Visual Snow Syndrome: Proposed Criteria, Clinical Implications, and Pathophysiology

Abstract

Purpose of Review

In this article, we review illustrative case descriptions of both primary and secondary visual snow from our clinic. We discuss recently proposed criteria for visual snow syndrome and offer a slight modification of these criteria. We also discuss the theories on the pathophysiological mechanisms of visual snow, as well as the current approach to treatment.

Recent Findings

Visual snow is a condition where patients see constant, innumerable flickering dots throughout the visual field, similar to “TV static.” Though visual snow was originally described in 1995, there were still fewer than 10 cases in the literature prior to 2014. In the last 4 years, this has grown to approximately 200 cases and there has been a concentrated effort to better understand and characterize this condition. It has become apparent that patients who see visual snow frequently have additional visual and non-visual symptoms, and the consistency of these symptoms has led to proposed criteria for visual snow syndrome.

Summary

When seeing a patient with visual snow, it is important to rule out a possible underlying secondary etiology. Patients with visual snow syndrome frequently have comorbid migraine, but visual snow appears to be a separate entity from persistent migraine aura. The pathophysiology of this syndrome is not clear, but recent neurophysiologic and neuroimaging studies have helped advance our understanding.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. 1.

    •• Schankin CJ, Maniyar FH, Digre KB, Goadsby PJ. ‘Visual snow’—a disorder distinct from persistent migraine aura. Brain. 2014a;137(Pt 5):1419–28. Visual snow syndrome is first proposed and defined in this article, while reviewing 78 cases of visual snow.

    Article  PubMed  Google Scholar 

  2. 2.

    Santos-Bueso E, Sastre-Ibanez M, Saenz-Frances F, Porta-Etessam J, Garcia-Sanchez J. Visual snow. From a symptom to a syndrome? Arch Soc Esp Oftalmol. 2015;90(1):51–2.

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    • Liu GT, Schatz NJ, Galetta SL, Volpe NJ, Skobieranda F, Kosmorsky GS. Persistent positive visual phenomena in migraine. Neurology. 1995;45(4):664–8. A case series of 10 patients with persistent positive visual phenomena and the first paper to describe visual snow and recognize its possible association with migraine.

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    • Lauschke JL, Plant GT, Fraser CL. Visual snow: a thalamocortical dysrhythmia of the visual pathway? J Clin Neurosci. 2016;28:123–7. The characteristics of a case cohort of 32 patients with visual snow is provided, with a discussion on the possible role of colored lenses as a treatment for visual snow.

    Article  PubMed  Google Scholar 

  5. 5.

    Bessero AC, Plant GT. Should ‘visual snow’ and persistence of after-images be recognised as a new visual syndrome? J Neurol Neurosurg Psychiatry. 2014;85(9):1057–8.

    Article  PubMed  Google Scholar 

  6. 6.

    Zambrowski O, Ingster-Moati I, Vignal-Clermont C, Robert MP. The visual snow phenomenon. J Fr Ophtalmol. 2014;37(9):722–7.

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Beyer U, Gaul C. Visual snow. Nervenarzt. 2015;86(12):1561–5.

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    •• Puledda F, Schankin C, Digre K, Goadsby PJ. Visual snow syndrome: what we know so far. Curr Opin Neurol. 2018;31(1):52–8. This is a very well-written review of what we understand about the pathophysiology and characterization of visual snow.

    PubMed  Google Scholar 

  9. 9.

    Evans RW, Aurora SK. Migraine with persistent visual aura. Headache. 2012;52(3):494–501.

    Article  PubMed  Google Scholar 

  10. 10.

    Koyama S, Kawamura M. Persistent visual aura following catheter ablation in a patient with WPW syndrome. Behav Neurol. 2007;18(3):187–92.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Tegetmeyer H. Visual snow syndrome: symptoms and ophthalmological findings. Klin Monatsbl Augenheilkd. 2017;234(5):713–8.

    PubMed  CAS  Google Scholar 

  12. 12.

    Luna S, Lai D, Harris A. Antagonistic relationship between VEP potentiation and gamma power in visual snow syndrome. Headache. 2018;58(1):138–44.

    Article  PubMed  Google Scholar 

  13. 13.

    Schankin CJ, Goadsby PJ. Visual snow—persistent positive visual phenomenon distinct from migraine aura. Curr Pain Headache Rep. 2015;19(6):23.

    Article  PubMed  Google Scholar 

  14. 14.

    Sinclair SH, Azar-Cavanagh M, Soper KA, Tuma RF, Mayrovitz HN. Investigation of the source of the blue field entoptic phenomenon. Invest Ophthalmol Vis Sci. 1989;30(4):668–73.

    PubMed  CAS  Google Scholar 

  15. 15.

    •• Schankin CJ, Maniyar FH, Sprenger T, Chou DE, Eller M, Goadsby PJ. The relation between migraine, typical migraine aura and “visual snow”. Headache. 2014b;54(6):957–66. Neuroimaging study showing hypermetabolism of the lingual gyrus in patients with visual snow.

    Article  PubMed  Google Scholar 

  16. 16.

    Tyler CW. Some new entoptic phenomena. Vis Res. 1978;18(12):1633–9.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Kanai R, Paulus W, Walsh V. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin Neurophysiol. 2010;121(9):1551–4.

    Article  PubMed  Google Scholar 

  18. 18.

    Samaha J, Gosseries O, Postle BR. Distinct oscillatory frequencies underlie excitability of human occipital and parietal cortex. J Neurosci. 2017;37(11):2824–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Kolmel HW. Complex visual hallucinations in the hemianopic field. J Neurol Neurosurg Psychiatry. 1985;48(1):29–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. 20.

    Marshall CR. Entoptic phenomena associated with the retina. Br J Ophthalmol. 1935;19(4):177–201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Bowen SF Jr. Retinal entoptic phenomena. Some diagnostic use. Arch Ophthalmol. 1963;69:551–5.

    Article  PubMed  Google Scholar 

  22. 22.

    Abraham HD. Visual phenomenology of the LSD flashback. Arch Gen Psychiatry. 1983;40(8):884–9.

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Pomeranz HD, Lessell S. Palinopsia and polyopia in the absence of drugs or cerebral disease. Neurology. 2000;54(4):855–9.

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Kawasaki A, Purvin V. Persistent palinopsia following ingestion of lysergic acid diethylamide (LSD). Arch Ophthalmol. 1996;114(1):47–50.

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Levi L, Miller NR. Visual illusions associated with previous drug abuse. J Clin Neuroophthalmol. 1990;10(2):103–10.

    PubMed  CAS  Google Scholar 

  26. 26.

    Martinotti G, Santacroce R, Pettorruso M, Montemitro C, Spano MC, Lorusso M, et al. Hallucinogen persisting perception disorder: etiology, clinical features, and therapeutic perspectives. Brain Sci. 2018;8(3)

  27. 27.

    Hughes MS, Lessell S. Trazodone-induced palinopsia. Arch Ophthalmol. 1990;108(3):399–400.

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Ihde-Scholl T, Jefferson JW. Mitrazapine-associated palinopsia. J Clin Psychiatry. 2001;62(5):373.

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Faber RA, Benzick JM. Nafazodone-induced palinopsia. J Clin Psychopharmacol. 2000;20(2):275–6.

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Lauterbach EC, Abdelhamid A, Annandale JB. Posthallucinogen-like visual illusions (palinopsia) with risperidone in a patient without previous hallucinogen exposure: possible relation to serotonin 5HT2a receptor blockade. Pharmacopsychiatry. 2000;33(1):38–41.

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Yun SH, Lavin PJ, Schatz MP, Lesser RL. Topiramate-induced palinopsia: a case series and review of the literature. J Neuroophthalmol. 2015;35(2):148–51.

    PubMed  Google Scholar 

  32. 32.

    Choi SY, Jeong SH, Kim JS. Clomiphene citrate associated with palinopsia. J Neuroophthalmol. 2017;37(2):220–1.

    Article  PubMed  Google Scholar 

  33. 33.

    Purvin VA. Visual disturbance secondary to clomiphene citrate. Arch Ophthalmol. 1995;113(4):482–4.

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Vaphiades MS, Celesia GG, Brigell MG. Positive spontaneous visual phenomena limited to the hemianopic field in lesions of central visual pathways. Neurology. 1996;47(2):408–17.

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Gersztenkorn D, Lee AG. Palinopsia revamped: a systematic review of the literature. Surv Ophthalmol. 2015;60(1):1–35.

    Article  PubMed  Google Scholar 

  36. 36.

    Santhouse AM, Howard RJ, Ffytche DH. Visual hallucinatory syndromes and the anatomy of the visual brain. Brain. 2000;123(Pt 10):2055–64.

    Article  PubMed  Google Scholar 

  37. 37.

    Panayiotopoulos CP. Visual phenomena and headache in occipital epilepsy: a review, a systematic study and differentiation from migraine. Epileptic Disord. 1999;1(4):205–16.

    PubMed  CAS  Google Scholar 

  38. 38.

    Bien CG, Benninger FO, Urbach H, Schramm J, Kurthen M, Elger CE. Localizing value of epileptic visual auras. Brain. 2000;123(Pt 2):244–53.

    Article  PubMed  Google Scholar 

  39. 39.

    Olesen J, Larsen B, Lauritzen M. Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann Neurol. 1981;9(4):344–52.

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Andersen AR, Friberg L, Olsen TS, Olesen J. Delayed hyperemia following hypoperfusion in classic migraine. Single photon emission computed tomographic demonstration. Arch Neurol. 1988;45(2):154–9.

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Cutrer FM, Sorensen AG, Weisskoff RM, Ostergaard L, Sanchez del Rio M, Lee EJ, et al. Perfusion-weighted imaging defects during spontaneous migrainous aura. Ann Neurol. 1998;43(1):25–31.

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Hougaard A, Amin FM, Christensen CE, Younis S, Wolfram F, Cramer SP, et al. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura. Brain. 2017;140(6):1633–42.

    Article  PubMed  Google Scholar 

  43. 43.

    Olesen J, Friberg L, Olsen TS, Iversen HK, Lassen NA, Andersen AR, et al. Timing and topography of cerebral blood flow, aura, and headache during migraine attacks. Ann Neurol. 1990;28(6):791–8.

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Jager HR, Giffin NJ, Goadsby PJ. Diffusion- and perfusion-weighted MR imaging in persistent migrainous visual disturbances. Cephalalgia. 2005;25(5):323–32.

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    Luda E, Bo E, Sicuro L, Comitangelo R, Campana M. Sustained visual aura: a totally new variation of migraine. Headache. 1991;31(9):582–3.

    Article  PubMed  CAS  Google Scholar 

  46. 46.

    Chen WT, Fuh JL, Lu SR, Wang SJ. Persistent migrainous visual phenomena might be responsive to lamotrigine. Headache. 2001;41(8):823–5.

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Relja G, Granato A, Ukmar M, Ferretti G, Antonello RM, Zorzon M. Persistent aura without infarction: decription of the first case studied with both brain SPECT and perfusion MRI. Cephalalgia. 2005;25(1):56–9.

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Boulloche N, Denuelle M, Payoux P, Fabre N, Trotter Y, Geraud G. Photophobia in migraine: an interictal PET study of cortical hyperexcitability and its modulation by pain. J Neurol Neurosurg Psychiatry. 2010;81(9):978–84.

    Article  PubMed  Google Scholar 

  49. 49.

    •• Denuelle M, Boulloche N, Payoux P, Fabre N, Trotter Y, Geraud G. A PET study of photophobia during spontaneous migraine attacks. Neurology. 2011;76(3):213–8. This study demonstrates possible involvement of the lingual gyrus in photophobia, raising the question of overlap with the lingual hypermetabolism on imaging for visual snow.

    Article  PubMed  CAS  Google Scholar 

  50. 50.

    Schankin CJ, Viana M, Goadsby PJ. Persistent and repetitive visual disturbances in migraine: a review. Headache. 2017;57(1):1–16.

    Article  PubMed  Google Scholar 

  51. 51.

    Bou Ghannam A, Pelak VS. Visual snow: a potential cortical hyperexcitability syndrome. Curr Treat Options Neurol. 2017;19(3):9.

    Article  PubMed  Google Scholar 

  52. 52.

    •• Ffytche DH. The hodology of hallucinations. Cortex. 2008;44(8):1067–83. Excellent review of the structural and physiologic pathology that might lead to visual hallucinations, including information from fMRI, EEG, and tractography studies.

    Article  PubMed  Google Scholar 

  53. 53.

    Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A. 1999;96(26):15222–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. 54.

    Unal-Cevik I, Yildiz FG. Visual snow in migraine with aura: further characterization by brain imaging, electrophysiology, and treatment—case report. Headache. 2015;55(10):1436–41.

    Article  PubMed  Google Scholar 

  55. 55.

    Chen WT, Lin YY, Fuh JL, Hamalainen MS, Ko YC, Wang SJ. Sustained visual cortex hyperexcitability in migraine with persistent visual aura. Brain. 2011;134(Pt 8):2387–95.

    Article  PubMed  Google Scholar 

  56. 56.

    Megela AL, Teyler TJ. Habituation and the human evoked potential. J Comp Physiol Psychol. 1979;93(6):1154–70.

    Article  PubMed  CAS  Google Scholar 

  57. 57.

    Fantini J, Sartori A, Manganotti P. Can we speak of lack of habituation in visual snow? Headache. 2016;56(9):1517–8.

    Article  PubMed  Google Scholar 

  58. 58.

    Afra J, Proietti Cecchini A, Sandor PS, Schoenen J. Comparison of visual and auditory evoked cortical potentials in migraine patients between attacks. Clin Neurophysiol. 2000;111(6):1124–9.

    Article  PubMed  CAS  Google Scholar 

  59. 59.

    Coppola G, Pierelli F, Schoenen J. Is the cerebral cortex hyperexcitable or hyperresponsive in migraine? Cephalalgia. 2007;27(12):1427–39.

    Article  PubMed  CAS  Google Scholar 

  60. 60.

    Lerner AG, Oyefe I, Isaacs G, Sigal M. Naltrexone treatment of hallucinogen persisting perception disorder. Am J Psychiatry. 1997;154(3):437.

    PubMed  CAS  Google Scholar 

  61. 61.

    Lugo E, Doti R, Faubert J. Ubiquitous crossmodal stochastic resonance in humans: auditory noise facilitates tactile, visual and proprioceptive sensations. PLoS One. 2008;3(8):e2860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. 62.

    Trevino M, De la Torre-Valdovinos B, Manjarrez E. Noise improves visual motion discrimination via a stochastic resonance-like phenomenon. Front Hum Neurosci. 2016;10:572.

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Harper DW. Signal detection analysis of effect of white noise intensity on sensitivity to visual flicker. Percept Mot Skills. 1979;48(3 Pt 1):791–8.

    Article  PubMed  CAS  Google Scholar 

  64. 64.

    Manjarrez E, Mendez I, Martinez L, Flores A, Mirasso CR. Effects of auditory noise on the psychophysical detection of visual signals: cross-modal stochastic resonance. Neurosci Lett. 2007;415(3):231–6.

    Article  PubMed  CAS  Google Scholar 

  65. 65.

    Collins JJ, Chow CC, Imhoff TT. Stochastic resonance without tuning. Nature. 1995;376(6537):236–8.

    Article  PubMed  CAS  Google Scholar 

  66. 66.

    • Moss F, Ward LM, Sannita WG. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol. 2004;115(2):267–81. Excellent review of the possible role of stochastic resonance in sensory processing.

    Article  PubMed  Google Scholar 

  67. 67.

    Drummond PD. Motion sickness and migraine: optokinetic stimulation increases scalp tenderness, pain sensitivity in the fingers and photophobia. Cephalalgia. 2002;22(2):117–24.

    Article  PubMed  CAS  Google Scholar 

  68. 68.

    van der Groen O, Wenderoth N. Transcranial random noise stimulation of visual cortex: stochastic resonance enhances central mechanisms of perception. J Neurosci. 2016;36(19):5289–98.

    Article  PubMed  CAS  Google Scholar 

  69. 69.

    Program Abstracts: American Headache Society(R) 58th Annual Scientific Meeting. Headache. 2016;56(Suppl 1):3–83.

  70. 70.

    Sastre-Ibanez M, Santos-Bueso E, Porta-Etessam J, Garcia-Feijoo J. Visual snow: report of three cases. J Fr Ophtalmol. 2015;38(7):e157–8.

    Article  PubMed  CAS  Google Scholar 

  71. 71.

    Wang YF, Fuh JL, Chen WT, Wang SJ. The visual aura rating scale as an outcome predictor for persistent visual aura without infarction. Cephalalgia. 2008;28(12):1298–304.

    Article  PubMed  Google Scholar 

  72. 72.

    Parra J, Lopes da Silva FH, Stroink H, Kalitzin S. Is colour modulation an independent factor in human visual photosensitivity? Brain. 2007;130(Pt 6):1679–89.

    Article  PubMed  Google Scholar 

  73. 73.

    Huang J, Zong X, Wilkins A, Jenkins B, Bozoki A, Cao Y. fMRI evidence that precision ophthalmic tints reduce cortical hyperactivation in migraine. Cephalalgia. 2011;31(8):925–36.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thank you to Mayo Clinic medical illustrator Bryce Bergene, for creating Fig. 1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carrie E. Robertson.

Ethics declarations

Conflict of Interest

Abby I. Metzler declares no conflict of interest.

Carrie E. Robertson has served on advisory boards for Amgen and Alder.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Headache

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Metzler, A.I., Robertson, C.E. Visual Snow Syndrome: Proposed Criteria, Clinical Implications, and Pathophysiology. Curr Neurol Neurosci Rep 18, 52 (2018). https://doi.org/10.1007/s11910-018-0854-2

Download citation

Keywords

  • Visual snow
  • Persistent aura
  • Persistent positive visual phenomena
  • Visual aura
  • Pathophysiology
  • Migraine