Skip to main content

Advertisement

Log in

Present and Future of Ultra-High Field MRI in Neurodegenerative Disorders

  • Neuroimaging (N Pavese, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

With a high signal-to-noise ratio, unparalleled spatial resolution, and improved contrasts, ultra-high field MR (≥ 7 T) has great potential in depicting the normal radiological anatomy of smaller structures in the brain and can also provide more information about morphological, quantitative, and metabolic changes associated with a wide range of brain disorders. By focusing attention on specific brain regions believed to be associated with early pathological change, or by more closely inspecting recognized foci of brain pathology, ultra-high field MR can improve the accuracy and sensitivity of neuroimaging. This article reviews recent studies at ultra-high field about Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS).

Recent Findings

The research on AD has mainly focused on detecting the thinning of hippocampal layers and the susceptibility effect supposed to be related to beta-amyloid deposition. In patients with PD, atypical parkinsonisms and subjects at risk of developing motor symptoms of Parkinson’s disease, the main aim was to detect changes in the substantia nigra, probably related to increased iron deposition. In patients with ALS, both brain and spinal cord were investigated, with the aim of finding changes in the primary motor cortex and corticospinal tract which reflect neurodegeneration and neuroinflammation.

Summary

Ultra-high field MR was shown to be useful for detecting subtle brain changes in patients with AD, and possible new diagnostic biomarkers in patients with PD and ALS were discovered. The ability of 7 T MR to provide prognostic biomarkers in subjects at risk for developing synucleinopathies is currently under evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Balchandani P, Naidich TP. Ultra-high-field MR neuroimaging. AJNR Am J Neuroradiol. 2015;36:1204–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Deistung A, Schafer A, Schweser F, Biedermann U, Güllmar D, Trampel R, et al. High-resolution MR imaging of the human brainstem in vivo at 7 tesla. Front Hum Neurosci. 2013;7:710.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sclocco R, Beissner F, Bianciardi M, Polimeni JR, Napadow V. Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI. NeuroImage. 2017;S1053–8119(17):30163–5.

    Google Scholar 

  4. Duyn JH. The future of ultra-high field MRI and fMRI for study of the human brain. NeuroImage. 2012;62(2):1241–8.

    Article  PubMed  Google Scholar 

  5. Biagi L, Cosottini M, Tosetti M. 7 T MR: from basic research to human applications. In: High field brain MRI. 2017. pp. 373–83.

  6. Zwanenburg JJ, van der Kolk AG, Luijten PR. Ultra-high-field MR imaging. Research tool or clinical need? PET Clin. 2013;8(3):311–28.

    Article  PubMed  Google Scholar 

  7. Truong TK, Chakeres DW, Beversdorf DQ, Scharre DW, Schmalbrock P. Effects of static and radiofrequency magnetic field inhomogeneity in ultra-high field magnetic resonance imaging. Magn Reson Imaging. 2006;24(2):103–12.

    Article  PubMed  Google Scholar 

  8. Duyn JH. High-field MRI of brain iron. Methods Mol Biol. 2011;711:239–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Thomas BP, Welch EB, Niederhauser BD, Whetsell WO Jr, Anderson AW, Gore JC, et al. High-resolution 7T MRI of the human hippocampus in vivo. J Magn Reson Imaging. 2008;28(5):1266–72.

    Article  PubMed  PubMed Central  Google Scholar 

  10. •• Cosottini M, Frosini D, Pesaresi I, Costagli M, Biagi L, Ceravolo R, et al. MR imaging of the substantia nigra at 7 T enables diagnosis of Parkinson disease. Radiology. 2014;271(3):831–8. Using 7T MR, the authors described the inner organization of the substantia nigra in an ex vivo specimen and in vivo healthy subjects. MR changes of the substantia nigra in PD patients were described and reported as a diagnostic marker with high sensitivity and specificity.

    Article  PubMed  Google Scholar 

  11. Duyn JH, van Gelderen P, Li TQ, de Zwart JA, Koretsky AP, Fukunaga M. High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci U S A. 2007;104(28):11796–801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Fukunaga M, Li TQ, van Gelderen P, de Zwart JA, Shmueli K, Yao B, et al. Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc Natl Acad Sci U S A. 2010;107(8):3834–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Deistung A, Schäfer A, Schweser F, Biedermann U, Turner R, Reichenbach JR. Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2⁎-imaging at ultra-high magnetic field strength. NeuroImage. 2013;65:299–314.

    Article  PubMed  Google Scholar 

  14. Cunningham EL, McGuinness B, Herron B, Passmore AP. Dementia. Ulster Med J. 2015;84(2):79–87.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013;9(1):63–75.

    Article  PubMed  Google Scholar 

  16. Petrella JR. Neuroimaging and the search for a cure for Alzheimer disease. Radiology. 2013;269(3):671–91.

    Article  PubMed  Google Scholar 

  17. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.

    Article  PubMed  CAS  Google Scholar 

  21. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6.

    Article  PubMed  CAS  Google Scholar 

  22. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9(1):119–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Theysohn JM, Kraff O, Maderwald S, Schlamann MU, de Greiff A, Forsting M, et al. The human hippocampus at 7 T—in vivo MRI. Hippocampus. 2009;19(1):1–7.

    Article  PubMed  Google Scholar 

  24. • Kerchner GA, Hess CP, Hammond-Rosenbluth KE, Xu D, Rabinovici GD, Kelley DA, et al. Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI. Neurology. 2010;75(15):1381–7. In this study, CA1-SRLM thickness was measured in vivo for the first time at 7T and shown to be reduced in patients with mild AD.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kerchner GA, Deutsch GK, Zeineh M, Dougherty RF, Saranathan M, Rutt BK. Hippocampal CA1 apical neuropil atrophy and memory performance in Alzheimer’s disease. NeuroImage. 2012;63(1):194–202.

    Article  PubMed  Google Scholar 

  26. Kerchner GA, Bernstein JD, Fenesy MC, Deutsch GK, Saranathan M, Zeineh MM, et al. Shared vulnerability of two synaptically-connected medial temporal lobe areas to age and cognitive decline: a seven tesla magnetic resonance imaging study. J Neurosci. 2013;33(42):16666–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kerchner GA, Berdnik D, Shen JC, Bernstein JD, Fenesy MC, Deutsch GK, et al. APOE ε4 worsens hippocampal CA1 apical neuropil atrophy and episodic memory. Neurology. 2014;82(8):691–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Boutet C, Chupin M, Lehéricy S, Marrakchi-Kacem L, Epelbaum S, Poupon C, et al. Detection of volume loss in hippocampal layers in Alzheimer’s disease using 7 T MRI: a feasibility study. Neuroimage Clin. 2014;5:341–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wisse LE, Biessels GJ, Heringa SM, Kuijf HJ, Koek DH, Luijten PR, et al. Hippocampal subfield volumes at 7T in early Alzheimer’s disease and normal aging. Neurobiol Aging. 2014;35(9):2039–45.

    Article  PubMed  Google Scholar 

  30. Wisse LE, Reijmer YD, ter Telgte A, Kuijf HJ, Leemans A, Luijten PR, et al. Hippocampal disconnection in early Alzheimer’s disease: a 7 tesla MRI study. J Alzheimers Dis. 2015;45(4):1247–56.

    Article  PubMed  Google Scholar 

  31. Nakada T, Matsuzawa H, Igarashi H, Fujii Y, Kwee IL. In vivo visualization of senile-plaque-like pathology in Alzheimer’s disease patients by MR microscopy on a 7T system. J Neuroimaging. 2008;18(2):125–9.

    Article  PubMed  Google Scholar 

  32. van Rooden S, Versluis MJ, Liem MK, Milles J, Maier AB, Oleksik AM, et al. Cortical phase changes in Alzheimer’s disease at 7T MRI: a novel imaging marker. Alzheimers Dement. 2014;10(1):e19–26.

    Article  PubMed  Google Scholar 

  33. van Rooden S, Doan NT, Versluis MJ, Goos JD, Webb AG, Oleksik AM, et al. 7T T2*-weighted magnetic resonance imaging reveals cortical phase differences between early- and late-onset Alzheimer’s disease. Neurobiol Aging. 2015;36(1):20–6.

    Article  PubMed  Google Scholar 

  34. van Rooden S, Buijs M, van Vliet ME, Versluis MJ, Webb AG, Oleksik AM, et al. Cortical phase changes measured using 7-T MRI in subjects with subjective cognitive impairment, and their association with cognitive function. NMR Biomed. 2016;29(9):1289–94.

    Article  PubMed  CAS  Google Scholar 

  35. van Bergen JM, Li X, Hua J, Schreiner SJ, Steininger SC, Quevenco FC, et al. Colocalization of cerebral iron with amyloid beta in mild cognitive impairment. Sci Rep. 2016;6:35514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Brundel M, Heringa SM, de Bresser J, Koek HL, Zwanenburg JJ, Jaap Kappelle L, et al. High prevalence of cerebral microbleeds at 7Tesla MRI in patients with early Alzheimer’s disease. J Alzheimers Dis. 2012;31(2):259–63.

    Article  PubMed  CAS  Google Scholar 

  37. van Veluw SJ, Heringa SM, Kuijf HJ, Koek HL, Luijten PR, Biessels GJ. Cerebral cortical microinfarcts at 7Tesla MRI in patients with early Alzheimer’s disease. J Alzheimers Dis. 2014;39(1):163–7.

    Article  PubMed  Google Scholar 

  38. van Rooden S, Goos JD, van Opstal AM, Versluis MJ, Webb AG, Blauw GJ, et al. Increased number of microinfarcts in Alzheimer disease at 7-T MR imaging. Radiology. 2014;270(1):205–11.

    Article  PubMed  Google Scholar 

  39. Thal DR, Holzer M, Rüb U, Waldmann G, Günzel S, Zedlick D, et al. Alzheimer-related tau-pathology in the perforant path target zone and in the hippocampal stratum oriens and radiatum correlates with onset and degree of dementia. Exp Neurol. 2000;163(1):98–110.

    Article  PubMed  CAS  Google Scholar 

  40. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298(5594):789–91.

    Article  PubMed  CAS  Google Scholar 

  41. Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549(7673):523–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Wisse LE, Kuijf HJ, Honingh AM, Wang H, Pluta JB, Das SR, et al. Automated hippocampal subfield segmentation at 7T MRI. AJNR Am J Neuroradiol. 2016;37(6):1050–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. •• Zeineh MM, Chen Y, Kitzler HH, Hammond R, Vogel H, Rutt BK. Activated iron-containing microglia in the human hippocampus identified by magnetic resonance imaging in Alzheimer disease. Neurobiol Aging. 2015;36(9):2483–500. Combining 7T MR and histologic staining for iron, microglia, beta-amyloid and tau in medial temporal lobe specimens, the iron-containing microglia was suggested as the primary cause of focal hypointensities documented in AD patients.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Meadowcroft MD, Connor JR, Smith MB, Yang QX. MRI and histological analysis of beta-amyloid plaques in both human Alzheimer’s disease and APP/PS1 transgenic mice. J Magn Reson Imaging. 2009;29(5):997–1007.

    Article  PubMed  PubMed Central  Google Scholar 

  45. van Rooden S, Maat-Schieman ML, Nabuurs RJ, van der Weerd L, van Duijn S, van Duinen SG, et al. Cerebral amyloidosis: postmortem detection with human 7.0-T MR imaging system. Radiology. 2009;253(3):788–96.

    Article  PubMed  Google Scholar 

  46. Bigio EH, Hynan LS, Sontag E, Satumtira S, White CL. Synapse loss is greater in presenile than senile onset Alzheimer disease: implications for the cognitive reserve hypothesis. Neuropathol Appl Neurobiol. 2002;28(3):218–27.

    Article  PubMed  Google Scholar 

  47. Conijn MM, Geerlings MI, Biessels GJ, Takahara T, Witkamp TD, Zwanenburg JJ, et al. Cerebral microbleeds on MR imaging: comparison between 1.5 and 7T. AJNR Am J Neuroradiol. 2011;32(6):1043–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Brundel M, de Bresser J, van Dillen JJ, Kappelle LJ, Biessels GJ. Cerebral microinfarcts: a systematic review of neuropathological studies. J Cereb Flow Metab. 2012;32(3):425–36.

    Article  Google Scholar 

  49. Mathis CA, Lopresti BJ, Ikonomovic MD, Klunk WE. Small-molecule PET tracers for imaging proteinopathies. Semin Nucl Med. 2017;47(5):553–75.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Péran P, Cherubini A, Assogna F, Piras F, Quattrocchi C, Peppe A, et al. Magnetic resonance imaging markers of Parkinson’s disease nigrostriatal signature. Brain. 2010;133:3423–33.

    Article  PubMed  Google Scholar 

  51. Hutchinson M, Raff U, Lebedev S. MRI correlates of pathology in parkinsonism: segmented inversion recovery ratio imaging (SIRRIM). NeuroImage. 2003;20(3):1899–902.

    Article  PubMed  Google Scholar 

  52. Minati L, Grisoli M, Carella F, De Simone T, Bruzzone MG, Savoiardo M. Imaging degeneration of the substantia nigra in Parkinson disease with inversion-recovery MR imaging. AJNR Am J Neuroradiol. 2007;28(2):309–13.

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Oikawa H, Sasaki M, Tamakawa Y, Ehara S, Tohyama K. The substantia nigra in Parkinson disease: proton density-weighted spin-echo and fast short inversion time inversion-recovery MR findings. AJNR Am J Neuroradiol. 2002;23(10):1747–56.

    PubMed  PubMed Central  Google Scholar 

  54. Sasaki M, Shibata E, Tohyama K, Takahashi J, Otsuka K, Tsuchiya K, et al. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. Neuroreport. 2006;17(11):1215–8.

    Article  PubMed  Google Scholar 

  55. Lee H, Baek SY, Chun SY, Lee JH, Cho H. Specific visualization of neuromelanin-iron complex and ferric iron in the human post-mortem substantia nigra using MR relaxometry at 7T. Neuroimage. 2017;S1053–8119(17):30967–9.

    Google Scholar 

  56. Ordidge RJ, Gorell JM, Deniau JC, Knight RA, Helpern JA. Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 tesla. Magn Reson Med. 1994;32:335–41.

    Article  PubMed  CAS  Google Scholar 

  57. Martin WR, Wieler M, Gee M. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology. 2008;70:1411–7.

    Article  PubMed  CAS  Google Scholar 

  58. Vaillancourt DE, Spraker MB, Prodoeh L, Abraham I, Corcos DM, Zhou XJ, et al. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology. 2009;72:1378–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Lehéricy S, Sharman MA, Dos Santos CL, Paquin R, Gallea C. Magnetic resonance imaging of the substantia nigra in Parkinson’s disease. Mov Disord. 2012;27:822–30.

    Article  PubMed  Google Scholar 

  60. Hirata FC, Sato JR, Vieira G, Lucato LT, Leite CC, Bor-Seng-Shu E, et al. Substantia nigra fractional anisotropy is not a diagnostic biomarker of Parkinson’s disease: a diagnostic performance study and meta-analysis. Eur Radiol. 2017;27:2640–8.

    Article  PubMed  Google Scholar 

  61. Eapen M, Zald DH, Gatenby JC, Ding Z, Gore JC. Using high-resolution MR imaging at 7T to evaluate the anatomy of the midbrain dopaminergic system. AJNR Am J Neuroradiol. 2011;32(4):688–94.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Blazejewska AI, Schwarz ST, Pitiot A, Stephenson MC, Lowe J, Bajaj N, et al. Visualization of nigrosome 1 and its loss in PD: pathoanatomical correlation and in vivo 7 T MRI. Neurology. 2013;81:534–40.

    Article  PubMed  PubMed Central  Google Scholar 

  63. • Kwon DH, Kim JM, Oh SH, Jeong HJ, Park SY, Oh ES, et al. Seven-Tesla magnetic resonance images of the substantia nigra in Parkinson disease. Ann Neurol. 2012;71:267–77. Differences in the MR appearance of the substantia nigra between healthy subjects and PD patients were investigated for the first time.

    Article  PubMed  Google Scholar 

  64. Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain. 1999;122(Pt 8):1421–36.

    Article  PubMed  Google Scholar 

  65. Massey L, Miranda M, Al-Helli O, Parkes HG, Thornton JS, So PW, et al. 9.4 T MR microscopy of the substantia nigra with pathological validation in controls and disease. NeuroImage Clin. 2017;13:154–63.

    Article  PubMed  CAS  Google Scholar 

  66. Kim J-M, Jeong H-J, Bae YJ, Park S-Y, Kim E, Kang SY, et al. Loss of substantia nigra hyperintensity on 7 tesla MRI of Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy. Parkinsonism Relat Disord. 2016;26:47–54.

    Article  PubMed  CAS  Google Scholar 

  67. Reiter E, Mueller C, Pinter B, Krismer F, Scherfler C, Esterhammer R, et al. Dorsolateral nigral hyperintensity on 3.0T susceptibility-weighted imaging in neurodegenerative parkinsonism. Mov Disord. 2015;30(8):1068–76.

    Article  PubMed  CAS  Google Scholar 

  68. Bae YJ, Kim J-M, Kim E, Lee KM, Kang SY, Park HS, et al. Loss of Nigral Hyperintensity on 3 tesla MRI of parkinsonism: comparison with [123] I-FP-CIT SPECT. Mov Disord. 2016;31(5):684–92.

    Article  PubMed  CAS  Google Scholar 

  69. Schwarz ST, Afzal M, Morgan PS, Bajaj N, Gowland PA, Auer DP. The ‘swallow tail’ appearance of the healthy nigrosome - a new accurate test of Parkinson’s disease: a case-control and retrospective cross-sectional MRI study at 3T. PLoS One. 2014;9(4):e93814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Gramsch C, Reuter I, Kraff O, Quick HH, Tanislav C, Roessler F, et al. Nigrosome 1 visibility at susceptibility weighted 7T MRI a dependable diagnostic marker for Parkinson’s disease or merely an inconsistent, age-dependent imaging finding? PLoS One. 2017;12(10):e0185489.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Schmidt MA, Engelhorn T, Marxreiter F, Winkler J, Lang S, Kloska S, et al. Ultra high-field SWI of the substantia nigra at 7T: reliability and consistency of the swallow-tail sign. BMC Neurol. 2017;17(1):194.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ayton S, Lei P. Nigral iron elevation is an invariable feature of Parkinson’s disease and is a sufficient cause of neurodegeneration. Biomed Res Int. 2014;2014:581256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Duguid JR, de La Paz R, DeGroot J. Magnetic resonance imaging of the midbrain in Parkinson’s disease. Ann Neurol. 1986;20(6):744–7.

    Article  PubMed  CAS  Google Scholar 

  74. Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain. 1999;122(Pt 8):1437–48.

    Article  PubMed  Google Scholar 

  75. Cosottini M, Frosini D, Biagi L, Pesaresi I, Costagli M, Tiberi G, et al. Short-term side-effects of brain MR examination at 7 T: a single-Centre experience. Eur Radiol. 2014;24(8):1923–8.

    Article  PubMed  CAS  Google Scholar 

  76. Cosottini M, Frosini D, Pesaresi I, Donatelli G, Cecchi P, Costagli M, et al. Comparison of 3T and 7T susceptibility weighted angiography of the substantia nigra in diagnosing Parkinson disease. AJNR Am J Neuroradiol. 2015;36(3):461–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Noh Y, Sung YH, Lee J, Kim EY. Nigrosome 1 detection at 3T MRI for the diagnosis of early-stage idiopathic Parkinson disease: assessment of diagnostic accuracy and agreement on imaging asymmetry and clinical laterality. AJNR Am J Neuroradiol. 2015;35(11):2010–6.

    Article  Google Scholar 

  78. Lehéricy S, Vaillancourt DE, Seppi K, Monchi O, Rektorova I, Antonini A, et al. The role of high-field magnetic resonance imaging in parkinsonian disorders: pushing the boundaries forward. Mov Disord. 2017;32(4):510–25.

    Article  PubMed  Google Scholar 

  79. Mahlknecht P, Krismer F, Poewe W, Seppi K. Meta-analysis of dorsolateral nigral hyperintensity on magnetic resonance imaging as a marker for Parkinson’s disease. Mov Disord. 2017;32:619–23.

    Article  PubMed  CAS  Google Scholar 

  80. Dexter DT, Wells FR, Agid F, Lees AJ, Jenner P, Marsden CD. Increased nigral iron content in postmortem parkinsonian brain. Lancet. 1987;2(8569):1219–20.

    Article  PubMed  CAS  Google Scholar 

  81. Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y. Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem. 1991;56:446–51.

    Article  PubMed  CAS  Google Scholar 

  82. Liu C, Li W, Tong KA, Yeom KW, Kuzminski S. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging. 2015;42(1):23–41.

    Article  PubMed  Google Scholar 

  83. Lotfipour AK, Wharton S, Schwarz ST, Gontu V, Schäfer A, Peters AM, et al. High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson’s disease. J Magn Reson Imaging. 2012;35(1):48–55.

    Article  PubMed  Google Scholar 

  84. Lee VM, Trojanowski JQ. Mechanisms of Parkinson’s disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron. 2006;52(1):33–8.

    Article  PubMed  CAS  Google Scholar 

  85. Akhtar RS, Stern MB. New concepts in the early and preclinical detection of Parkinson’s disease: therapeutic implications. Expert Rev Neurother. 2012;12(12):1429–38.

    Article  PubMed  CAS  Google Scholar 

  86. Martin I, Dawson VL, Dawson TM. Recent advances in the genetics of Parkinson’s disease. Annu Rev Genomics Hum Genet. 2011;12:301–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Ross GW, Petrovitch H, Abbott RD, Tanner CM, Popper J, Masaki K, et al. Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann Neurol. 2008;63(2):167–73.

    Article  PubMed  Google Scholar 

  88. Iranzo A, Molinuevo JL, Santamaría J, Serradell M, Martí MJ, Valldeoriola F, et al. Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol. 2006;5(7):572–7.

    Article  PubMed  Google Scholar 

  89. Ceravolo R, Antonini A, Frosini D, De Iuliis A, Weis L, Cecchin D, et al. Nigral anatomy and striatal denervation in genetic parkinsonism: a family report. Mov Disord. 2015;30(8):1148–9.

    Article  PubMed  Google Scholar 

  90. De Marzi R, Seppi K, Högl B, Müller C, Scherfler C, Stefani A, et al. Loss of dorsolateral nigral hyperintensity on 3.0 tesla susceptibility-weighted imaging in idiopathic rapid eye movement sleep behavior disorder. Ann Neurol. 2016;79(6):1026–30.

    Article  PubMed  Google Scholar 

  91. Frosini D, Cosottini M, Donatelli G, Costagli M, Biagi L, Pacchetti C, et al. Seven tesla MRI of the substantia nigra in patients with rapid eye movement sleep behavior disorder. Parkinsonism Relat Disord. 2017;43:105–9.

    Article  PubMed  Google Scholar 

  92. Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. New Engl J Med. 2006;355(9):896–908.

    Article  PubMed  CAS  Google Scholar 

  93. Abosch A, Yacoub E, Ugurbil K, Harel N. An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 tesla. Neurosurgery. 2010;67:1745–56.

    Article  PubMed  Google Scholar 

  94. Alkemade A, de Hollander G, Keuken MC, SchaÈfer A, Ott DVM, Schwarz J, et al. Comparison of T2-weighted and QSM contrasts in Parkinson's disease to visualize the STN with MRI. PLoS One. 2017;12(4):e0176130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Plantinga BR. Individualized parcellation of the subthalamic nucleus in patients with Parkinson's disease with 7T MRI. NeuroImage. 2016;168:403–11. https://doi.org/10.1016/j.neuroimage.2016.09.023.

    Article  PubMed  Google Scholar 

  96. Duchin Y, Abosch A, Yacoub E, Sapiro G, Harel N. Feasibility of using ultra-high field (7 T) MRI for clinical surgical targeting. PLoS One. 2012;7(5):e37328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Sung YH, Noh Y, Lee J, Kim EY. Drug-induced parkinsonism versus idiopathic Parkinson disease: utility of nigrosome 1 with 3-T imaging. Radiology. 2016;279(3):849–58.

    Article  PubMed  Google Scholar 

  98. Schrag A, Ben-Shlomo Y, Quinn N. How valid is the clinical diagnosis of Parkinson’s disease in the community? J Neurol Neurosurg Psychiatry. 2002;73:529–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Newman EJ, Breen K, Patterson J, Hadley DM, Grosset KA, Grosset DG. Accuracy of Parkinson’s disease diagnosis in 610 general practice patients in the west of Scotland. Mov Disord. 2009;24(16):2379–85.

    PubMed  Google Scholar 

  100. Massey LA, Micallef C, Paviour DC, O’Sullivan SS, Ling H, Williams DR, et al. Conventional magnetic resonance imaging in confirmed progressive Supranuclear palsy and multiple system atrophy. Mov Disord. 2012;27:1754–62.

    Article  PubMed  Google Scholar 

  101. Quattrone A, Nicoletti G, Messina D, Fera F, Condino F, Pugliese P, et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology. 2008;246(1):214–21.

    Article  PubMed  Google Scholar 

  102. Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson’s disease. Lancet Neurol. 2006;5(1):75–86.

    Article  PubMed  Google Scholar 

  103. Wenning GK, Stefanova N, Jellinger KA, Poewe W, Schlossmacher MG. Multiple system atrophy: a primary oligodendrogliopathy. Ann Neurol. 2008;64(3):239–46.

    Article  PubMed  CAS  Google Scholar 

  104. Munoz E, Iranzo A, Rauek S, Lomena F, Gallego J, Ros D, et al. Subclinical nigrostriatal dopaminergic denervation in the cerebellar subtype of multiple system atrophy (MSA-C). J Neurol. 2011;258(12):2248–53.

    Article  PubMed  Google Scholar 

  105. Frosini D, Ceravolo R, Tosetti M, Bonuccelli U, Cosottini M. Nigral involvement in atypical parkinsonisms: evidence from a pilot study with ultra-high field MRI. J Neural Transm (Vienna). 2016;123(5):509–13.

    Article  Google Scholar 

  106. Cilia R, Rossi C, Frosini D, Volterrani D, Siri C, Pagni C, et al. Dopamine transporter SPECT imaging in corticobasal syndrome. PLoS One. 2011;6(5):e18301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991;114:2283–301.

    Article  PubMed  Google Scholar 

  108. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, et al. Amyotrophic lateral sclerosis. Lancet. 2011;377(9769):942–55.

    Article  PubMed  CAS  Google Scholar 

  109. Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ, et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis. 2004;15(3):601–9.

    Article  PubMed  CAS  Google Scholar 

  110. Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol. 2009;65 Suppl 1:S3–9.

    Article  PubMed  CAS  Google Scholar 

  111. Corcia P, Tauber C, Vercoullie J, Arlicot N, Prunier C, Praline J, et al. Molecular imaging of microglial activation in amyotrophic lateral sclerosis. PLoS One. 2012;7(12):e52941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Turner MR, Bowser R, Bruijn L, Dupuis L, Ludolph A, McGrath M, et al. Mechanisms, models and biomarkers in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(Suppl 1):19–32.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Brooks BR, Miller RG, Swash M, Munsat TL. World Federation of Neurology Research Group on motor neuron diseases. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1(5):293–9.

    Article  PubMed  CAS  Google Scholar 

  114. Kawamata T, Akiyama H, Yamada T, McGeer PL. Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am J Pathol. 1992;140(3):691–707.

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Wijesekera LC, Leigh PN. Amyotrophic lateral sclerosis. Orphanet J Rare Dis. 2009;4:3.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Eisen A, Swash M. Clinical neurophysiology of ALS. Clin Neurophysiol. 2001;112(12):2190–201.

    Article  PubMed  CAS  Google Scholar 

  117. de Carvalho M, Dengler R, Eisen A, England JD, Kaji R, Kimura J, et al. Electrodiagnostic criteria for diagnosis of ALS. Clin Neurophysiol. 2008;119(3):497–503.

    Article  PubMed  Google Scholar 

  118. Filippi M, Agosta F, Abrahams S, Fazekas F, Grosskreutz J, Kalra S, et al. European Federation of Neurological Societies. EFNS guidelines on the use of neuroimaging in the management of motor neuron diseases. Eur J Neurol. 2010;17(4):526–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. •• Kwan JY, Jeong SY, Van Gelderen P, Deng HX, Quezado MM, Danielian LE, et al. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS One. 2012;7(4):e35241. In ALS patients, the signal hypointensity was described as localised to the deeper layers of the primary motor cortex and suggested to reflect the increased iron accumulation in microglial cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. • Cosottini M, Donatelli G, Costagli M, Caldarazzo Ienco E, Frosini D, Pesaresi I, et al. High-resolution 7T MR imaging of the motor cortex in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol. 2016;37(3):455–61. The authors described the normal radiological appearance of the primary motor cortex in healthy subjects at 7T and the changes that occur in ALS patients, showing the topographical relationship between MR alterations and UMN burden of the corresponding limbs.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  121. Costagli M, Donatelli G, Biagi L, Caldarazzo Ienco E, Siciliano G, Tosetti M, et al. Magnetic susceptibility in the deep layers of the primary motor cortex in amyotrophic lateral sclerosis. Neuroimage Clin. 2016;12:965–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Verstraete E, Polders DL, Mandl RC, Van Den Heuvel MP, Veldink JH, Luijten P, et al. Multimodal tract-based analysis in ALS patients at 7T: a specific white matter profile? Amyotroph Lateral Scler Frontotemporal Degener. 2014;15(1–2):84–92.

    Article  PubMed  Google Scholar 

  123. Cohen-Adad J, Zhao W, Keil B, Ratai EM, Triantafyllou C, Lawson R, et al. 7-T MRI of the spinal cord can detect lateral corticospinal tract abnormality in amyotrophic lateral sclerosis. Muscle Nerve. 2013;47(5):760–2.

    Article  PubMed  Google Scholar 

  124. Atassi N, Xu M, Triantafyllou C, Keil B, Lawson R, Cernasov P, et al. Ultra high-field (7tesla) magnetic resonance spectroscopy in amyotrophic lateral sclerosis. PLoS One. 2017;12(5):e0177680.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Cheong I, Marjańska M, Deelchand DK, Eberly LE, Walk D, Öz G. Ultra-high field proton MR spectroscopy in early-stage amyotrophic lateral sclerosis. Neurochem Res. 2017;42(6):1833–44.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  126. Westeneng HJ, Wismans C, Nitert AD, Walhout R, Luijten PR, Wijnen JP, et al. Metabolic differences between asymptomatic C9orf72 carriers and non-carriers assessed by brain 7T MRSI. In Proceedings of the 25th Annual Meeting of ISMRM, Honolulu, USA, 2017. Abstract 0028.

  127. Kato Y, Matsumura K, Kinosada Y, Narita Y, Kuzuhara S, Nakagawa T. Detection of pyramidal tract lesions in amyotrophic lateral sclerosis with magnetization-transfer measurements. AJNR Am J Neuroradiol. 1997;18(8):1541–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  128. Tanabe JL, Vermathen M, Miller R, Gelinas D, Weiner MW, Rooney WD. Reduced MTR in the corticospinal tract and normal T2 in amyotrophic lateral sclerosis. Magn Reson Imaging. 1998;16(10):1163–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Sigmund EE, Suero GA, Hu C, McGorty K, Sodickson DK, Wiggins GC, et al. High-resolution human cervical spinal cord imaging at 7 T. NMR Biomed. 2012;25(7):891–9.

    Article  PubMed  CAS  Google Scholar 

  130. Brand A, Richter-Landsberg C, Leibfritz D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci. 1993;15(3–5):289–98.

    Article  PubMed  CAS  Google Scholar 

  131. Yokota T, Yoshino A, Inaba A, Saito Y. Double cortical stimulation in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 1996;61(6):596–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Vucic S, Cheah BC, Kiernan MC. Defining the mechanisms that underlie cortical hyperexcitability in amyotrophic lateral sclerosis. Exp Neurol. 2009;220(1):177–82.

    Article  PubMed  Google Scholar 

  133. Foerster BR, Pomper MG, Callaghan BC, Petrou M, Edden RA, Mohamed MA, et al. An imbalance between excitatory and inhibitory neurotransmitters in amyotrophic lateral sclerosis revealed by use of 3-T proton magnetic resonance spectroscopy. JAMA Neurol. 2013;70(8):1009–16.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996;16(3):675–86.

    Article  PubMed  CAS  Google Scholar 

  135. Bradley WG, Bowen BC, Pattany PM, Rotta F. 1H-magnetic resonance spectroscopy in amyotrophic lateral sclerosis. J Neurol Sci. 1999;169(1–2):84–6.

    Article  PubMed  CAS  Google Scholar 

  136. Bowen BC, Pattany PM, Bradley WG, Murdoch JB, Rotta F, Younis AA, et al. MR imaging and localized proton spectroscopy of the precentral gyrus in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol. 2000;21(4):647–58.

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Pohl C, Block W, Karitzky J, Träber F, Schmidt S, Grothe C, et al. Proton magnetic resonance spectroscopy of the motor cortex in 70 patients with amyotrophic lateral sclerosis. Arch Neurol. 2001;58(5):729–35.

    Article  PubMed  CAS  Google Scholar 

  138. Kalra S, Hanstock CC, Martin WR, Allen PS, Johnston WS. Detection of cerebral degeneration in amyotrophic lateral sclerosis using high-field magnetic resonance spectroscopy. Arch Neurol. 2006;63(8):1144–8.

    Article  PubMed  Google Scholar 

  139. Han J, Ma L. Study of the features of proton MR spectroscopy (1H-MRS) on amyotrophic lateral sclerosis. J Magn Reson Imaging. 2010;31(2):305–8.

    Article  PubMed  Google Scholar 

  140. van der Graaff MM, Lavini C, Akkerman EM, Majoie CB, Nederveen AJ, Zwinderman AH, et al. MR spectroscopy findings in early stages of motor neuron disease. AJNR Am J Neuroradiol. 2010;31(10):1799–806.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Govind V, Sharma KR, Maudsley AA, Arheart KL, Saigal G, Sheriff S. Comprehensive evaluation of corticospinal tract metabolites in amyotrophic lateral sclerosis using whole-brain 1H MR spectroscopy. PLoS One. 2012;7(4):e35607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Toncelli A, Noeske R, Cosottini M, Costagli M, Domenici V, Tiberi G, et al. STEAM-MiTiS: an MR spectroscopy method for the detection of scalar-coupled metabolites and its application to glutamate at 7 T. Magn Reson Med. 2015;74(6):1515–22.

    Article  PubMed  CAS  Google Scholar 

  143. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol. 2012;11(4):323–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work is part of the experimental protocol “Seven Tesla MR imaging as preclinical biomarker in populations at risk for Parkinson disease” (RF-2013-02354829) approved and funded by the Italian Ministry of Health and co-funded by the Health Service of Tuscany. We wish to thank Mark R. Symms for the assistance in the manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Ceravolo.

Ethics declarations

Conflict of Interest

Graziella Donatelli, Daniela Frosini, Michela Tosetti, and Ubaldo Bonuccelli declare no conflict of interest.

Roberto Ceravolo has received a grant from the Italian Ministry of Health and co-funded by the Health Service of Tuscany.

Mirco Cosottini has received a grant from the Italian Ministry of Health and co-funded by the Health Service of Tuscany.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuroimaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donatelli, G., Ceravolo, R., Frosini, D. et al. Present and Future of Ultra-High Field MRI in Neurodegenerative Disorders. Curr Neurol Neurosci Rep 18, 31 (2018). https://doi.org/10.1007/s11910-018-0841-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-018-0841-7

Keywords

Navigation