article  CAS  Google Scholar 

  52. Leestemaker Y, de Jong A, Witting KF, Penning R, Schuurman K, Rodenko B, et al. Proteasome activation by small molecules. Cell Chem Biol. 2017;24:725–736.e7. https://doi.org/10.1016/j.chembiol.2017.05.010.

    Article  CAS  PubMed  Google Scholar 

  53. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–7. https://doi.org/10.1126/science.1247005.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the BMBF-funded project “HitTau” (01EK1605A to G.U.H.), the Deutsche Forschungsgemeinschaft (DFG, HO2402/18-1, Munich Cluster for Systems Neurology SyNergy) (to G.U.H.), the NOMIS foundation (FTLD project to G.U.H.), and the Parkinson Fonds Deutschland (α-synuclein high-throughput screening to G.U.H. and M.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter U. Höglinger.

Ethics declarations

Conflict of Interest

Günter Höglinger and Matthias Höllerhage each declare no potential conflict of interest.

Marc Bickle reports a fee for service from DZNE, during the conduct of the study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Höllerhage, M., Bickle, M. & Höglinger, G.U. Unbiased Screens for Modifiers of Alpha-Synuclein Toxicity. Curr Neurol Neurosci Rep 19, 8 (2019). https://doi.org/10.1007/s11910-019-0925-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-019-0925-z

Keywords

Navigation