Movement Disorders in Metabolic Disorders

Abstract

Purpose of Review

We provide a review of the movement disorders that complicate selected metabolic disorders, including the abnormal movements that may appear during or after their treatment.

Recent Findings

Movement disorders may be underrecognized when arising in the context of a broad range of metabolic disorders.

Summary

Abnormal movements may occur as the initial manifestation of a systemic disease, at any time during its course, or as a result of the medical interventions required for its management. Ascertaining movement phenomenology in acute and subacute presentations may assist in the determination of the specific underlying metabolic disorder. The management of movement disorders associated with metabolic disorders depends on the underlying pathophysiology.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.

    Stoessl AJ, Mckeown MJ. Movement disorders. Handb Clin Neurol. 2016;136:957–69.

    PubMed  Article  Google Scholar 

  2. 2.

    • Poewe W, Djamshidian-Tehrani A. Movement disorders in systemic diseases. Neurol Clin. 2015;33(1):269–97 Movement disorders may be the initial manifestation of selected systemic diseases. In this review the authors discuss the most common movement disorders which may present in infectious, autoimmune, paraneoplastic, and also in metabolic and endocrine diseases.

    PubMed  Article  Google Scholar 

  3. 3.

    Riggs JE. Neurologic manifestations of electrolyte disturbances. Neurol Clin. 2002;20(1):227–39.

    PubMed  Article  Google Scholar 

  4. 4.

    Dallocchio C, Matinella A, Arbasino C, Arno’ N, Glorioso M, Sciarretta M, et al. Movement disorders in emergency settings: a prospective study. Neurol Sci. 2019;40(1):133–8

    PubMed  Article  Google Scholar 

  5. 5.

    Chen C, Zheng H, Yang L, Hu Z. Chorea-ballism associated with ketotic hyperglycemia. Neurol Sci. 2014;35(12):1851–5.

    PubMed  Article  Google Scholar 

  6. 6.

    Seifter JL, Samuels MA. Uremic encephalopathy and other brain disorders associated with renal failure. Semin Neurol. 2011;31(2):139–43.

    PubMed  Article  Google Scholar 

  7. 7.

    Ellul MA, Cross TJ, Larner AJ. Asterixis. Pract Neurol. 2017;17(1):60–2.

    PubMed  Article  Google Scholar 

  8. 8.

    Munhoz RP, Teive HA, Troiano AR, Hauck PR, Herdoiza Leiva MH. Parkinson’s disease and thyroid dysfunction. Parkinsonism Relat Disord. 2004;10(6):381–3.

    PubMed  Article  Google Scholar 

  9. 9.

    Baizabal-Carvallo JF, Jankovic J. Movement disorders in autoimmune diseases. Mov Disord. 2012;27(8):935–46.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Miranda M, Bustamante ML, Campero M, Wainstein E, Toche P, Espay AJ, et al. Movement disorders in non-encephalopathic Hashimoto’s thyroiditis. Parkinsonism Relat Disord. 2018;55:141–2.

    PubMed  Article  Google Scholar 

  11. 11.

    Tan EK, Chan LL. Movement disorders associated with hyperthyroidism: expanding the phenotype. Mov Disord. 2006;21(7):1054–15.

    PubMed  Article  Google Scholar 

  12. 12.

    Tan EK, Lo YL, Chan LL. Graves disease and isolated orthostatic tremor. Neurology. 2008;70(16 Pt 2):1497–8.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Orija IB, Gupta M, Zimmerman RS. Graves’ disease and stiff-person (stiff-man) syndrome: case report and literature review. Endocr Pract. 2005;11(4):259–64.

    PubMed  Article  Google Scholar 

  14. 14.

    Kim HT, Edwards MJ, Lakshmi Narsimhan R, Bhatia KP. Hyperthyroidism exaggerating parkinsonian tremor: a clinical lesson. Parkinsonism Relat Disord. 2005;11(5):331–2.

    PubMed  Article  Google Scholar 

  15. 15.

    Yu JH, Weng YM. Acute chorea as a presentation of Graves disease: case report and review. Am J Emerg Med. 2009;27(3):369.e1–3.

    Article  Google Scholar 

  16. 16.

    Kondziella D, Brederlau A, Asztely F. Choreathetosis due to abuse of levothyroxine. J Neurol. 2009;256(12):2106–8.

    PubMed  Article  Google Scholar 

  17. 17.

    Gálvez-Jiménez N, Hanson MR, Cabral J. Dopa-resistant parkinsonism, oculomotor disturbances, chorea, mirror movements, dyspraxia, and dementia: the expanding clinical spectrum of hypoparathyroidism. A case report. Mov Disord. 2000;15(6):1273–6.

    PubMed  Article  Google Scholar 

  18. 18.

    Micheli F, Pardal MF, Parera IC, Giannaula R. Idiopathic hypoparathyroidism and paroxysmal kinesigenic choreoathetosis. Ann Neurol. 1989;26(3):415.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Quintáns B, Oliveira J, Sobrido MJ. Primary familial brain calcifications. Handb Clin Neurol. 2018;147:307–17.

    PubMed  Article  Google Scholar 

  20. 20.

    Vaamonde J, Legarda I, Jimenez-Jimenez J, Zubieta JL, Obeso JA. Levodopa-responsive parkinsonism associated with basal ganglia calcification and primary hypoparathyroidism. Mov Disord. 1993;8(3):398–400.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Uncini A, Tartaro A, Di Stefano E, Gambi D. Parkinsonism, basal ganglia calcification and epilepsy as late complications of postoperative hypoparathyroidism. J Neurol. 1985;232(2):109–11.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Song CY, Zhao ZX, Li W, Sun CC, Liu YM. Pseudohypoparathyroidism with basal ganglia calcification: a case report of rare cause of reversible parkinsonism. Medicine (Baltimore). 2017;96(11):e6312.

    Article  Google Scholar 

  23. 23.

    Dure LS 4th, Mussell HG. Paroxysmal dyskinesia in a patient with pseudohypoparathyroidism. Mov Disord. 1998;13(4):746–8.

    PubMed  Article  Google Scholar 

  24. 24.

    De Rosa A, Rinaldi C, Tucci T, Pappatà S, Rossi F, Morra VB, et al. Co-existence of primary hyperparathyroidism and Parkinson's disease in three patients: an incidental finding? Parkinsonism Relat Disord. 2011;17(10):771–3.

    PubMed  Article  Google Scholar 

  25. 25.

    Ohya Y, Osaki M, Sakai S, Kimura S, Yasuda C, Ago T, et al. A case of hyperparathyroidism-associated parkinsonism successfully treated with cinacalcet hydrochloride, a calcimimetic. BMC Neurol. 2018;18(1):62.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. 26.

    Singh TD, Fugate JE, Rabinstein AA. Central pontine and extrapontine myelinolysis: a systematic review. Eur J Neurol. 2014;21(12):1443–50.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Tan AH, Lim SY, Ng RX. Osmotic demyelination syndrome with evolving movement disorders. JAMA Neurol. 2018;75(7):888–9.

    PubMed  Article  Google Scholar 

  28. 28.

    de Souza A. Movement disorders and the osmotic demyelination syndrome. Parkinsonism Relat Disord. 2013;19(8):709–16.

    PubMed  Article  Google Scholar 

  29. 29.

    Seah ABH, Chan LL, Wong MC, Tan EK. Evolving spectrum of movement disorders in extrapontine and central pontine myelinolysis. Parkinsonism Relat Disord. 2002;9(2):117–9.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Espay AJ. Neurologic complications of electrolyte disturbances and acid–base balance. In: Biller J, Ferro JM, editors. Handbook of Clinical Neurology, Vol. 119 (3rd series) Neurologic Aspects of Systemic Disease Part I: Elsevier B.V.; 2014.

  31. 31.

    Grasso D, Borreggine C, Perfetto F, Bertozzi V, Trivisano M, Specchio LM, et al. Lentiform fork sign: a magnetic resonance finding in a case of acute metabolic acidosis. Neuroradiol J. 2014;27(3):288–92.

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Lin JJ, Chang MK. Hemiballism-hemichorea and non-ketotic hyperglycaemia. J Neurol Neurosurg Psychiatry. 1994;57(6):748–50

    CAS  Article  Google Scholar 

  33. 33.

    Duker AP, Espay AJ. Images in clinical medicine. Hemichorea–hemiballism after diabetic ketoacidosis. N Engl J Med. 2010;363(17):e27.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Li JY, Chen R. Increased intracortical inhibition in hyperglycemic hemichorea-hemiballism. Mov Disord. 2015;30(2):198–205.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Atay M, Yetis H, Kurtcan S, Aralasmak A, Alkan A. Susceptibility weighted imaging features of nonketotic hyperglycemia: unusual cause of hemichorea-hemiballismus. J Neuroimaging. 2015;25(2):319–24.

    PubMed  Article  Google Scholar 

  36. 36.

    Wolz M, Reichmann H, Reuner U, Storch A, Gerber J. Hypoglycemia-induced choreoathetosis associated with hyperintense basal ganglia lesions in T1-weighted brain MRI. Mov Disord. 2010;25(7):966–8.

    PubMed  Article  Google Scholar 

  37. 37.

    Renjen PN, Khanna L, Rastogi R, Khan NI. Acquired hepatocerebral degeneration. BMJ Case Rep. 2013;18:2013.

    Google Scholar 

  38. 38.

    Ferrara J, Jankovic J. Acquired hepatocerebral degeneration. J Neurol. 2009;256(3):320–32.

    PubMed  Article  Google Scholar 

  39. 39.

    Thobois S, Giraud P, Debat P, Gouttard M, Maurizi A, Perret-Liaudet A, et al. Orofacial dyskinesias in a patient with primary biliary cirrhosis: a clinicopathological case report and review. Mov Disord. 2002;17(2):415–9.

    PubMed  Article  Google Scholar 

  40. 40.

    Klos KJ, Ahlskog JE, Josephs KA, Fealey RD, Cowl CT, Kumar N. Neurologic spectrum of chronic liver failure and basal ganglia T1 hyperintensity on magnetic resonance imaging: probable manganese neurotoxicity. Arch Neurol. 2005;62(9):1385–90.

    PubMed  Article  Google Scholar 

  41. 41.

    Stracciari A, Guarino M, Pazzaglia P, Marchesini G, Pisi P. Acquired hepatocerebral degeneration: full recovery after liver transplantation. J Neurol Neurosurg Psychiatry. 2001;70(1):136–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Fernández-Rodriguez R, Contreras A, De Villoria JG, Grandas F. Acquired hepatocerebral degeneration: clinical characteristics and MRI findings. Eur J Neurol. 2010;17(12):1463–70.

    PubMed  Article  Google Scholar 

  43. 43.

    Lee PH, Shin DH, Kim JW, Song YS, Kim HS. Parkinsonism with basal ganglia lesions in a patient with uremia: evidence of vasogenic edema. Parkinsonism Relat Disord. 2006;12(2):93–6.

    PubMed  Article  Google Scholar 

  44. 44.

    Badhwar A, Berkovic SF, Dowling JP, Gonzales M, Narayanan S, Brodtmann A, et al. Action myoclonus-renal failure syndrome: characterization of a unique cerebro-renal disorder. Brain. 2004;127(Pt 10):2173–82.

    PubMed  Article  Google Scholar 

  45. 45.

    Janzen L, Rich JA, Vercaigne LM. An overview of levodopa in the management of restless legs syndrome in a dialysis population: pharmacokinetics, clinical trials, and complications of therapy. Ann Pharmacother. 1999;33(1):86–92.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Finelli PF, Singh JU. A syndrome of bilateral symmetrical basal ganglia lesions in diabetic dialysis patients. Am J Kidney Dis. 2014;63(2):286–8.

    PubMed  Article  Google Scholar 

  47. 47.

    Berkovic SF, Dibbens LM, Oshlack A, Silver JD, Katerelos M, Vears DF, et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am J Hum Genet. 2008;82(3):673–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Fugate JE. Anoxic-ischemic brain injury. Neurol Clin. 2017;35(4):601–11.

    PubMed  Article  Google Scholar 

  49. 49.

    Venkatesan A, Frucht S. Movement disorders after resuscitation from cardiac arrest. Neurol Clin. 2006;24(1):123–32.

    PubMed  Article  Google Scholar 

  50. 50.

    Wijdicks EF, Parisi JE, Sharbrough FW. Prognostic value of myoclonus status in comatose survivors of cardiac arrest. Ann Neurol. 1994;35(2):239–43.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Aicua Rapun I, Novy J, Solari D, Oddo M, Rossetti AO. Early Lance-Adams syndrome after cardiac arrest: prevalence, time to return to awareness, and outcome in a large cohort. Resuscitation. 2017;115:169–72.

    PubMed  Article  Google Scholar 

  52. 52.

    Lance JW, Adams RD. The syndrome of intention or action myoclonus as a sequel to hypoxic encephalopathy. Brain. 1963;86:111–36.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Cho AR, Kwon JY, Kim JY, Kim ES, Kim HY. Acute onset Lance-Adams syndrome following brief exposure to severe hypoxia without cardiac arrest—a case report. Korean J Anesthesiol. 2013;65(4):341–4.

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Kirkham FJ, Haywood P, Kashyape P, Borbone J, Lording A, Pryde K, et al. Movement disorder emergencies in childhood. Eur J Paediatr Neurol. 2011;15(5):390–404.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Bisciglia M, London F, Hulin J, Peeters A, Ivanoiu A, Jeanjean A. Choreoathetotic syndrome following cardiac surgery. J Clin Anesth. 2017;36:59–61.

    PubMed  Article  Google Scholar 

  56. 56.

    Bruyn GW, Padberg G. Chorea and polycythaemia. Eur Neurol. 1984;23(1):26–33.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Midi I, Dib H, Köseoglu M, Afsar N, Günal DI. Hemichorea associated with polycythaemia vera. Neurol Sci. 2006;27(6):439–41.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Edwards PD, Prosser R, Wells CE. Chorea, polycythaemia, and cyanotic heart disease. J Neurol Neurosurg Psychiatry. 1975;38(8):729–39.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Dusek P, Jankovic J, Le W. Iron dysregulation in movement disorders. Neurobiol Dis. 2012;46(1):1–18.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Russo N, Edwards M, Andrews T, O'Brien M, Bhatia KP. Hereditary haemochromatosis is unlikely to cause movement disorders—a critical review. J Neurol. 2004;251(7):849–52.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alberto J. Espay.

Ethics declarations

Conflict of Interest

Orlando Barsottini and José Luiz Pedroso each declare no potential conflicts of interest. Alberto Espay has received grant support from the NIH, Great Lakes Neurotechnologies, and the Michael J Fox Foundation; personal compensation as a consultant/scientific advisory board member for Abbvie, TEVA, Impax, Acadia, Acorda, Cynapsus/Sunovion, Lundbeck, and USWorldMeds; publishing royalties from Lippincott Williams & Wilkins, Cambridge University Press, and Springer; and honoraria from Abbvie, UCB, USWorldMeds, Lundbeck, Acadia, the American Academy of Neurology, and the Movement Disorders Society.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurology of Systemic Diseases

Section Editor: J Biller

Electronic Supplementary Material

Supplementary Video 1

We illustrate with 6 patients selected movement disorders associated with metabolic disorders. Segment 1: chorea in the setting of primary hypoparathyroidism with basal ganglia calcification (Courtesy of Dr. Thiago Cardoso Vale, from the Department of Neurology, Federal University of Juiz de For a, MG, Brazil). Segment 2: Trousseau sign in hypomagnesemia. Segment 3: hemichorea-hemiballism due to non-ketotic hyperglycemia. Segment 4: asterixis in hepatic failure (Courtesy of Dr. Guilherme Felga, from the Albert Einstein Hospital, SP, Brazil). Segment 5: tremor and myoclonus in uremic encephalopathy/renal failure. Segment 6: myoclonus in post-cardiac arrest anoxic encephalopathy. Segment 7: post-pump chorea after cardiac valve replacement surgery. (HTML 268 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pedroso, J.L., Barsottini, O.G. & Espay, A.J. Movement Disorders in Metabolic Disorders. Curr Neurol Neurosci Rep 19, 7 (2019). https://doi.org/10.1007/s11910-019-0921-3

Download citation

Keywords

  • Movement disorders
  • Abnormal movements
  • Metabolic disorders
  • Electrolytes
  • Internal medicine